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ABSTRACT
A limitation frequently encountered in additive manufactur-
ing (AM) models is a lack of indication about their precision
and accuracy. Often overlooked, information on model uncer-
tainty is required for validation of AM models, qualification
of AM-produced parts, and uncertainty management. This pa-
per presents a discussion on the origin and propagation of un-
certainty in Laser Powder Bed Fusion (L-PBF) models. Four
sources of uncertainty are identified: modeling assumptions, un-
known simulation parameters, numerical approximations, and
measurement error in calibration data. Techniques to quantify
uncertainty in each source are presented briefly, along with esti-
mation algorithms to diminish prediction uncertainty with the in-
corporation of online measurements. The methods are illustrated
with a case study based on a transient, stochastic thermal model
designed for melt pool width predictions. Model uncertainty is
quantified for single track experiments and the effect of online
estimation in overhanging structures is studied via simulation.
The application of these concepts to estimation and control of
the L-PBF process is suggested.

Keywords: additive manufacturing, uncertainty quantification,
melt pool width.

INTRODUCTION
Some have referred to additive manufacturing (AM) as the

third industrial revolution [1]. AM is the use of layer-based pro-
cesses for producing parts directly from computer (CAD) mod-
els, without part-specific tooling [2]. Since its introduction in the
mid-1980s [3, 4], AM has become popular because of its ability

to produce parts that were impossible with traditional manufac-
turing techniques. After decades of being limited to polymer
prototypes, these technologies are now employed in the produc-
tion of functional parts made of polymers, ceramics, and met-
als [5–7].

AM technologies still present some unresolved challenges
that hinder their widespread adoption. Among these challenges
are process variability, unsatisfactory part quality, and lack of
process standards; all of which originate from the limited knowl-
edge of this relatively new set of processes. Numerous models
have been developed to improve the understanding of these pro-
cesses and to predict the quality of AM-produced components.
Although most models published in the literature have been com-
pared with experimental measurements, they often lack measures
of the precision and accuracy of their predictions.

Knowledge of uncertainty in AM models is required for ap-
plications such as:

(a) Model validation, which may use comparisons between sim-
ulation results and experimental data, accounting for uncer-
tainty in both sources. Comparison of simulation results ob-
tained with different models is expected to require informa-
tion on their uncertainty as well.

(b) Decision making, where model predictions and their prob-
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abilities may be used to make informed decisions. In the
case of AM, for example, one would expect to use models
to certify AM-produced parts. Model-enabled certification
will depend on the probability of predicted key performance
indicators being within admissible bounds.

(c) Uncertainty management, to identify the sources with the
largest relative contributions to overall prediction error, and
determine effective strategies to more accurate predictions.

This paper presents a general discussion on uncertainty in
computational models of metal-based AM, and in particular, of
Laser Powder Bed Fusion (L-PBF). The discussion begins with
how key performance indicators (KPIs) drive the development of
models, seeking simulation as a method to be used for qualifica-
tion of L-PBF produced parts. We present a general description
of the modeling process, and the generation and propagation of
errors. We then conduct a deep dive into how errors are com-
monly introduced into AM models, and the contribution of each
individual error source in such predictions. Uncertainty quan-
tification (UQ) methods suitable for the L-PBF process are dis-
cussed, and Bayesian estimation is presented as a method to ex-
tend UQ by including online measurements to reduce overall pre-
diction uncertainty. These concepts are illustrated on a low-order
stochastic model.

The contribution in this paper is three-fold. It provides: 1)
A discussion on methods for uncertainty quantification in L-PBF
models; 2) An example of uncertainty quantification for com-
putational models in which all sources of error are considered;
and 3) A method for quantifying unmodeled process perturba-
tions with potential applications in detection of anomalies and
feedback control.

