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Abstract

Spatial bandwidth limitations frequently introduce large biases into the estimated values of rms
roughness and autocorrelation length that are extracted from topography data on random rough
surfaces. The biases can be particularly severe for focus-variation microscopy data because of the
reduced lateral resolution (and therefore dynamic range) inherent in the technique. In this paper, we
describe a measurement protocol—something similar to a deconvolution algorithm—that greatly
reduces these biases. The measurement protocol is developed for the case of surfaces that are isotropic,
and whose topography displays an autocovariance function that is exponential, with a single
autocorrelation length. The protocol is first validated against Monte Carlo-generated mock surfaces of
this form that have been filtered so as to simulate the lateral resolution and field-of-view limits of a
particular commercial focus-variation microscope. It is found that accurate values of roughness and
autocorrelation length can be extracted over a four octave range in autocorrelation length by applying
the protocol, whereas errors without applying the protocol are a minimum of 30% even at the absolute
optimum autocorrelation length. Then, microscopy data on eleven examples of rough, outdoor
building materials are analyzed using the protocol. Even though the samples were not in any way
selected to conform to the model’s assumptions, we find that applying the protocol yields extracted
values of roughness and autocorrelation length for each surface that are highly consistent among
datasets obtained at different magnifications (i.e. datasets obtained with different spatial bandpass
limits).

1. Introduction can be very time-consuming, particularly if samples
are anisotropic and/or numerous. Within the last
In many applications it is essential to estimate the decade however, a gradual conversion has taken place
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microscope, and phase-shifting interferometer [7-9],
and a recent review [10] describes the current status of
calibration and quantitative accuracy for most of the
optical 2D techniques. On the other hand, compara-
tively little has been written, to our knowledge, about
focus-variation microscopy (FVM), although some
initial studies have appeared [11]. The applicable ISO
standard [12] appeared only recently.

This paper does not aspire to be comprehensive or
definitive at a metrological level, but is rather a prac-
tical description of methods we have found to ‘give the
right answer in most situations’. It discusses the use of
FVM to estimate the rms height variation Sq and the
autocorrelation length Sal of a random rough surface.
Note that these are statistical parameters, and there-
fore present a slightly different measurement problem
from measuring the height of a step (or some other
deterministic feature) accurately. A truly metrological
study would also necessarily discuss traceability, and
would therefore compare FVM results with those
obtained from another technique traceable to interna-
tional standards. However, that is well beyond the
scope of the current work.

Any statistically random surface is described by
either of two equivalent functions, the power spectral
density (PSD), which is a function of spatial frequency,
or the autocovariance function (ACV), which is a func-
tion of lag or displacement. By the Wiener-Khintchine
relation, the PSD and ACV are Fourier transforms of
one another. (The autocorrelation function differs from
the autocovariance only in the addition of a constant,
the square of the mean elevation, that manifests itself in
the PSD as a delta function at f = 0. In this paper we
shall treat all theoretical and experimental elevations as
differences from the mean, and only use ACV and PSD’s
without a delta function at the origin.) Sq and Sal are the
two most important topographic parameters of a rough
surface for determining its electromagnetic scattering
properties. In the most commonly used scattering form-
alism [13], based on the Kirchoff approximation, only
their ratio Sq/Sal (the mean surface slope) enters, but in
more sophisticated treatments, this is not the case.
Implicit in the use of a single autocorrelation length Sal
are the assumptions that (a) the surface’s ACV is iso-
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might seem straightforward (if not trivial) to verify these
assumptions and to estimate the values of Sq and Sal
directly from their definitions, using an FVM dataset,
which is a simply a collection of sampled points
z; (xj, y,). However, there are a number of practical
issues that arise, particularly concerning spatial band-
width limitations, that create bias in the estimators and,/
or raise their uncertainties. These are often dramatically
manifested in situations where the same field of a part-
icular sample is imaged by the same instrument but at
different magnifications, resulting in vastly different
estimates of Sq and Sal. This effect arises from the finite
lateral resolution of the 3D FVM data (which varies with
magnification). This lateral resolution is fundamental to
the FVM technique and is always significantly greater
(i.e. poorer) than the resolution of the underlying 2D
images. It arises because the FVM technique is based on
forming an estimate of local contrast at every position
within an image. At each pixel’s position, such an esti-
mate requires information about the light scattered
from neighboring pixels; this introduces correlations
that necessarily degrade the lateral resolution (spatial
bandwidth). In other words, the vertical resolution pro-
vided by the FVM technique comes at some price in lat-
eral resolution (see section 7.2.3 of [2].)

