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Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer

patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-

assembled structures for different shapes and interaction potentials. Extended corresponding

states principle was successfully applied to self-assembling systems in order to approximately

collapse the results for models with the same shape, but different interaction range. This helps

us directly compare simulation results with previous experiment, and good agreement was found

between the two. In addition, a variety of self-assembled structures were observed by varying

the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical

shells. In conclusion, our results help to compare simulations and experiments, via extended

corresponding states, and we predict the formation of self-assembled structures for trimer shapes

that have not been experimentally synthesized.

1 Introduction

Self-assembly is a promising method to manufacture new mate-

rials with novel properties.1–5 Recent advances in colloidal syn-

thesis of anisotropic particles have allowed for improved design

of the particles and the superstructures into which they assem-

ble.6–8 In addition to repulsive interactions stemming from shape

anisotropy, attractive anisotropic interactions between colloids

may be introduced by adding depletant molecules to the solu-

tion.9 Computer simulations and theoretical models have also

been used to understand and predict the properties of assemblies

from their basic building blocks.10–13

Trimer colloids were recently synthesized with one attractive

bead and two repulsive beads, where the attractive and repul-

sive interactions are governed by the smoothness or roughness of

the bead surfaces in the presence of depletant particles in solu-

tion.14,15 Trimers of a single shape were experimentally synthe-

sized and observed to form elongated structures.15 These trimers

were also studied computationally in order to analyze the self-

assembled structures and compare with experiment.15 Other pre-

vious simulation studies include trimers with different number of

attractive beads,16,17 dimers,14,18–21 and tetramers.22 Recently,

Avvisati and Dijkstra simulated trimers with tunable interaction
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range and bond length in order to study the competition between

self-assembly and macroscopic phase separation.23 In our previ-

ous work, we studied the self-assembly and macroscopic phase

separation for a variety of trimer shapes with one attractive bead.

But these trimer shapes did not corresponded to the experimen-

tally synthesized geometry, and the interactions (range of the po-

tential with respect to the particle size) were not similar to ex-

periment.24 In this work, we simulate shorter interaction ranges

(no macroscopic phase separation)25 than our previous work,24

which are comparable to the experimental system.

To compare our simulation results with experiment and be-

tween different computational models, we use the law of ex-

tended corresponding states (ECS), which is based on equat-

ing second virial coefficients.26 Originally proposed by Noro and

Frenkel for isotropic particles exhibiting macroscopic phase sepa-

ration, ECS is a useful way to draw comparisons between models

and identify which ones are essentially equivalent.26,27 Foffi and

Sciortino found that patchy particles also obey ECS near the gas-

liquid critical point.28 In addition, ECS has been used to study

the phase behavior of active particle suspensions.29 In this work,

we investigate this concept for self-assembling systems. Although

ECS has been previously used for self-assembling systems,15 by

matching the second osmotic virial coefficient of experiments and

simulations at one condition, ECS has not been systematically

validated for self-assembling systems with different interaction

ranges.

In this work, we perform Wang-Landau Transition-Matrix

Monte Carlo (WL-TMMC) simulations of trimers with one at-

tractive bead and two repulsive beads for a variety interaction
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ranges and trimer shapes. In order to simulate short-ranged in-

teractions with highly attractive potentials, several advanced al-

gorithms were employed to improve sampling, including config-

urational bias, geometric cluster algorithm, and aggregation vol-

ume bias.30–34 We find that extended corresponding states can

be successfully applied to self-assembling systems. The results

for different interaction ranges collapsed by shifting their inter-

action strength, provided that they are sufficiently short-ranged.

In addition, we predict that changes in the size of the repulsive

beads and the bond lengths of the experimental structure result in

the formation of spherical clusters, elongated clusters, spherical

shells and monolayers.

This paper is organized as follows. In Section 2, we describe the

trimer models and associated interaction potentials. The simula-

tion methods are described in Section 3. In Section 4, the results

and discussions section is split into a section on comparing differ-

ent models for the experimental trimer geometry in Section 4.1

and exploring different self-assembled structures formed by a va-

riety of trimer geometries in Section 4.2. Finally, conclusions are

provided in Section 5.

2 Models

The trimers were composed of one attractive bead (blue) and

two repulsive beads (red), as illustrated in Figure 1. The relative

placement of the two repulsive beads with respect to the central

attractive bead was defined by the bond angle, θ , and the bond

length, L. In this work, the two bond lengths between either re-

pulsive bead and the attractive bead were equal, and the trimers

were rigid. The interaction between two beads, i and j, was mod-

eled by a modified, shifted-force Lennard-Jones (LJ) potential,
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where ri j is the center-to-center separation distance between two

beads, rc
i j is the potential cut-off, and σi j = (σi +σ j)/2. The pa-

rameter ε is the well depth of the LJ potential interaction. The

parameter σ is the length scale (or diameter) of the interaction

site (or bead). The diameter of the blue, attractive bead, σ , was

fixed while the diameter of the red, repulsive beads, σr1 and σr2,

were varied independently. The range of the attractive interac-

tions was tuned with the parameter, α , as shown in Figure 2.