BACKGROUND
In the AM community, computational models are sought af-

ter as means to predict the outcome of physical processes. The
choice of KPIs to be predicted depends on the application that
is intended for the model. A common aim among modelers is
model-based qualification, which will require control of several
qualities: identification and reduction of defects, dimensional ac-
curacy and surface finish, microstructure and mechanical proper-
ties, and reduction of residual stresses. In this article, it is sug-
gested that melt pool dimensions be chosen as KPIs due to their
direct relationship with the thermal processes that define these
qualities1. Among the set of melt pool dimensions, width is cho-

1Common L-PBF defects can be classified in two broad types: under-melting
and over-melting defects. The former are generated by incomplete melting or im-
proper fusion between successive tracks or layers [8], while the latter are caused
by entrapment of gases or improper closure of a keyhole [9]. Both types have a
strong influence on tensile, fatigue and hardness properties. Dimensional accu-
racy of the produced part is dependent on the degree of under- and over-melting
too, especially in external tracks. Both for defect prevention and dimensional
accuracy, the shape of the melt pool has traditionally been used as an indicator of

sen as the primary KPI in this first study because it can be traced
both during and after the build.

Several other heat transfer models have been published in
the literature with similar goals [12–19]. Though different in
their formulation, as AM models, and even more specific, as L-
PBF models, it is expected that at the highest levels of abstrac-
tion, sources of information and sources of error share common
characteristics. A study of common uncertainty sources in L-
PBF models has not been reported yet.

Until recently, the issues of model validation and verification
(V&V) and uncertainty quantification (UQ) had for the most part
eluded the AM community. Some of the few examples of UQ
in AM models can be found in the papers by Moser [20] and
Ma [21], both of which studied the sensitivity of their models to
uncertainty in input parameters; and King [22], who discussed
uncertainty quantification methods for surrogate models.

In engineering, computational models are designed as ap-
proximations of physical reality and, as such, are subjected to
a cascade of errors and uncertainties. Figure 1 illustrates rec-
ognized sources of modeling errors [23], that we have adapted
for an additive manufacturing application. Introduction of er-
rors begin as early as the selection of the physical process to
model (e.g. heat diffusion, melting/solidification, free-surface
flows, etc.), which is approximated with an imperfect model of
reality given by constitutive equations. All physical information
that cannot be represented by the adopted mathematical model is
considered to be modeling error. The mathematical model is cal-
ibrated with incomplete information of model parameters, based
on incomplete calibration data gathered with imperfect sensors.
Error in the determination of simulation parameters is propagated
through the simulation. The mathematical model, often unsolv-
able with analytical methods, is approximated with a numerical
method to result in a solvable form for simulation. Such approx-
imations inject numerical errors that undermine the accuracy of
the numerical predictions of the quantity of interest. Addition-
ally, in the case of model validation, measurement error must be
kept in mind for comparisons between simulation results and test
data.

under- and over-melting.
Grain size and morphology (key microstructural parameters that define yield
strength and other mechanical properties) are dependent on the thermal history
during solidification. In the case of Ti-6Al-4V, for example, grain size is known to
be dependent on cooling rates, which are in turn functions of the cross-sectional
area of the melt pool. Grain morphology, on the other hand, depends on the melt
pool length-to-depth ratio [10].
Residual stresses, known to have a strong bearing on the fatigue crack growth, are
linked to thermal cycles in the part. Large thermal gradients near the laser spot,
rapid cooling, and repetition of this process produce localized compression and
tension [11]. Some techniques used to mitigate residual stresses are the choice of
appropriate scanning patterns, in situ heating, and ex situ heat treatment.
Even in the case of an optimal scanning pattern, the quality of an L-PBF-
produced part can still be improved with accurate and responsive thermal control
of melt pool dimensions.
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FIGURE 1: Cascade of sources of error in computer models of additive manufacturing.

IDENTIFYING UNCERTAINTY IN L-PBF MODELS
All the aforementioned sources of error are present in L-PBF

process models. L-PBF involves multiple physical phenomena
occurring at different length scales. The process is controlled
by thermal, free-surface flow, structural and microstructural pro-
cesses, which are closely coupled. Due to the complexity of the
process, most computational models limit their scope to a sub-
set of physical phenomena at a given scale, neglecting dynamics
not captured by them. Modeling assumptions that neglect cer-
tain dynamics are the origin of modeling uncertainty2. It should
be noted that only relationships of the causal type contribute to
modeling uncertainty. For instance, if temperature distribution
or a similar variable is chosen as the KPI, the lack of a structural
model would not result in a relevant contribution to modeling un-
certainty because the systems are only weakly coupled and the
effect of stresses on the thermal history is insignificant.