There are other aspects of FVM measurements
that can create bias or increase uncertainty in estimates
of Sq and Sal. These are discussed in considerable
detail from a standards perspective in [14], using as a
starting point the 23 metrological characteristics listed
in ISO standard 25178-601 [15]. Two of the more
notable effects are measurement noise Ny, (section
3.1.9 of [12]) and residual flatness zp; 1 (table 1 of [12]).
The importance of these effects can be estimated by
various methods, e.g. measuring the same field of a
particular sample multiple times, and measuring a
‘known-flat’ reference sample. Such measurements
are a routine part of the FVM measurements we per-
form on everyday surfaces for our electromagnetic
scattering studies. Ceramic gage blocks that have been
slightly roughened (to provide visible surface contrast)
are used as the flat references. In all cases we have
found, as one might expect, that the levels of noise and
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uncertainty in estimating Sq and Sal, and therefore this
paper focuses exclusively on these effects.

Spatial bandwidth effects in the context of 1D pro-
filometer measurements were treated thoroughly in a
classic series of papers by Church and Takacs [17-19].
Reference [17] in particular emphasizes the fact that
any surface profile measurement is only sensitive to a
limited range of spatial frequencies, extending from
foin=1/dmax to f . =1/dmin, where the d’s are the
corresponding spatial wavelengths. The (lateral)
dynamic range of the instrument is Q = f___/f, ..
Comparison between bandwidth effects on profil-
ometer versus optical measurements was highlighted
in [20]. The present paper, being oriented toward
FVM, differs from these earlier works chiefly in the
facts that: (a) the analysis is inherently 2D rather than
1D, and (b) the dynamic range of most FVM measure-
ments is significantly less than that of most 1D stylus
measurements, leading to larger correction factors.

This paper is organized as follows. Section 2 and
appendix A describe a simple method to estimate the
lateral spatial resolution of an FVM, and show that for
our particular instrumentation this lateral resolution
manifests itself in the data as a Gaussian low-pass filter
with surprisingly large 1/e-width. In section 3, we
derive the protocol for estimating the true values of a
surface’s rms height variation and autocorrelation
length, Sq and Sal, from FVM measurements. These
symbols for the rms height variation and autocorrela-
tion length have been established as standards for sur-
face metrology [21] work, although many earlier
studies, and common practice in the area of electro-
magnetic scattering, uses ¢ and L to denote the same
quantities. In this paper, Sq and Sal are reserved for the
true parameters of the surface, while o and L are used
for estimates based on measured data. First-order esti-
mates are denoted oy and L;, and are formed by
directly applying the statistical definitions to the FVM
data. Then corrections that depend on instrumental
resolution are applied to arrive at final estimators o,
and L,. These corrections are exact for the case of an
instrument with Gaussian point-spread function and a
surface with exponential ACV. In section 4, the proto-
col is validated by generating mock surfaces with spe-
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applies when using the corrected estimators. In
section 5, the same estimators are calculated from
FVM data on real-world samples of various outdoor
building materials. This shows that, although the cor-
rections derived in section 3 may only be exact for sur-
faces with exponential ACV, the assumptions are
robust enough to give useful approximate estimates
for a great many real-world surfaces—those that are
isotropic and have a single characteristic lateral scale.
Section 6 summarizes our conclusions.

2. Lateral resolution

As will become clear in later sections, it is critical to
have accurate quantitative information about the
particular microscope’s lateral resolution (i.e. its
point-spread function or PSF) in order to extract Sq
and Sal reliably. In most cases, the accuracy to which
this lateral resolution is known determines the final
accuracy to which Sq and Sal can be determined.
When used in 2D mode, (i.e. as a conventional
microscope), the lateral resolution is simply deter-
mined by the pixel size of the camera or the quality
(diffraction or aberration-limited) of the microscope
objective. However, this is completely separate from
the lateral resolution when used as an FVM. The lateral
resolution of an FVM is almost entirely determined by
its composition algorithm rather than the microscope
or camera optics. In some cases (though not for the
particular instrument used in this study) the lateral
resolution is adjustable, and it can be shown [22] that
ideally it is identical to the lateral resolution of a
coherence scanning interferometer or a confocal
microscope.

The instrument used to obtain all the measurement
results in this paper is a commercial FVM (Keyence
model VHXI1000E)" equipped with a telecentric
x 20-200 zoom lens objective (model VHZ20W) pro-
viding nominal magnifications of x 30, x 50, x 100, and
x 200. Other magnifications are available but were not
used in this study. These nominal magnifications are
relative to the 15 inch display and are merely used as
labels. The actual magnifications relative to the cam-
era’s CCD are listed in table 1. The zoom lens obiective
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Table 1. Measured FVM lateral resolution.

EN Grossman et al

Nominal mag. Actual mag. Optimal res. target Ry (pm) p (um) FOV (mm X mm) Aegr (mm?) N
% 30 0.70 1A 234.5 7.30 11.7 x 8.74 0.173 590
x50 1.17 2A 126 4.42 7.05 x 5.28 0.0499 746
x 100 2.35 3A 69.1 2.22 3.54 x 2.66 0.0150 628
x 200 4.69 4A 35.1 1.11 1.78 x 1.34 0.00396 601

specularly reflected, light. This, together with the fact
that all samples of interest (to us) have roughness much
greater than the wavelength, Sq >> A, guarantees that
the detected light is purely incoherent. This greatly sim-
plifies the analysis in [22]. The microscope’s other fea-
tures include image-stitching, high dynamic reserve,
and built-in tilt correction. The FOV and sampling dis-
tance (pixel pitch) are listed for each magnification in
table 1.