In this work, we study four geometrically distinct trimer mod-

els (A, B, C and D), which are shown in Figure 1 and listed in

Table 1 for the various models.§ Model A is the same shape as

the recently synthesized colloidal trimer.15 The remaining mod-

els B, C and D are variations of the experimental structure that

we investigated to predict the formation of self-assembled struc-

§ model A possesses the square-well and hard-sphere interactions as reported in Ref

15

θ

L

σ

σ

r2

r1

σ

A                     B                     C                  D

Fig. 1 The trimer models investigated in this work are illustrated using

VMD. 36 The blue bead represents the smooth colloidal bead, and is

attracted to other blue beads. All other pair interactions are purely

repulsive.

tures for trimer colloid shapes that have not been experimentally

synthesized. Model B has larger repulsive beads than model A.

Model C is a linear version of model A, and model D is also linear,

but with size-asymmetric repulsive beads. Interactions between

beads were chosen to mimic those observed experimentally. The

experimental colloidal trimers possess short range attractive in-

teractions with a center-to-center separation distance up to ap-

proximately 1.02σ .15 This attractive interaction is due to the fa-

vorable excluded volume overlap of colloidal beads with a smooth

surface in depletant,14 and can be captured by high values of the

parameter α . Here we studied the behavior of α = 6,12,24,50

and 128. To distinguish between different model geometries and

interaction ranges, we use the following naming convention: Mα ,

where M denotes the model type and α denotes interaction range.

The short range attractive interactions for α = 50 and α = 128

more closely resemble the attractive range of the colloids than

the α = 6 case, which was utilized in our previous work.24 For

interactions between attractive, blue beads, the potential cutoff

distance, rc
i j/σ , was 1.08, 1.2, 3, 3 and 3 for α = 128, 50, 24, 12,

and 6, respectively. The rough colloidal beads have less excluded

volume overlap, and were therefore modeled as purely repulsive.

All pair-wise interactions involving the repulsive, red beads were

made purely repulsive by setting the cutoff to rc
i j/σ = 21/α , also

known as the Weeks-Chandler-Andersen potential.35

Table 1 The parameters of the trimer models investigated in this work,

and computed values for the excluded volume (see Appendix A) and the

theta temperature, B22(βεθ ) = 0.

model σr1 σr2 L/σ θ α Vex/σ3 βεθ

A 0.85 0.85 0.57 91◦ n/a§ 1.009(1) 5.13(3)

A6 0.85 0.85 0.57 91◦ 6 1.009(1) 1.36(1)

A50 0.85 0.85 0.57 91◦ 50 1.009(1) 5.25(1)

A128 0.85 0.85 0.57 91◦ 128 1.009(1) 6.35(2)

B50 1 1 0.57 91◦ 50 1.315(1) 5.97(2)

B128 1 1 0.57 91◦ 128 1.315(1) 7.04(5)

C50 0.85 0.85 0.57 180◦ 50 1.009(1) 5.80(2)

D50 0.7 1.1 0.3 180◦ 50 0.806(1) 5.93(2)

The second osmotic virial coefficient, B22, has been found

to be useful in comparing models via extended corresponding

states,26,28 and is a measure of the average potential energy be-

tween two particles. By equating the second virial coefficients

of two different models, the relative location of their coexistence
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Fig. 2 The potential energy of interaction, given by Equation 1, for α = 6

(dashed line), α = 50 (solid line) and α = 128 (dotted line). The blue

lines show the attractive interactions between smooth beads, shown in

blue in Figure 1. The red lines show the repulsive interactions between

the rough beads, shown in red in Figure 1.

curves may be estimated, provided that both models are suffi-

ciently short-ranged. The second osmotic virial coefficient is de-

fined as

B22(βε) =−
1

2

∫

V
dr f (r;βε), (3)

f (r;βε) = e−βU(r;ε)−1, (4)

where r is the relative position and orientation between two par-

ticles, V is the domain of possible positions and orientations,

β = 1/kBT , and T is the temperature. Note that the notation for

B22 is not related to the notation for model B. For the LJ potential,

the second osmotic virial coefficient was numerically computed

by Monte Carlo integration, as described in Appendix B.

The theta temperature is defined by the condition B22(βεθ ) =

0, and is provided in Table 1 for the various models. The theta

temperature, βεθ , is analogous to the Boyle temperature of a gas.

3 Methods

The self-assembly of the trimers was investigated with Wang-

Landau Transition-Matrix Monte Carlo (WL-TMMC) simula-

tions37–39 in the grand-canonical ensemble. This simulation

method computes the free energy, potential energy, pressure and

detailed structural information as a function of trimer density

(or concentration) at constant βε (constant temperature or ε),

in a single simulation. The equilibrium simulation of these self-

assembly systems was computationally expensive, where a single

simulation was composed of hundreds of billions of Monte Carlo

trials. The Monte Carlo trials are described in Section 3.1. Details

of the WL-TMMC simulations are provided in Section 3.2, and the

methods to analyze the structure of the clusters are described in

Section 3.3.

3.1 Monte Carlo Trials

Models with short-range attractions and deep well-depths (e.g.,

α = 50 or 128 and βε > 7) require Monte Carlo algorithms that

efficiently simulate the formation and destruction of energetically

stable clusters. The following three Monte Carlo algorithms in-

volving collective motion or biased configurational sampling were

implemented to overcome large energy barriers.