Some common examples of modeling uncertainty in L-PBF
can be found in surface tension and particle-level dynamics ne-
glected in continuum models3, the choice of inaccurate distribu-
tions for laser power acting on the powder bed, or an inappro-
priate choice of boundary conditions that neglects track-to-track
and layer-to-layer interactions4.

2The approach followed in this article makes no distinction between aleatory
variability and epistemic uncertainty, and accounts only for their joint effect, as
suggested in [24].

3Particles in the powder bed, randomly packed and a source of aleatory vari-
ability, heat up and melt creating stochastic variations in melt pool morphology.

4During the build, variations in thermal diffusivity in material surrounding
the melt pool can have differences of up to two orders of magnitude between
fully-dense material and loose powder. This effect has been observed experimen-

Input uncertainty is the result of inaccurate simulation pa-
rameters, adopted in lieu of more precise knowledge or as re-
sult of uncertainty in the training data. In the case of L-PBF
models, common sources can be found in: a) absorption coeffi-
cient, which quantifies the amount of irradiated laser power that
heats up the powder bed; b) thermal conductivity in loose pow-
der, which depends on the distribution of powder particles; c)
thermo-physical parameters at high temperatures; d) convection
and radiation coefficients; and e) enhancing coefficients occa-
sionally used to account for the effect of advection in the liquid
phase. It is difficult to determine the precise values of these pa-
rameters for use in L-PBF models, and it is common to observe
them used only as adjusting coefficients.

Various numerical methods have been used to solve the cho-
sen mathematical models. Even when commercial packages
based on finite element methods are common in academia and
industry, other methods (e.g. discrete element methods, arbitrary
Lagrangian Eulerian, lattice Boltzmann methods) are rapidly
capturing the attention of the AM community. The choice of the
numerical method depends on the physical processes included
in the mathematical model (some methods are tailored for free-
surface and particle-to-particle interactions), and their suitabil-
ity for parallelization and implementation in high performance
computing (HPC) systems. In any case, a choice of numerical
method will result in an approximation error that depends on the
granularity of the chosen grid. Commercial packages used for L-
PBF models include convergence studies to ensure that the error

tally when melting overhanging structures, where larger (almost three times) than
usual melt pool areas have been observed [25].3
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FIGURE 2: V&V and UQ in computational models as suggested
in ASME V&V 20.

is small, but its magnitude is seldom reported.
Measurement uncertainty is independent of the choice of

numerical model, and depends solely on the methods and in-
struments used to gather test data. The choice of appropriate
measurement techniques for L-PBF is an unsolved issue, and it
depends on the KPI of interest [26]. In the case of thermal vari-
ables, non-intrusive thermographic techniques hold the promise
of providing online temperature measurements in the powder
bed, but difficulties determining the correct emissivity of the ma-
terial makes these predictions partially unreliable.

It is apparent that the different sources of uncertainty can
only be conceptualized but not completely defined until the math-
ematical model and measurement system are selected. This dis-
cussion will be expanded in the section dedicated to our case
study, where each source will be identified and quantified.

UNCERTAINTY QUANTIFICATION
Quantification of uncertainty in computational models is

based on the comparison of simulation solutions with experi-
mental data, to identify and track every source of error [23]. A
comprehensive discussion on uncertainty sources in heat transfer
and fluid mechanics models can be found in the standard ASME
V&V 20, along with methods to quantify them [27]. The fact that
AM involves thermally-activated consolidation processes makes
this standard suitable for this application. Figure 2 illustrates the
process of prediction and validation followed in UQ with ASME
V&V 20.

In this example, a known set of processing parameters and
material properties are fed to the model to obtain a simulation
result S. Information about the grid is used to estimate the nu-
merical error δnum that results from the numerical method using
methods based on Richardson’s extrapolation or Roache’s grid
convergence index (GCI). Meanwhile, an assumed probability
distribution in simulation parameters is propagated through the
model into the predicted quantity of interest, resulting in an es-
timate of the error due to inaccurate inputs δinput . Finally, sim-
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FIGURE 3: Online estimation in predictive models.

ulation results S are confronted with measurements D and mea-
surement error δD. The difference between model prediction and
measurement determines the bias E, which acts as an estimate
of modeling error δmodel . All sources of error are merged in the
calculation of prediction uncertainty, which is reported along the
bias as described in the first section of ASME V&V 20.