For all magnifications, the raw dataset for a single
field consists of 1197 x 1597 z(x, y) values (not the ori-
ginal stack of 2D images). In other words, this ‘raw’
dataset is really the output of the microscope’s compo-
sition algorithm, which is proprietary and whose details
are unknown to the authors. This is the primary reason
for directly measuring the lateral resolution, using the
resolution targets and analysis procedure described in
this section and in appendix A. As described below, we
can infer from these measurements that the ‘raw’ data-
set has already been passed through a digital filter with
particular properties. We assume that this digital filter-
ing is linear. The filter shape and width are not adjus-
table, or even specified by the manufacturer, for the
particular FVM used in this study. For other instru-
ments, the digital filtering and lateral resolution are at
least somewhat more transparent to the user; however,
even in these cases it will often be of interest to measure
it directly. In any case, the approach taken here is to
measure the instrumental PSF directly, using the output
of the composition algorithm from a stack of micro-
scope images made on known physical test targets. In
other words, we are treating the FVM microscope and
its composition algorithm as a single ‘black box’. All
FVM data were analyzed using Matlab™, although
much of the underlying analysis of section 3 was imple-
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contrast to be maximized, i.e. the z-position at which
that particular (x, y) location is in ‘best-focus’. Although
the details of the composition algorithm are proprietary
to the microscope manufacturer, it is clear that calculat-
ing any measure of local contrast requires information
about the light scattered from a larger (possibly much
larger) area than a single pixel. This introduces correla-
tions (possibly strong correlations) between the eleva-
tions calculated for neighboring pixels; in other words it
degrades the lateral resolution.

In order to describe this quantitatively, a series of
resolution targets was specially constructed, as illu-
strated in figure 1, using conventional CNC machin-
ing (not turning), but with very small end mills (down
to 200 pm (0.008") diameter), high spindle speeds (up
to 30 krpm), and low feed rates. Each target consisted
of a cylindrical post atop a larger cylindrical base, with
diameters and heights as listed in the figure. A wide
range in diameters and heights is necessary to allow
measurement over a range of magnifications. For each
magnification, the narrowest posts are laterally unre-
solved while the widest are laterally well resolved.

The FVM measurements represent the 2D con-
volution of the post’s top-hat topography and the
microscope’s PSF. When the post is well resolved, the
FVM data shows a ‘flat-topped’ profile for the post and
a vertical height that corresponds closely to its nom-
inal height. When it is laterally unresolved, the FVM
data displays a profile that corresponds to the PSF of
the composition algorithm, and a post height that is
reduced from the nominal height. In the limit of a van-
ishing post diameter, D, — 0, i.e. when extremely
unresolved, the measured FVM profile would ideally
be the point-spread function itself (within a multi-
plicative factor). However, in this limit the post height
displayed in actual FVM data becomes so small that it
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Table 1
Designation | Dy Hp Dy Hs
l& > D, (mm) | (mm) | (mm) | (mm)
> e D, 1A 0.50 2.50 8.0 5.0
2A 0.20 0.80 3.20 1.00
3A 0.10 0.50 1.60 0.20
H, 3X 0.10 0.50 1.59 n/a
i }: 4A 0.050 | 0.250 | 0.80 0.050
5 4X 0.050 | 0.250 1.59 n/a
} S5A 0.020 | 0.10 0.320 | 0.008

Figure 1. FVM resolution target geometry (upper left) and dimensions (upper right). The base of the 3x and 4x targets was machined,
but not deliberately elevated above the background surface. A conventional micrograph at x 30 magnification of target 1 A (lower left)
and a 3D rendering of the x 30 FVM data on the same target (lower right).

10000.0

the Gaussian scales inversely with magnification; i.e. itis
a constant fraction of the FOV. This Gaussian fit is a
reasonable zeroth-order approximation to the point-
spread function. However, for accurate quantitative
work it is not satisfactory because the post is not in the
fully unresolved limit. If the point-spread function’s
radius to 1/e-point is R and the post radius is R, then
R,/Ry < 1 may be true, but R,/R, < 1 is not, so we
expect a (downward) correction needs to be applied to
the width of the FVM data (whether obtained by a
Gaussian fit or some other means), in order to obtain an
unbiased estimate of the PSF width. A procedure is
described in appendix A to calculate this correction,

for R to constitute a reasonably precise estimate of
Ry (say within 5%), the target radius needs be quite
small, approximately R, < 0.4R,. As illustrated in
figure A1, this in turn implies an apparent post height
of only <10% the actual height. The core of the pro-
blem is that for any physical FVM target, manufactur-
ing considerations limit the achievable ratio of height
to radius. This aspect ratio is 10 for most of the FVM
targets in this study, near the limit of what can be accu-
rately produced with conventional machining of such
small structures. The FVM measurements M (r) will
therefore display a hump of approximately equal
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Figure 2. Measured radial profiles of the resolution targets at the four different magnifications (note changes in horizontal scale). All
elevation data (azimuths covering 0 to 27) are indicated as blue points; the red trace is the best-fit Gaussian.