The first of these algorithms is the Geometric Cluster Algorithm

(GCA).30,31 The GCA is a rejection-free algorithm that samples

cluster translation, rotation, creation and destruction more effi-

ciently than traditional single particle moves.40,41 The algorithm

proceeds as follows. A trimer and a pivot point in space are ran-

domly selected, and the trimer is reflected about the pivot. All

other trimers which interact with the pivoted trimer, in both the

old and newly pivoted positions, are then attempted to be pivoted

with a probability related to the pair interaction energy between

the two trimers. Each attempted pivot was carried out recursively

until all the interacting trimers were attempted to be pivoted. To

avoid inefficient moves involving pivots of most of the trimers in

the system, the pivot point was confined to a cubic box centered

on the first randomly selected trimer. The size of this bounding

cubic box was tuned via 5 % changes every 106 trials, in order to

obtain an average target number of trimers involved in a pivot, set

to Nmax/5. Note that while the conventional rigid cluster moves

implemented in our previous work24 could not create or destroy

clusters due to detailed balance, the GCA does not suffer from this

limitation. The algorithm was optimized to minimize the number

of pair-wise computations. With this implementation, the energy

change of the entire GCA move was deduced from the stored pair-

wise interactions involving particles which were rejected from all

attempted pivots.

The second algorithm that was implemented to overcome sam-

pling difficulties was the configurational-bias (CB) method with

multiple first bead (MFB) insertions.32,42 This method allows the

individual beads of the trimer to be sequentially grown in a com-

putationally efficient manner. In this work, each bead was grown

with six trials. For insertions, deletions, or regrowths of the en-

tire trimer, this included multiple first beads. Trimers were also

partially regrown, and only one trial position was used for the

trivial one-bead partial regrowths. Although CB is traditionally

optimized for high densities, the CB method naturally comple-

ments the third and final algorithm described below.

The aggregation volume bias (AVB) method was the third

Monte Carlo move that was implemented to improve sam-

pling.33,34,43–46 The aggregation volume bias method has been

shown to improve sampling of strongly associating fluids and was

well-suited for the strong, short-ranged interactions studied in

this work. This is because the AVB method targets transitions

between the outside and inside of the chosen aggregation vol-

ume, which mimics the formation and destruction of clusters. The

aggregation volume was defined by the distance between attrac-

tive beads greater than σ and less than rc, independent of the

repulsive beads. Because the aggregation volume definition ig-

nores the location of the repulsive beads, a significant number

of AVB attempts lead to overlap with repulsive beads. This sim-

plified the AVB implementation, in comparison to the alternative

method of defining a trimer orientation-dependent aggregation

volume. But this implementation without orientation dependence

was efficient in tandem with the CB algorithm, because the CB

algorithm is likely to accept the non-overlapping configurations
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while growing the timers one bead at a time. Thus, for the grand-

canonical insertion moves with AVB, CB and MFB, the first bead

was an attractive bead, which was inserted within the aggrega-

tion volume of another randomly selected attractive bead. For

entire trimer regrowths using AVB, CB and MFB, the AVB2 and

AVB3 algorithms were employed for multiple first bead insertions

of the attractive bead. For AVB2 and AVB3, the relative proba-

bility to select in-to-out or out-to-in moves was 50 %. For more

details on the implementation of the combined AVB, CB and MFB

algorithm, see Appendix C.

In addition to the three Monte Carlo moves described above,

the following Monte Carlo trials were also utilized, as described

previously.24 These trials included single trimer translation, ro-

tation, insertion and deletion, smart Monte Carlo,47 rigid cluster

translation and rotations, and parallel configuration swaps. Refer

to Ref. 24 for implementation details of these trials. The rigid

trimer rotations were performed about the centroid of the po-

sitions of the three beads. Table 2 summarizes all of the Monte

Carlo trials that were employed in this work, and provides the rel-

ative weights for the probabilities of attempting each type. The

relative weights of the different trials were chosen such that the

computer would spend roughly equal amounts of time processing

the different trials, optimized for the high density simulations.

This weighting strategy avoided an inefficient scenario where the

majority of computer time was spent on one type of trial, when

that trial may not sample well in a particular region of phase

space.

Table 2 Monte Carlo trials and relative weights for the probability of

selection.

trial weight

single-trimer translation or rotation 5

single-trimer insertion or deletion 5/4

smart Monte Carlo 1/Nmax

cluster translation or rotation 1/Nmax

parallel configuration swap 10−4

geometric cluster algorithm 5/Nmax

CB and MFB insertion or deletion 0.9
CB, AVB, and MFB insertion or deletion 0.1
CB, AVB2, and MFB regrowth 1/12

CB, AVB3, and MFB regrowth 1/12

CB two-bead partial regrowth 1/2

one-bead partial regrowth 1/2

3.2 Grand Canonical Wang-Landau Transition-Matrix Monte

Carlo Simulations

The Wang-Landau Transition-Matrix Monte Carlo method in the

grand-canonical ensemble is a flat-histogram method used to ob-

tain the free energy and potential energy as a function of trimer

density (or concentration) at constant βε (temperature or ε). The

trimer concentration, ρ, ranges from 0 to Nmax/V , where Nmax is

the maximum number of trimers and V = L3 is the volume of the

cubic periodic boundary. The self-assembling “phase diagram”

was then constructed from a series of constant βε simulations.