It is a well-known fact that the L-PBF process is highly vari-
able. Heat transfer fluctuates throughout the entire build as a
result of variations in processing conditions (laser power, scan
speed, layer thickness, etc.), thermal diffusivity surrounding the
melt pool, and random packing in the powder bed. Failure to
include these sources of variability will result in unreliable melt
pool width predictions.

Process variability is accounted for as uncertainty due to un-
known inputs, if it can be traced back to simulation parameters,
or as modeling uncertainty otherwise. Herein, we describe an
application of Bayesian estimation to reduce modeling error by
mapping sources of variability to random simulation parameters
that are identified in real time and used in the calculation of more
meaningful predictions. In the case of L-PBF, the set of identified
parameters may include random variables that attempt to model
the variable thermal characteristics of the material that surrounds
the melt pool. Following this strategy, measurements can be used
to detect these perturbations and sequentially readjust simulation
parameters.

The process for online estimation is illustrated in Figure 3.
In this case, a simulation is performed for a given set of simu-
lation parameters and an initial state with its associated uncer-
tainty, which originate from a previous step of the simulation
(feedback). Uncertainty in the initial state is propagated in time
using the model and process uncertainty, which is expected to
capture the effect of modeling error, numerical error δnum and
error due to unknown inputs δinput . The propagated state and un-
certainty are then compared with the measurement and its error
δD to result in estimates of the state at the next time step, its un-
certainty, and an updated estimate of process uncertainty in the
case of adaptive filtering.
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It can be seen that both approaches have the same sources
of uncertainty, the only difference being that some sources of
process variability that are included either as modeling error or
error due to unknown inputs in offline models are mapped to a
random initial state.

CASE STUDY: UNCERTAINTY IN A STOCHASTIC
MODEL FOR L-PBF

In this case study, an Isotherm Migration Method (IMM)
model, developed for laser cladding [28], is adjusted for use in
L-PBF. The model provides a set of ordinary differential equa-
tions (ODEs) that describe the motion of isotherms on the sur-
face of the powder bed. If one of these isotherms is assigned
to the melting temperature (Tm), the model can be used to dy-
namically track the location of the solidification front and predict
melt pool width. The method is similar to Rosenthal’s solution
for temperature distribution due to a moving point source [29],
but it allows the use of temperature-dependent material proper-
ties. Also, instead of solving for the distribution of tempera-
ture T (x,y,z, t), the system is solved for the half-widths y(T, t)
of isotherms on the bed surface5. The array of half-widths cor-
responds to a user-defined, uniformly-spaced temperature grid
T = [T1 T2 . . . Tm . . . TN ], for ∆T < 0.

The computational model shown in equations
(1) to (5) describes the evolution of the half-widths
y = [y1 y2 . . . ym . . . yN ], where each half-width

5The width of an isotherm under the heat source is twice y, because y is mea-
sured from the heat source location to the isotherm. Maximum melt pool width
is calculated assuming an ellipse for the isotherms [28].

yi corresponds to a temperature Ti
6. The set of ODEs can be

expressed in compact form as ẋ = f (x,u), where x = [y µ ]
denotes the vector of state variables and u = [P v] the vector
of control inputs. In this case, µ is the diffusion efficiency, a
random variable used to correct for variable sideways thermal
diffusion due to unmodeled process perturbations (modeling
error is mapped to a simulation variable). Its value is set to 1 in
nominal cases, when the melt pool is surrounded by fully-dense
material. In the case of of overhanging structures, for example, a
decrease of thermal diffusivity toward the bottom improves heat
transfer to the sides, increasing the value of µ .

The system of equations is stable for positive thermal diffu-
sivity α , and can be simulated until convergence to a steady-state
melt pool width wmax = wmax(P,v,A,hl ,Tm,α(T )). The same
model can be assembled in the form of an equation that maps the
present state vector xn = x(tn) to a future instant tn+1 = tn +∆t,
using a forward Euler scheme of the form xn+1 = xn+ f (xn,un)×
∆t, for example.