along with the measured” pixel size p. Also listed is the
inferred FOV of a 1197 x 1597 image with the mea-
sured pixel size. (Note that this considerably exceeds
the manufacturer’s specified FOV for the lens.) The
effective area of the Gaussian PSF A = 7R is also
listed. Finally, N = FOV /A.¢ represents the number
of statistically independent elevation measurements in
asingle FVM image.

The difficulty with using FVM measurements to
estimate Sq and Sal is now apparent: the very limited
lateral dynamic range. Although the measured PSF’s

are accuiratelv Gatiecian at all maonifications the

3. Analytic correction of spatial bandwidth
limitations

3.1. Exact and approximate analytic corrections

There are four primary spatial bandwidth effects to
consider in the extraction of statistical surface para-
meters. When R, [1 L, the limited lateral resolution
(microscope PSF) discussed above will (a) decrease the
observed o? by averaging out the vertical surface
fluctuations, and (b) increase the observed L by
spreading out the fluctuations over a length scale R,.

However cince the PSFE ic acciiratelv (Raticcian with a
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Filtered Autocovariance
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Figure 3. Apparent autocovariance after filtering, FACV (A, B) as a function oflag, for various amounts of Gaussian filtering. Both lag
and Gaussian filter width are normalized to the true autocorrelation length Sal. (Left) Autocovariance normalized to the true rms
(S9)?. (Right) The same curves, but normalized to the apparent, i.e. observable, rms, 012, the B = Ointercept. The 1/epoints of these
curves (roots of equation (5)) constitute the apparent autocorrelation lengths.
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commercial instruments, including ours.) Finally, we
have found that artifacts are sometimes introduced into
FVM data by optical and illumination effects that
increase markedly at the edges of the FOV, particularly
at low magnification where the FOV is physically very
large. All these effects make the low-frequency end of
the instrument’s spatial bandpass somewhat ill-defined.
Therefore, while we can treat the high-frequency effects
analytically by signal-processing arguments, the low
frequency effects are only treated empirically, through
the Monte Carlo simulations.

Let the actual physical surface z (x, y) be described
as a random variable with an isotropic and exponential
ACV, with rms height variation Sq and autocorrela-
tion length Sal. These are the true values of the sur-
face’s topography parameters. The surface’s ACV and
PSD are thus given by

ACV (T) = SqZe /%, (1a)

27 (Sal)?(Sq)?
[1 + (QafSal)?P/2’

PSD(f) = (1b)

It is understood that both frequency and lag are
defined over a 2D nlane bt cdince we are <hecializino

FPSD(f) = |e~ ™R/’ PPSD(f)
2w (Sal)?>(Sq)?
(1 4 2nfSal)»)3/?

e 2RI (2)

Here, FPSD(f) represents the surface’s PSD when
affected by the microscope’s finite resolution, and the
term within the absolute value sign is the properly
normalized filter kernel (i.e. the Fourier transform of
the microscope’s PSF). Most of our calculations have
been done in the spatial rather than frequency domain,
so the corresponding ACV is

A%x?
o e 2 Jy(Bx)
(1 + x?)>3/?

where we have defined a dimensionless instrumental

FACV(Ry, 7) = (Sq)? f xdx, (3)
0

. R . . T

resolution A = —% and a dimensionless lag B = S’
a a

However, these dimensionless quantities are not

directly accessible because they are normalized to the
surface’s true autocorrelation length, which is
unknown. In general, there is no closed form solution
for FACV(A, B), but at zero lag, i.e. 7= B = 0, the
ACYV gives the apparent rms, and in this limit (3) does
have a closed form solution, namely:

TA\7/A D _ N\ __ 2
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Bias in Apparent Topography Parameters

R0 Sal

Figure 4. Biasin o and L. (Left) apparent rms o7 (normalized to actual rms (Sq)?), as a function of Gaussian filter width. (Right)
apparent autocorrelation length normalized to true autocorrelation length, also as a function of Gaussian filter width.