The Wang-Landau method computes the free energy based on

visited states statistics, while the Transition-Matrix method com-

putes the free energy based on transition statistics between states.

The combination of these two methods allows one to benefit from

both the fast estimate of the free energy using visited states, and

also improved long-term convergence using transitions between

states.48 The methods used to determine convergence are de-

scribed in the previous work.24 The simulations were parallelized

with overlapping subsets of the concentration range assigned to

individual processors, while attempting configuration swaps be-

tween processors, as described previously.24

A series of grand canonical WL-TMMC simulations were per-

formed for Nmax = 250, L = 9σ , and β µ − 3ln(Λ/σ) = −4 to −6,

where µ is the chemical potential and Λ is the thermal de Broglie

wavelength. For each model listed in Table 1, simulations were

conducted at constant 1/βε in the range [0.09,0.15] with a spac-

ing of 0.005. In order to verify that system-size dependent ef-

fects were small, additional simulations were performed with

L/σ = 8,9.5 at 1/βε = 0.125 for α = 50 and at 1/βε = 0.115 for

α = 128. For L = 8σ , Nmax = 140. For L = 9.5σ , Nmax = 265. Er-

ror bars in density were then obtained as the standard deviation

from the three independent simulations at L/σ = 8,9,9.5. In all

cases, the error bars in density were smaller than the symbols for

figures in Section 4. Error bars in βε were simply determined by

the spacing between simulations.

3.3 Structural Analysis

Clusters, which were identified for rigid cluster moves and struc-

tural analysis, were defined as all trimers having an attractive

bead within the cut-off distance, rc, from at least one other at-

tractive bead in the cluster, obtained via recursive flood-fill al-

gorithm. Statistics on the clusters were accumulated every at-

tempted cluster move, after the simulation swept more than one

time, where a sweep was defined as satisfying the condition that

each macrostate had been visited from a different macrostate at

least 100 times. After one sweep, trimer configurations were

stored every 105 trials in a compressed binary format for further

analysis.

The boundaries between the different self-assembled structures

were obtained from the WL-TMMC simulations. One of these

boundaries occurred at the low density (or concentration) bound-

ary of the self-assembled structure, and is referred to as the criti-

cal micelle concentration (CMC). The CMC is defined as the low-

est concentration at which micellar clusters form. After the con-

centration is increased beyond the CMC, the concentration of the

free trimers and premicellar aggregates remains approximately

constant within a range of concentrations.49 Thus, the high con-

centration boundary or limit of the micellar cluster is taken to be

the maximum concentration at which the concentration of free

trimers is approximately constant. The critical micelle temper-

ature (CMT) is the highest temperature (or lowest ε) at which

micelles could exist. This temperature is not a true thermody-

namic critical point, and was simply named by analogy to the

critical micelle concentration.50 Finally, spherical clusters change

into elongated clusters at low temperature (or high ε). More de-

tails for determining these boundaries may be found in Ref. 24.
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4 Results and Discussion

We studied the thermodynamic phase behavior of a variety of

self-assembling trimers with different interaction potentials and

geometries. In Section 4.1, Noro-Frenkel extended correspond-

ing states is applied to self-assembly of the experimental struc-

ture (model A) in order to compare models with varying interac-

tion ranges, and compare the models with experiment. Then, in

Section 4.2, various trimer geometries (i.e., models B, C and D),

were examined in order to predict the formation of self-assembled

structures which include spherical clusters, elongated clusters,

spherical shells and monolayers.

4.1 Comparison of Experiment and Models with Different

Interactions

Self-assembly phase diagrams were computed for a given trimer

shape using WL-TMMC simulations in the grand canonical en-

semble. Note that microscopic self-assembled structures do not

represent a thermodynamic phase, and therefore the term phase

diagram is used loosely to refer to the structures that form in dif-

ferent regions of phase space, βε and ρσ3. The stable regions

for the elongated clusters of models A50 and A128 are shown in

Figure 3. The clusters formed here can be described as elongated

micelles. As βε is decreased, the elongated structures eventu-

ally break apart. In addition, a critical or minimum concentration

of trimers is required to form self-assembled structures (i.e., the

CMC), and this critical concentration decreases as βε increases.

Finally, the high concentration boundary is insensitive to βε, rel-

ative the sensitivity of the CMC (see Ref. 24 for definition of this

boundary). Although models A50 and A128 possess the same ge-

ometry, the phase diagrams are quantitatively different because

model A128 has a shorter interaction range than A50. In this sec-

tion, we quantitatively compare these two models, and compare

with experiment, by applying Noro-Frenkel extended correspond-

ing states.

Assuming that Noro-Frenkel extended corresponding states ap-

plies to self-assembling systems, we seek to equate the second

osmotic virial coefficient, B22 of models over the entire range of

βε of interest. While other studies have matched second virial co-

efficients in self-assembling systems at a particular value of βε,15

it is not clear what assumptions and errors may be involved in

using the matched second virial coefficient at one βε to compare

the entire range of βε of interest. In general, the mapping be-

tween two models may require that each state point be matched

individually. The second osmotic virial coefficient for models A6,

A12, A24, A50 and A128 are shown in Figure 4. However, for suf-

ficiently short-ranged interaction (α ≥ 24), the curves can be ap-

proximately collapsed by shifting each curve by their respective

theta temperatures, βεθ . Note that the theta temperature is a

function of both the particle geometry and interaction range.