Uncertainty quantification
Uncertainty is quantified by comparing simulation results

for fully-dense material with melt pool width measurements
gathered using an EOSINT M270 system on an IN625 plate,
as described by Montgomery [30]. Single bead tests were per-
formed using different combinations of laser power and scan
speed, both on a bare plate (no added powder) and one with a 20

6In these equations, αi denotes the thermal diffusivity evaluated at tempera-
ture Ti, A is the absorption coefficient, P is laser power, ρ is density, Cp is specific
heat, v is scan speed, Al = T0−hl/(Cp+2µαiCp/v/ym+2µ2α2

i Cp/y2
m/v2) is the

apparent ambient temperature for the liquid phase, and Ste = −Cp∆T/hl is the
Stefan number.
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FIGURE 4: Numerical error as a function of mesh size.

µm layer of powder added. To ensure that diffusion efficiency
does not introduce extra uncertainty, only scans on bare plate are
compared with model predictions.

Error is approximated within the interval δmodel ∈
[E −uval ,E +uval ] centered around E = S−D, the bias between
the simulation result S and experimental measurements D. Val-
idation uncertainty uval , which accounts for uncertainty from all
sources, can be computed following uval =

√
u2

num +u2
input +u2

D

under the assumption that all error sources are independent.
The first steps toward quantification of modeling error are

code and solution verification; in other words, assessing that the
code is correct (free of bugs) and estimating the error in the nu-
merical approximation. Code was verified with a manufactured
solution and it was observed that the method converges to the an-
alytical solution given by Rosenthal for constant material prop-
erties as ∆T → 0 and Tmax → ∞. Similar convergence studies
were performed for predictions of melt pool width w (in µm) us-
ing temperature-dependent material properties. Results are pre-
sented in Figure 4, where successive grid refinement was used to
identify an order of accuracy of p = 1.97.

Numerical uncertainty was quantified using Roache’s Grid
Convergence Index (GCI) [27] for the prediction obtained with
T1 = 2560 ◦C and ∆T = −248 ◦C, corresponding to a grid of
10 isotherms8. The GCI is an estimated 95 % uncertainty (a
common uncertainty target) obtained by multiplying the abso-
lute value of a Richardson extrapolation error by an empirically

7The formal order of accuracy of the method was found at p = 3, but non-
linearities in the temperature-dependent properties insert iteration error reducing
the effective value of p.

8The reason to choose a relatively coarse grid is the desire to accelerate the
computation by keeping the dimensionality of the IMM model low. This is going
to be more important in the case of online predictions, to be described in the next
section.
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FIGURE 5: Normalized histogram of predicted melt pool widths.

determined factor of safety. In this case, the numerical prediction
for melt pool width for L-PBF of Inconel 625 with 195 W and
800 mm/s is (127.3±2.7) µm (±2.12 %).

The second source of uncertainty comes from imperfect
knowledge of input parameters, and the effect they may have on
predictions. Six factors were selected for a Monte Carlo study to
determine the propagation of uncertainty in inputs: laser power
(P), scan speed (v), absorption coefficient (A), latent heat (hl),
melting temperature (Tm), and thermal diffusivity (αi(Ti))9. Nor-
mal distributions are assumed for the input parameters following:

Input Nominal Std. dev. (% nominal)
P 195 W 2.5%
v 0.800 m/s 1.5%
A 0.6 25%
hl 2.97×105 J/kg 5.0%
Tm 1320 ◦C 5.0%
αi αi(Ti) 10.0%

A Monte Carlo approximation of the probability dis-
tribution of melt pool width is obtained following p(w) ∝
∑N

n=1δwmax(Pn,vn,An,hn
l ,T

n
m ,αn(T )), where δ denotes the Dirac delta

and the superscript n indicates the n-th sample of the input pa-
rameters. The resulting distribution of predicted melt pool widths
(for 4000 samples) resembles a normal distribution, as illustrated
in Figure 5, where the 95 % confidence interval is found in
(131.6±37.3) µm.

The last source of uncertainty comes from the experiments
used for validation. This study uses measurements that were
taken in the middle of the long edge of the single bead track,

9Temperature dependent material properties were obtained with the TCN16
thermodynamic database within the Thermo-Calc software [31].
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FIGURE 6: Sample image with measurement points marked (No
powder added, 125 W and 600 mm/s) [30].

which was imaged using a Zeiss AxioVision AX10 optical mi-
croscope. The image was then measured 15 times along the
width at approximately equal spacing, as shown in Figure 6.
These 15 measurements were then averaged for each melt pool.
In this study, measurements in the steady-state region have stan-
dard deviations of close to 5.2 µm, suggesting a ±10.4 µm con-
fidence interval.