normalized to the apparent rms 7. These plots corre-
spond directly to the schematic illustration of figure 3
of [17]. However, these filtered ACV’s are not subject

o0
to the requirement f FACV (7)2n7dT = 0, and
0

therefore do not necessarily go negative at large T,
because the zero-frequency PSD has not been set to
zero by requiring a zero mean elevation. Figure 4(left)
shows the ratio of apparent rms to true rms, obtained
from the 7 = 0 intercept of the curves in figure 3.
Figure 4(right) shows the ratio of apparent auto-
correlation length to true autocorrelation length
obtained from the 1/epoints in the curves in figure 3.
The limiting cases for figure 4 are notable: when
the Gaussian filtering is negligible (Ry (1 Sal), the
apparent autocorrelation length approaches the true
value I;/Sal — 1, and when the Gaussian filtering is
dominant and the surface’s intrinsic fluctuations are
highly filtered, (Ry 1 Sal), the apparent autocorrela-
tion length is simply +/2 Ry, the value obtained by con-
volving (in 2D) two Gaussians of 1/e-radius Ry. One

can therefore parametrize the strength of the Gaussian
1

filtering in terms of a new variable a =

This has been done using the numerical solutions
of equation (5); the result for L;/Sal is shown in
figure 5. It is clear that in the highly filtered limit, the
correction factor has an a~!/? dependence. This is a
statement about how fast the solution to equation (5)
approaches its limiting value L, — /2R, and is not
necessarily obvious from the analytic formulae. A use-
ful fact is that the numerical result can be very well fit
with an extremely simple empirical approximation

el

"~ Sal a’/?

Opver the entire interesting range of a, 0.05 [1 a [1 20,
this approximation has a maximum fractional residual
of 3.6%, and an rms residual of 2.4%, which should be
adequate for all but the highest precision require-
ments. The numeric solution of equation (5)—as
shown in figure 5 and including its empirical approx-
imation—is the core result of this section. By using it
to correct experimental measurements, an accurate
estimate of Sal can be obtained (namely L, = L;/a).
Since Ry is known a priori, figure 4 or equation (4) can
then be used to obtain an accurate estimate of Sq,
which we denote 0,, from the experimentally mea-
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Correction L /Sal
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Figure 5. Correction factor for the autocorrelation length, as a function of the observable parameter a. The red dots indicate the
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numeric solution of equation (5), while the continuous gray curve is the approximation of equation (6).
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-
N
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Fractional Residuals
01 0.1 10 100

autocorrelation length (up to L;/Sal ~ 600% based
on figure 5) to be reliably corrected.

(1) Determine R, as accurately as possible, using the
same magnification and microscope settings as will
be used in measurement of the subject surface.

3.2. Measurement protocol
Based on all the above, an explicit protocol for
estimation of Sal and Sq can be summarized as
follows:

than FOV /27 (this numeric value is justified in the
Monte Carlo simulations below), then the sampled

area of the surface is simply too small to make a
meaningful estimate of Sal or Sq. The FVM

measurements need to be retaken at lower magni-
fication. (Alternatively, adjacent fields need to be

stitched to provide a larger FOV.) We shall see in
section 5 that an additional criterion exists relating

smoothest samples.

(2) Perform the FVM measurements of the subject

surface, and extract from them the first-order esti-

the surface rms and the microscope’s vertical
resolution that also needs to be satisfied, but in
practice this seems to be violated by only the

(4) However, if /2Ry, < L, < FOV/2m, then calcu-
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Autocorrelation length, Sal = 0.0625 mm
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with 1/eradius 0f0.25 mm ~ 16 pixels.

Figure 6. Monte Carlo simulated topographies of exponentially correlated, 8 x 8 mm” surfaces, with autocorrelation lengths of
Sal = 0.0625 mm (left) and 1.0 mm (right). The vertical (color) scale is held fixed for all four panels, and extends over £3Sq. The
upper panels are unfiltered, with an effective resolution of ~1 pixel, while the lower panels have been filtered using a Gaussian kernel
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develop at least an empirical understanding of the
effects of finite FOV, Monte Carlo simulations were
performed on exponentially correlated mock topogra-
phies. Fields of 512 x 512 pixels were used, which
allowed all calculations, even compute-intensive cor-
relations, to be performed in reasonable times
(approx. two minutes or less) on a typical desktop

11

the same mock topographies after the Gaussian filter is
applied. Following the protocol outlined in section 3,
first-order estimates oy and L, were calculated for both
the filtered and unfiltered maps. For the filtered maps,
the corrections described in section 3 were also applied
and o, and L, were calculated. This entire procedure
was followed for mock topographies with L, varying

o .
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Table 2. Spatial bandwidth limits for 10% accuracy.

Filtered and
Unfiltered Filtered corrected
(4] L] (%} L] [} L2
Minimum 1.56 249 n/a 629 <4 <4
Sal(pixels)
Maximum 69.5 60.1 n/a 780 73.1 38.2
Sal(pixels)
Fractional 5.5 4.6 0 0.3 [14.2 [13.3
bandpass
(octaves)
Sqis given by f__/f . =FOV/8p, which is 6 octaves

for our simulations. Thus our criterion is slightly more
conservative than that of [10], but this is easily
explained by differences in assumptions regarding the
instrumental transfer function, 2D versus 1D treat-
ment, etc. However, the basic point remains the same:
the range of surfaces (i.e. range of autocorrelation
lengths) for which the instrument and a first-order
algorithm can provide accurate estimates is limited: by
finite lateral resolution at short lengths, and by finite
FOV atlarge lengths.