In order to understand the collapse due to shifting in βε, con-

sider the second virial coefficient for two square-well (SW) mod-

els with different interaction strength parameters (ε1,ε2) and in-

teraction range parameters (λ1,λ2), but the same hard core diam-

10
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ρ
σ
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Fig. 3 Self-assembly phase diagrams for models A50 (red) and A128

(black). Elongated clusters form at concentrations above the critical

micelle concentration, shown by the black x and red + symbols. The

dashed line along the critical micelle concentration is a linear fit to the

data. The critical micelle βε is shown by the triangle. The high

concentration boundary of the micellar fluid is shown by the solid line.

Error bars were obtained as the standard deviation from three

independent simulations. The snapshot is a representative configuration

of model A50 at the state point shown by the black circle symbol.
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Fig. 4 The second osmotic virial coefficient for A6 (blue solid square),

A12 (green star), A24 (blue open square), A50 (black +) and A128 (red x).

The error bars are smaller than the symbols.
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Fig. 5 The second osmotic virial coefficient, shifted by the theta solvent

condition, B22(βεθ ) = 0, with the same colors and symbols as in Figure

4.

eter, σ . The square well potential is defined as

USW (r) =















∞ r < σ

−ε σ ≤ r ≤ λσ

0 r > λσ

, (5)

where λ determines the attractive interaction range. The second

osmotic virial coefficient for the SW may be evaluated analytically

with Equation 3,

BSW
22 =

2πσ3

3
[1+(1− eβε )(λ 3 −1)]. (6)

For the two different SW models to have the same B22 with dif-

ferent interaction strengths, ε1 and ε2, and different interaction

ranges, λ1 and λ2, the following condition must be true,

1− eβε1

1− eβε2

=
λ 3

2
−1

λ 3
1
−1

. (7)

For short-range potentials (i.e., λ → 1) at self-assembling condi-

tions, eβε >> 1, as evidenced from Figure 3. This condition is true

for short-ranged patchy models, when the attractive interactions

must be large enough to overcome steric repulsions and promote

clustering. For Equation 7, with the condition eβε >> 1,

β (ε1 − ε2) = ln

(

λ 3
2
−1

λ 3
1
−1

)

. (8)

Thus, the difference between ε1 and ε2 is a function of the relative

interaction ranges for models with equivalent B22. Therefore, for

sufficiently short-range potentials, the B22 curves of two different

ranged models may be collapsed by shifting βε by a constant fac-

tor. A similar argument may be applied to the Lennard-Jones po-

tentials, Equation 1, if the potentials are sufficiently short-ranged

that they may be mapped onto square-well potentials. In this

short-ranged limit, the effective hard sphere diameter is insensi-

tive to βε. Any value of the second osmotic virial coefficient may

be chosen to shift and collapse the data. This simplifies compari-

son with experimental data, where it is more convenient to obtain

the second osmotic virial coefficient at only one depletant concen-

tration. In addition, this approach also simplifies the comparison

between many different models, and may be used to determine

when a model should be considered sufficiently short-ranged. For

example, in comparing between many models with different in-

teraction ranges, such as Figure 7 of Avvisati and Dijkstra,23 it

is possible that shorter-ranged interactions could have collapsed

upon shifting the interaction strength by a constant.

The phase diagrams for models A50 and A128, shown in Figure

6, were shifted by βε∗, defined by B22(βε∗) = −11.1σ3, which is

the experimentally reported second osmotic virial coefficient.15

This choice of βε∗ allows meaningful comparison with experi-

ment, where βεθ is not known. As predicted by extended corre-

sponding states (ECS), the CMC for A50 and A128 collapse onto

a single curve after shifting by βε∗
50

= 6.6 and βε∗128 = 7.66 for

α = 50 and 128, respectively. The results for models A50 and A128

may also be compared with the experimental and simulation re-

sults of Wolters et al. using ECS. The data from Figure 9 of Wolters

et al. was obtained using Plot Digitizer 2.6.6 for φparticles = 0.01,

and then shifted by βε∗exp = 7. While the error bars in the ex-

periment were too large to quantitatively evaluate the relative

performance of the simulations, the simulation data of Wolters et

al. was not in agreement with this work.

Although quantitative differences between the simulation data

of Wolters et al. and this work were expected due to differ-

ences in the simulation methodology (e.g., canonical ensemble

with single particle moves versus grand canonical ensemble with

flat histogram methods and collective particle moves), the sec-

ond virial coefficient calculation could potentially be the largest

source of the differences (e.g. the value of βε∗). In particular,

Wolters et al. simulated model A using square-well and hard-

sphere interactions reported a value of B22(βε = 7) ≈ −11.5σ3.

But according to the method described in Appendix B, the value

of the second virial coefficient for this discontinuous model was

B22(βε = 7) =−26.9(4)σ3, and B22(βε∗shi f t = 6.31(1)) =−11.1σ3.