Measured melt pool widths are shown in Figure 7 and com-
pared to predictions obtained from the IMM model, only for data
points close to nominal operating conditions (195 W and 800
mm/s). The region of calibration for this model was delimited
between 150 W and 195 W, and 600 mm/s and 1000 mm/s10. As-
suming that all error sources are independent, validation uncer-
tainty is estimated at (127.3±38.8) µm (±30.5 %) for nominal
conditions. Some observations can be made from these results:

(a) Modeling uncertainty is relatively large, as expected due
to the simplification of the thermal problem by assuming
a point source instead of a distributed one. The absence
of other physical phenomena considered important for melt
pool dynamics, such as surface tension, only increases mod-
eling error.

(b) Numerical uncertainty is negligible compared to uncertainty
due to unknown input parameters or to experimental error,
even for highly-coarse grids.

(c) Error due to uncertainty in input parameters, the error source
most widely studied, has a very significant contribution to
model uncertainty (±29.3 %). This is partly due to the large
uncertainty assumed for the absorption coefficient A, which
was used as a tuning coefficient in this example.

(d) Uncertainty due to unknown inputs depends on the confi-
dence in the chosen set of input parameters. Different users

10The choice of the region of calibration was arbitrary, and it was chosen as
an area around the nominal point where the same absorptivity is able to replicate
observed melt pool widths.
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FIGURE 7: Comparison of model predictions with experiments.

may choose different input uncertainties, resulting in differ-
ent prediction uncertainties.

(e) It is currently not possible to assess how this model com-
pares to the predictions obtained with other L-PBF models
as their uncertainty has not been reported.

(f) The relatively large prediction uncertainty (±30.5 %) is
compensated by the speed of the model. The model returns
a melt pool width prediction in 0.1 s when implemented in
MATLAB R2014b running on an Intel Core i7-3770 CPU.

(g) Extrapolation of the modeling error to the other points in the
region of calibration matches the obtained measurements,
as observed in Figure 8, where power and scan speed were
kept constant. It is important not to extrapolate predictions
outside the region of calibration of each predictive model,
which is often not reported.

(h) Model was validated by comparison with scans on bulk ma-
terial, ignoring the addition of a powder layer. Montgomery
reported that the effect of adding a layer of powder does not
have a significant effect on melt pool width [30], but its ef-
fect was not quantified in this study.

Bayesian estimation
Diffusion efficiency may be allowed to vary in time to ac-

count for unmodeled track-to-track and layer-to-layer interac-
tions, which were ignored in the previous example. In this sec-
tion, we present an example that illustrates how online thermo-
graphic monitoring can be used to identify unmodeled dynam-
ics (modeling error) and decrease uncertainty in melt pool width
predictions.

The presented case, illustrated in Figure 9, is designed to
represent a horizontal overhanging plane which is scanned in a
direction perpendicular to the solid-to-powder transitions. This
case study, designed and published by Kruth et al. [25], showed
that melt pool area increases threefold when going through this
kind of overhangs. Synthetic data was generated to mimic this

7



Power (W)

80 100 120 140 160 180 200

W
id

th
 (
µ

m
)

0

100

200

300
Melt pool widths at 800mm/s

Scan speed (mm/s)

0 200 400 600 800 1000 1200

W
id

th
 (
µ

m
)

0

100

200

300
Melt pool widths at 195W

FIGURE 8: Melt pool width predictions for DMLS of Inconel
625.

FIGURE 9: Case simulated in “perturbed” scenario.
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FIGURE 10: Simulation of melt pool width through overhang
assuming µ = 2.2.

event by artificially perturbing µ and assuming that it varies in-
stantaneously from 1 to 2.211 when melting on top of loose pow-
der.