An important point is that by adjusting the micro-
scope magnification, any sample (whose Sal is some
fixed length in mm) can be moved into the ‘good’ ~5
octave range of bandwidth. Changing the microscope
magnification effectively shifts the ‘good’ bandpass of
the microscope along the horizontal axis; the FOV and
resolution R, change by equal factors. Microscope
magnification is typically adjustable in discrete incre-
ments, in our case differing by approximately a factor
of \/2, (i.e. half an octave), so a ‘good’ bandwidth of 5
octaves suffices for accurate estimates, even if the mag-
nification is not optimal. Moreover, the width of the
plateau ensures that several adjacent magnification
values will all yield consistent estimates of Sq and Sal.

As stated above, each mock topography (such as
figures 6(a) and (b)) was spatially filtered using a Gaus-
sian kernel. The 1/e width for the filter was scaled to
provide equivalent dynamic range to that of the
microscope. Thus, while the microscope FOV is

o o~ - o o — q .. 1 P o~ P~ o~ . q
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Monte Carlo-generated topographies like those in
figure 6, when filtered with Gaussian kernels as descri-
bed above. For the fine-featured surfaces (Sal [1 Ry),
major errors are introduced into the first-order esti-
mates by the filtering. The first-order estimate o is
biased low while the first-order estimate L, is biased
high. Moreover, the errors introduced by the filtering
for small Sal (i.e. at high frequencies) overlap with the
errors introduced by the finite FOV for larg Sal (i.e. at
low frequencies). Therefore, in contrast to the unfil-
tered case (red points), there is no plateau, no fraction
of the available spatial bandwidth for which first-order
estimates oy and L; are reasonably accurate. The o is
guaranteed to be biased low at all magnifications,
while the L; could be biased high or low. Thus, when
measuring an unknown sample, even with an optimal
choice of magnification, errors greater than 30% in ..
are expected. If a magnification is used that is even
slightly non-optimal, much larger errors are possible.
This is reflected in the central columns of table 2, indi-
cating there is no range of <10% accuracy for rms
roughness, and where the range of accuracy for auto-
correlation length is so narrow as to be useless. As
mentioned earlier, the dynamic range of these mock
topographies (i.e. the ratio between their FOV and
resolution) has been chosen to match (approximately)
the dynamic range of our commercial focus-variation
microscope. Therefore an alternate way of describing
the message of figure 8 is: A single (i.e. unstitched) FVM
field does not have sufficient dynamic range to allow
accurate extraction of Sq and Sal, unless the correction
factors described earlier are applied.

The correction factors described above (i.e. 0,/ 0;
and L,/L;) correct this problem and produce
unbiased estimates over their range of applicability.
This is shown by the blue points in figure 8, and in the
final two columns of table 2. For autocorrelation
lengths from 4 to 32 pixels, and possibly 64, (i.e. over
3—4 octaves of bandwidth) the corrected values ¢, and
L, accurately reproduce the actual values.

4.2. Uncertainties
The above protocol corrects the biases introduced into
oy and L, by the limited lateral resolution, by exploiting
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Figure 7. First-order autocovariance functions ACV(", normalized to o7 at the origin, corresponding to the four Monte Carlo
topographies in figure 9: (a) unfiltered, with Sal = 0.0625 mm (b) unfiltered Sal = 1.00 mm, (c) filtered, with Sal = 0.0625 mm,
and (d) filtered, with Sal = 1.00 mm . L;, and L,, from the red and green traces respectively, are autocorrelation lengths in the
horizontal and vertical directions respectively, while L, from the blue points is the autocorrelation length from the average of all
points in the lag plane (overwhelmingly not in the cardinal directions).
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Figure 9. Histograms of extracted parameters from the Monte Carlo simulations, before and after applying the correction algorithm.
(a) and (b) display rms and autocorrelation length respectively, for surfaces with Sal = 0.125 mm, leading to large corrections; (c) and
(d) display the same for surfaces with Sal = 1.0 mm, for which the corrections are relatively small.
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fractional uncertainty in the extracted value of L,.
For example, if a is experimentally determined as
a=0.1 & 0.03, then the correction factor is
a = 5.35 + 1.15/~- 0.6 and the fractional uncertainty
in Lyis (+21%/- 11%).