As shown in Figure 6, the CMC simulation data of Wolters et al.

with βε∗shi f t = 6.31, rather than βε∗exp = 7, matched more closely

with the simulation data in this work. While the cause of the

discrepancy cannot be determined without further investigation,

this comparison between simulation results of different models

requires, and demonstrates the usefulness of, ECS.

The critical micelle concentrations (CMC) for both A50 and A128

are expected to collapse onto a single curve upon shifting, follow-

ing an analytical theory developed for self-assembly, independent

of extended corresponding states. For short-ranged potentials,

the CMC can be given by14

ln(ρVex) = ln

(

Vex

ζ 3

)

−
〈n〉

2
βε, (9)

where Vex is the excluded volume of a trimer (see Table 1), is the

volume fraction of free monomers and premicellar aggregates, ζ

is the width of the attractive potential well, and 〈n〉 is the aver-

age number of bonds in one trimer. Upon inspection of Equation

9, the CMC’s for models with different interaction ranges, but

6 | 1–11



10
−5

10
−4

10
−3

10
−2

10
−1

−1 −0.5 0 0.5 1 1.5 2 2.5 3

ρ
σ

3

β(ε−ε*)

Fig. 6 The concentration of free trimers (i.e., the CMC), shifted by ε∗,

for model A simulations and previously published experimental data. 15

From this work A50, βε∗50 = 6.6 (red +) and A128, βε∗128 = 7.66 (black x)

models are shown. The red and black dashed lines are the linear fits to

the CMC for A50 and A128, respectively. In addition, simulations (green

open squares) and experiments (blue circles) are shown from Wolters et

al. 15 with βε∗exp = 7. Finally, the shifted simulation results of Wolters et

al. with βε∗shi f t = 6.31 are shown as green solid squares.

the same geometry, are shifted by a constant, in agreement with

Equation 8. This is because lnρ in Equation 9 is a linear func-

tion of βε with a slope that is independent of interaction range.

The CMC for both A50 and A128 were fit to Equation 9 using least-

squares minimization, and 〈n〉 was found to be 4.5 and 4.2, re-

spectively. These values of 〈n〉 are in agreement with Wolters et

al.

4.2 Simulations of Self-Assembled Structures for Various Ge-

ometries

In this section, variations on the experimental structure, mod-

els B, C and D, were investigated in order to study the forma-

tion of self-assembled structures for trimer geometries that have

not been experimentally synthesized. To begin, model B, which

has larger repulsive beads than model A, was found to form both

spherical and elongated clusters. Different interaction ranges for

model B collapsed upon shifting to match the B22. Finally, mod-

els C and D are shown to form monolayers and spherical shells,

respectively.

The phase diagrams for models B50 and B128 are shown in Fig-

ure 7, shifted by βεθ . Increasing the size of the repulsive beads

stabilized spherical clusters under some conditions. These spheri-

cal clusters became elongated above a certain value of βε, result-

ing in a qualitatively similar type of phase diagram as previously

found for a different geometry.24 The critical micelle concentra-

tions for the B50 and B128 models also collapsed onto a single

curve using extended corresponding states, as shown in Figure 7.

The average number of bonds, 〈n〉, was 4 for both B models. The

number of bonds, 〈n〉, was expected to be lower than the model

A value of ≈ 4.5, because model B possesses larger repulsive ears

than model A. The number of bonds was also expected to de-

crease when transitioning from elongated to spherical clusters.
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Fig. 7 Self-assembly phase diagrams for models B50 and B128, shifted

by βεθ . The symbols and colors are as described in the caption of

Figure 3. The red and black circles are the spherical to elongated

cluster transitions for B50 and B128, respectively.

The low βε boundary between the spherical to elongated cluster

regions for both the B50 and B128 models were within two stan-

dard deviations. The differences in the boundaries for models B50

and B128 may be the result of the arbitrariness in the definition of

the CMT, which is also discussed in Ref. 24. In addition, bound-

aries in βε were determined with less precision than boundaries

in concentration, because the grand canonical simulations were

performed at constant βε, and thus data at finer intervals of βε

were not available and would require more simulations. The high

concentration boundaries of the micellar fluid were in relatively

good agreement. Discrepancies between the results for α = 50

and α = 128 may be due to subtle changes in the shape of the

particles. For example, the shoulder of the repulsive interactions,

shown in Figure 2, changes the effective sizes of the beads. Al-

though these changes may be small, it is possible they signifi-

cantly affected the stability of self-assembled clusters.

A variety of self-assembled structures, shown in Figure 8,

formed for the trimer particles with one attractive bead. For

model A50, the straight tubular structure, shown in Figure 8a

and 8b was the predominant self-assembled structure, and was

described previously.15 This straight tubular structure is visually

characterized by its cross-section of four trimers, and the straight

line-up of the beads with respect to the long axis of the elongated

cluster. Spiral elongated clusters, similar to those described pre-

viously,15 were also observed, and occurred more frequently at

lower values of βε. When the size of the repulsive beads was in-

creased to that of model B50, spiral tubular structures become the

predominant self-assembled structure at higher values of βε, as

shown in Figure 8c. The spiral structures, are characterized by a

cross section of roughly three trimer particles, rather than four,

with each successive trimer rotated about the long axis of the

elongated cluster. Spherical clusters were also found for model

B50 at lower values of βε, as shown in Figure 8d. Note that the

spherical clusters were not simply a nucleation of an elongated

cluster, because multiple stable spherical clusters coexist without

forming elongated clusters. When the bond angle for model A50
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 The following selected structures are illustrated: straight

elongated clusters of model A50 with βε = 8 (a), the same elongated

cluster as “a" from a different angle (b), two spiral elongated clusters of

model B50 with βε = 10 (c), spherical clusters of model B50 with βε = 8

(d), mono-layer of model C50 with βε = 8 (e), and spherical shells of

model D50 with βε = 8 (f). The blue boxes represent the periodic

boundaries.