In this study, it has been assumed that the isotherms corre-
sponding to Ti = {576,824,1072}◦C can be detected with ther-

11The value of the assumed perturbed diffusion efficiency was chosen to in-
crease steady-state melt pool width approximately by

√
3, assuming that melt

pool length changes by the same ratio and the overall melt pool area increases
threefold.
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FIGURE 11: Estimated diffusion efficiency and melt pool width.
Predictions are shown in blue and 95 % confidence intervals are
in dashed red lines.

mographic sensors. To simulate measurement uncertainty, noise
was added to the measured isotherm widths following a standard
deviation of 26 µm12.

Process estimation, using a linear stochastic version of the
IMM model and a Kalman filter [32], results in the estimates
shown in Figure 11, where the null hypothesis of normal opera-
tion (no overhang, H0 : µ = 1) is rejected in favor of the alterna-
tive hypothesis of an anomaly (HA : µ ̸= 1) in the shaded region.
The perturbation in heat diffusion is detected between 0.47 ms
and 1.35 ms, lagging from the 0.37 ms and 1.10 ms in which
they occur in the simulation.

Response speed, and accuracy and uncertainty in the esti-
mates are expected to be dependent on the process and measure-
ment uncertainty used for estimation, which were assumed in this
example and will have to be adjusted in an experimental study to
close the loop shown in Figure 3.

An important point to be observed is the low uncertainty in
the melt pool width prediction even in the region of anomalous
operation. Without online measurements, models would have
to account for the potential variation in diffusion efficiency us-
ing large uncertainties for µ , increasing uncertainty in melt pool
width predictions. For example, if the study to determine sen-
sitivity to input parameters is repeated letting µ vary following
µ ∼Unif[1.0,2.5], the obtained prediction is (193.6±106.6) µm
(±55.1 %), which is much larger than the confidence intervals
reported in Figure 11 (±4.0 µm).

12The assumed measurement noise used for the synthetic data corresponds to
a standard deviation of half the pixel width in similar thermographic settings.
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FUTURE WORK
The identification and quantification of the uncertainty

sources in the proposed stochastic AM model is not complete
until the process uncertainty assumed for diffusion efficiency is
validated. Validation of model variability will only be possible
in a sequential manner, by comparing model predictions with
measurements. Melt pool width measurements need to be taken
faster than the characteristic response time of the process, which
the model identified in the order of hundredths of milliseconds
for L-PBF of Inconel 625 with nominal conditions. At such high
data acquisition rates, both gathering and processing the data will
be challenging.

This study is scheduled to be performed in the powder bed
fusion test bed that NIST is developing for studies of advanced
metrology, estimation and control [33]. Once the test bed and
the data acquisition system for melt pool widths are ready, the
stochastic model presented in this article can be used in the de-
sign of an online monitoring system. NIST is currently working
on the development of such a system to:

(a) Detect and quantify thermal perturbations and their uncer-
tainties in the L-PBF process, which will allow engineers to
locate the regions of the produced part that are most likely
to have manufacturing defects.

(b) Design of a feedback process controller, which will use in-
formation of the current state of the process.

CONCLUSIONS
As metal-based AM gains popularity, closer attention has

been paid to the computational models developed to predict qual-
ity in manufactured components. One aspect that has been tra-
ditionally ignored in these models is that, if they are to be used
in model validation or for certification of parts, one must know
how accurate and precise these models are. Uncertainty quantifi-
cation presents a set of challenges that have often been ignored
both by manufacturing and modeling engineers.

The series of steps that go from a physical process to a
numerical representation involve successive assumptions in the
mathematical models, model parameters, numerical scheme, and
calibration data. It is important to quantify the relative effect of
each error source to identify the ones that will result in the most
significant reductions in prediction uncertainty.

A method to decrease modeling error, by mapping it to ran-
dom simulation inputs that are identified in real time, is illus-
trated. Inclusion of random inputs requires that the assumed
randomness is validated (and adjusted, if necessary). Adaptive
filtering techniques are being evaluated for implementation in a
future online monitoring study.

Even though the case study presented in this paper is based
on a low-order model, the same ideas can be extended to high-
order models. The algorithms used for uncertainty quantifica-

tion, however, are different. For instance, the high computational
cost of Monte Carlo methods prevents their application in the
propagation of uncertainty in input parameters. Methods based
on the Karhunen-Loève expansion (e.g. polynomial chaos [34])
are often preferred in such scenarios.
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