To illustrate this more explicitly, and to obtain
quantitative estimates of uncertainties in the extrac-
tion algorithm for realistic parameters, a separate

P o~ . 1 1 * 1 4~ 1°0r

roughness for many applications. The same holds true
for the estimated values of autocorrelation length. The
final conclusion is that over this 3-octave range in
roughness scale (i.e. 8:1 in Sal), the corrected esti-
mates o, fall within £3% of their mean values 80% of
the time, and the corrected estimates L, fall within
£9% of their mean values 80% of the time. The mean
values are still slightly biased from the true values
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F(Sal) = [1 + [ ”Sal] ] for o,
FOV

2mSal )2
FOV

~1/2
F(Sal) = |1+ ] for L. @)

For comparison, Church [17] states ‘when L;[]
FOV /87 then L; may be taken as approximately equal
to Sal and o is essentially equal to Sq.” The estimates
in (7) are somewhat less stringent than this. They
imply that biases in (first-order estimates of) o and L
remain below 5% as longas L; [J FOV /6.1 and that
they remain below 10% for L; (1 FOV /4.17w. How-
ever, they describe the measurement biases for surfaces
whose only low-frequency instrumental artifact is
finite FOV. Real FVM measurements also include a
(necessarily imperfect) correction for tilt and some-
times a correction for large-scale curvature. Moreover,
FVM imagery is often ring-illuminated. Therefore,
non-uniformity in illumination intensity and direc-
tion begins to appear at length scales comparable to
the objective lens diameter (entrance aperture). This
will be approximately the FOV at the lens’s lowest
magnification. Finally, although FVM objectives are
very highly corrected, any residual off-axis aberrations
in the objective will be greatest at the edges of the FOV.
For these reasons, the measurement biases described
by (7) are really best-case figures, and some judgment
needs to be exercised when extracted values of
autocorrelation length approach FOV /47 . We have
found that increasing the FOV by ‘stitching’ together
multiple microscope fields is a reliable check that
measurement biases are not excessive.

Some FVM fields (including the unstitched fields
from our instrument) are not square. In these cases the
biases introduced by low frequency effects will be
slightly different in horizontal and vertical directions,
potentially making an isotropic surface appear slightly
anisotropic, with different L and o in the horizontal
and vertical directions. However, the fits given in
equation (7) imply that this effect is very small. The
spurious anisotropy only becomes significant when
the bias introduced by the FOV already is large. If the
L; < FOV /27 requirement of the protocol (section 3,
step (3)) is observed, then this effect can be neglected.

EN Grossman et al

be exponential (for example it might have two
different scale lengths, or even fractal statistics), or its
height distribution may not be Gaussian. Indeed, one
could argue that the greatest value of a careful
statistical analysis of FVM imagery lies in identifying
those surfaces for which ‘standard’ statistical measures
Sq and Sal are not meaningful (and why they are not).
Non-etheless, a significant effort was made to apply
the above algorithm to real surface topographies, and
thus to extract a single 0, and L, for each.

Eleven samples of common outdoor building
materials were obtained, and each was imaged by FVM
at four different magnifications: x 30, x 50, x 100, and
x 200. The overall FOV was held approximately con-
stant for all magnifications, at 11.1 x 8.2 mm, by
stitching together smaller subfields for the higher
magnifications. (Thus, there were 2 x 2 subfields at
x 50,4 x 4 at x 100, and 8 x 8 at x 200.) In stitched
datasets, the edges of the various subfields were not
perfectly aligned, so the first step in analysis was to find
the largest inscribed rectangle within the dataset. In
addition, this rectangular dataset was cropped, elim-
inating all data within one lateral resolution length (i.e.
32 pixels, independent of magnification) of the
boundary. Next, if either dimension of the resulting
dataset was >1024 pixels in size, the dataset was aver-
aged and downsampled by a factor of x5 in each
dimension. This was simply to accelerate the later cal-
culations. It had negligible effect on any resulting sta-
tistics because the original data were so heavily
oversampled to begin with (by approximately a factor
of x 32 in each dimension). Then the mean and best-fit
linear tilt were removed from the dataset. The result
was the basic topography map of the rough surface.
Then the first order values o, and L; were calculated.
(See appendix B for explicit formulae).

The calculated normalized autocorrelation was
actually a 2D array of ACV as a function of lag (7, 7).
This array was first plotted directly, as a test of the sur-
face’s intrinsic isotropy. Then, using the assumption
that it was sufficiently isotropic, all points in the array
were plotted as a 1D function of 7 = (75 + 73)!/2.
The point where this function fell to 1/e of its 0-lag
value was identified as L,. Finally, the algorithm
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Figure 11. Estimates of rms roughness and autocorrelation length obtained from FVM measurements, using the protocol described in
section 3, on 11 physical samples of outdoor building materials.

Table 3. Extracted rms roughness and autocorrelation length for outdoor building materials.

Rms roughness o, (um) Autocorrelation length L, (mm)
Sample % 30 x50 x 100 % 200 x 30 % 50 x 100 % 200
Concretel n/a 34.0 27.0 28.3 n/a 0.578 0.401 0.370
Concrete2 84.2 64.8 58.1 49.0 1.79 0.763 0.492 0.462
Concrete3 217 180 175 167 0.713 0.754 0.691 0.784
Cinderblock 229 227 222 236 0.630 0.508 0.540 0.542
Red brick 191 169 156 148 0.935 0.800 0.747 0.643
Shingle 323 296 284 284 0.419 0.378 0.386 0.247
US01 Rough” 110 107 90.8 86.6 1.54 1.42 1.28 1.31
US01 Smooth n/a 63.4 26.8 31.6 n/a 1.27 1.39 1.63
US03 Rough n/a 70.2 67.3 65.9 n/a 1.43 1.52 1.19
US03 Smooth n/a 46.3 26.8 23.1 n/a 1.29 1.39 1.31
Wood n/a 44.0 24.1 22.6 n/a 0.922 0.866 1.45