was increased to 180◦, resulting in model C50, monolayers read-

ily formed, as shown in Figure 8e. Finally, spherical shells were

engineered from a conical-shaped trimer, model D50, as shown in

Figure 8f. Although only one particular trimer shape has been

created in experiments,15 our simulations suggest that many dif-

ferent structures may self-assemble from trimer particles with one

attractive bead by changing the trimer geometry.

5 Conclusion

The self-assembly of trimer colloids with one attractive bead and

two repulsive beads was computationally investigated for differ-

ent interaction ranges and particle shapes. The stability region in

the ρ-β plane of the resulting self-assembled structures was ob-

tained over a range of trimer densities and interaction strengths

by using Wang-Landau Transition-Matrix Monte Carlo simula-

tions in the grand canonical ensemble. Extended corresponding

states was applied to self-assembling systems to compare models

with different interactions ranges, but the same shape. In par-

ticular, the second osmotic virial coefficients of the two models

may be equated by shifting the interaction strength by a constant.

This constant shift in the interaction strength led to collapse of the

results over the entire range of state points of interest. In addi-

tion, various trimer geometries were also investigated, and were

found to form spherical clusters, elongated clusters, monolayers

and hollow spherical clusters (e.g., vesicles).

In future work, one may investigate potentials that possess at-

tractive interactions that are shorter-ranged than the ones studied

in this work by using the adhesive hard sphere model.51,52 The

adhesive hard sphere model may be similar to the limit of α → ∞

for Equation 1. But the difficulties of sampling short range in-

teractions with deep well depths increase for larger values of α .

For the adhesive hard sphere model, the well width effectively

vanishes, and special simulation techniques are required.51

The continuous potentials studied in this work are important to

develop because they may be more readily simulated with molec-

ular dynamics simulations. For extended corresponding states,

the collapse of the second osmotic virial coefficients, shown in

Figure 5, was demonstrated for continuous potentials that require

numerical computation of the virial coefficients, in addition to

discontinuous potentials that are more amenable to theoretical

calculations. Molecular dynamic studies of the kinetics of cluster

formation, and the effect of shear on self-assembly, may be the

subject of future publications.
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A Excluded Volume

Excluded volume, Vex/σ3, was computed numerically by assum-

ing the beads are hard spheres with a diameter equal to their σ

parameter.35 The calculation is similar to that described in Ref.

24; however, the effective size of the excluded probe is zero in

this work. In practice, the excluded volume was computed nu-

merically by overlaying the trimer with a cubic grid of np = 109

points and a side length, V
1/3

cube
equal to the largest σ plus the max-

imum intra-particle distance from a bead to the center-of-mass.

The excluded volume, Vex, is obtained by counting the number of

grid points which are inside at least one of the hard spheres of

the trimer, no,

Vex =
noVcube

np
. (10)

By computing the excluded volume of one hard sphere and com-

paring to theoretical value of πσ3/6, the numerical error is ex-
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pected to be on the order of 10−4σ3.

B Second Osmotic Virial Coefficient

The second osmotic virial coefficient for continuous potentials

(e.g., Equation 2) was numerically computed by Monte Carlo in-

tegration.

B22(βε) =−
V

2Ntrial

Ntrial

∑
i

f (ri;βε), (11)

where ri is the relative position and orientation of a second trimer

with respect to the first trimer, f (ri;βε) is given by Equation 4,

and i = 1, ...,Ntrial randomly chosen positions and orientations of

a second trimer with respect to the first. For more details, see the

implementation described in Ref. 24. In this work, B22/σ3 was

computed in increments of 1/βε of 0.001, and the standard devia-

tions were obtained from a series of block averages of Ntrial = 108.

C Aggregation Volume Bias in Tandem with

Configuration Bias

Although aggregation volume bias (AVB), configuration bias (CB)

and multiple first bead (MFB) insertions have been described else-

where,32–34,42–45 the combination of the two bias methods is not

fully documented in a single source in the literature. An AVB

trial focuses on the region of space that a particle will be moved,

inserted or deleted. In this work, only the first bead is consid-

ered for AVB trials, and the aggregation volume is defined with-

out any orientation dependence. To simplify notation, the follow-

ing short-hand names will be used. AV refers to the aggregation

volume. M is the particle to be moved in regrowths, added in

insertions, or removed in deletions. R is the region of the ag-

gregation volume for the target particle (i.e., “in" or “out"). The

volume inside the AV is vin, and the volume outside the AV is

vout = V − vin. The number of particles inside the AV is nin, and

nout outside the AV. Aggregation volumes are defined for specific

pairs of bead types. Thus, nin only counts the number of beads

in the AV that match the correct type. In this work, only smooth,

blue beads are considered in the AVB algorithm, and therefore

the number of particles, N = nin +nout .