* USO1 etc denote varieties of commercial building stone.

autocorrelation length estimates are obtained for

(at x 100), reflecting the intuitive fact that wood’s
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determination of vertical resolution in an FVM is
beyond the scope of this paper, (and it is not specified
bt the manufacturer for this particular commercial
instrument), we have found that a quadratic scaling
with magnification

Sz ~ 80 mm @)

(magnification)?’

provides a reasonable estimate in most cases. At this
level, vertical artifacts (for example the residual
flatness of [14]) may be introduced into the FVM data
by the instrument and these have a lateral scale that is
completely unrelated to the sample. In other words,
samples that are too smooth (Sq too low) cannot be
measured with too low a magnification, regardless of
their autocorrelation length. This is essentially a third
criterion that must be met by an FVM dataset, in
addition to the FOV and resolution criteria stated in
section 3.2, in order to obtain valid ¢ and L
measurements.

The dashed line in figure 11 indicates the condition
2
L? iy
quency of 230 GHz). It indicates a family of surfaces
whose mean surface curvature is comparable to a mm-
wave radar wavelength. The ubiquitous Kirchoff
approximation for rough surface scattering is a low-
curvature approximation [13, 23], corresponding to the
region in 0—L space lying above the curve in figure 11.
It describes the angular distribution of scattered light
under directional illumination, i.e. the balance between
specular (mirror-like) reflection and perfectly diffuse,
Lambertian scattering. The fact that many of the out-
door building materials fall outside that region indicates
that more sophisticated treatments of scattering than
the Kirchoff approximation are required in order to
model the qualitative appearance of everyday outdoor
scenes, when viewed at millimeter wavelengths.

-1 for A = 1.3 mm (corresponding to a fre-

6. Conclusions

FVM provides much less lateral dynamic range (frac-
tional spatial bandwidth) than one might expect based
on typical camera formats. For our particular instru-

PR P I
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of a surface with an exponential, isotropic ACV and
Gaussian height distribution and an instrument with a
Gaussian PSE. As shown by the Monte Carlo simula-
tion in section 4, nearly all of the spatial bandwidth
that is lost in the FVM’s poor lateral resolution can be
recovered by these correction factors, which perform a
similar function to a deconvolution algorithm.
Although the correction factors are mathematically
correct only for isotropic, exponentially correlated
surfaces, we have found that the measurement proto-
col yields o and L values that are consistent across
magnification for nine out of eleven real-world
samples of outdoor building materials that we have
examined. The exceptions correspond to well under-
stood violations of the measurement protocol’s
assumptions. Use of this measurement protocol
(including the correction factors) therefore enables
unstitched FVM data to be used for the reliable and
robust evaluation of o and L of unknown surfaces, on
instruments where it would otherwise be subject to
very large and magnification-dependent biases.

Acknowledgments

The authors are grateful to the Department of Home-
land Security Science and Technology Directorate and
to the Systems Technology Office of DARPA for
support of this work. Ms Nina Basta, and Drs Aric
Sanders and Richard Chamberlin provided helpful
comments regarding operation of our focus-variation
microscope and analysis of its data.

Appendix A. Width of point-spread
function

To be more precise, let the FVM point-spread function
be a Gaussian

1
S(r) = —exp (—r2/R¢
(r) Y p(—r*/Ry)

that integrates to 1 and has 1/e radius R. Let the
resolution target be represented by a ‘top hat’ function

G(r)=1, rUR,
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Figure A2. Universal plot of effective radius for FVM profile of a resolution target, along with simple analytic approximations.
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oy and L; can be made simply from the mean, rms, and
autocorrelation of the raw FVM data:

_ Zf\i’l Zj‘\il(zij - 2)(Zi—m,j—n - 2)
(N, — Im)(Nx — |n])
—(N, — 1) Om (N, — 1),
~(N, — 1) O n 0N — 1.

Pmn where

The expression in the denominator of B, is simply
the number of ‘overlaps’ between z;; and a displaced (by
(m, n) pixels) version of itself. Note that B,
uses ‘zero-based indexing’ and has dimension
(2N, — 1) x (2N; — 1). The expression in the
numerator of B, is simply the Matlab definition of
autocorrelation (i.e. xcorr(A, A)). The first-order estimate
of the ACV is simply the symmetrized version of P;:

1
ACVY) = Z(Pm,n + Py + By + Py, —)  for
i=m=0..N,,j=0..N.

By definition, the value of ACV( at the origin
ACV() = o}, as it must. The first-order estimate L,

is the value of 7; = ijz + yiz where the value
of ACV(Y) falls to 1/e of that value: ACV®
2

o
(rj=L) = —.
e
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