For grand-canonical insertions and deletions of particles with

AVB, CB and MFB, the algorithm proceeds as follows. The target

particle, J is selected randomly among all particles (reject if N =

0). R is the “in" region of J, and nin = nin
J . There is an equal

probability of attempting an insertion or deletion. For insertions,

the Metropolis acceptance probability for the trial is given by

pMet =
vinNz

nin(N −1)
WCB, (12)

where z = σ3eβ µ/Λ3 and WCB is the Rosenbluth term from config-

urational bias. To compute WCB, the first bead of M is randomly

inserted in R for a total of k random trials. The ith trial for the

first bead, b = 1, is selected with a probability

pi =
e−βub

i

wb

, (13)

wb =
k

∑
j=1

e−βub
j , (14)

where ub
i is the potential energy of the first bead (b = 1) of M in

the ith trial position with all other particles. After selection of the

ith trial, the remaining b = 2 to nb beads are sequentially grown

from k trial positions each.

WCB =
nb

∏
b=1

wb/k. (15)

For deletions, M is selected randomly from R and the Metropolis

acceptance probability is

pMet =
nin(N −1)

vinNz
WCB. (16)

To compute WCB, the position of the first bead of M and k − 1

other random positions of the first bead of M in R are used to

compute w1. Following Equations 14 and 15, WCB is computed

for the remaining beads for the original position of the beads in

M, and k−1 other random positions, subject to the intramolecular

potential, as described elsewhere for CB.42

For regrowths with either AVB2 or AVB3, in tandem with CB

and MFB, one begins by selecting Rnew and Rold , which are the

AV regions for the “new" and “old" configurations in the CB al-

gorithm. For regrowths with AVB2, CB and MFB, the algorithm

proceeds as follows. The target particle J is selected randomly

(reject if N ≤ 1). Next, the type of move is chosen to be “out →

in" or “in → out" of the AV of particle J with a probability Pbias

or 1−Pbias, respectively. If the “out → in" move type is chosen,

Rnew is the “in" region of J and Rold is the “out" region of J. The

Metropolis acceptance probability for the “out → in" move is

pMet =
Pbiasvout(nin +1)

(1−Pbias)vinnout

WCB
new

WCB
old

, (17)

where WCB
new and WCB

old are the “new" and “old" Rosenbluth weights

determined by growing the beads with configurational bias, as

described below. If the “in → out" move type is chosen, Rnew is the

“out" region of J and Rold is the “in" region of J. The Metropolis

acceptance probability for the “in → out" move is

pMet =
(1−Pbias)vin(nout +1)

Pbiasvoutnin

WCB
new

WCB
old

. (18)

For regrowths with AVB3, CB and MFB, the algorithm proceeds

as follows. Two particles, K and J, are randomly selected with the

condition that J and K do not have non-overlapping AV’s (reject

entire trial if all AV’s overlap, or N ≤ 2). Next, the type of move is

chosen to be “out → in" or “in → out" with a probability Pbias or

1−Pbias, respectively. If the “out → in" move type is chosen, Rnew

is the “in" region of J and nin = nin
J . The “old" configuration is then

randomly chosen to be “in K" or “out J" with equal probability. If

“in K" is chosen, Rold is the “in" region of K, and nout = nin
K . Other-

wise, Rold is the “out" region of J, and nout = nout
J . The Metropolis
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acceptance probability for the “out → in" move is

pMet =
Pbias(nin +1)

(1−Pbias)nout

WCB
new

WCB
old

. (19)

If the “in → out" move type is chosen, Rold is the “in" region of J,

and nin = nin
J . The “new" configuration is then randomly chosen

to be “in K" or “out J" with equal probability. If “in K" is chosen,

Rnew is the “in" region of K, and nout = nin
K . Otherwise, Rnew is

the “out" region of J, and nout = nout
J . The Metropolis acceptance

probability for the “in → out" move is

pMet =
(1−Pbias)(nout +1)

Pbiasnin

WCB
new

WCB
old

. (20)

To grow the remaining beads in the CB algorithm and com-

pute WCB, the remaining algorithm is the same for either AVB2

or AVB3, once Rnew and Rold are determined, as described above.

The Rosenbluth factors, WCB
new and WCB

old
, are computed from the

“new" and “old" configurations. M is selected randomly in Rold

(reject if not possible). The trial positions and Rosenbluth factor

for the “new" configuration, WCB
new is computed as follows. The first

bead in M is placed in Rnew for a total of k trials, and the ith trial is

selected with probability given by Equation 13. After selection of

the ith trial for the first bead, the remaining beads are sequentially

grown from k trial positions each, and WCB
new = ∏

nb

b=1
wb/k. The

Rosenbluth factor for the “old" configuration, WCB
old

is computed as

follows. The first bead in M is placed in Rold for a total of k trials,

including the original position. w1 is computed via Equation 14

for the k trials. The Rosenbluth factor for the remaining beads,

wb, are computed for k trials, including the original position, and

WCB
old

= ∏
nb

b=1
wb/k. The regrowth trial move is then subject to the

Metropolis acceptance criteria.
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