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Abstract: We consider the problem of sorting, by size, spherical particles 
of order 100 nm radius. The scheme we analyze consists of a heterogeneous 
stream of spherical particles flowing at an oblique angle across an optical 
Gaussian mode standing wave. Sorting is achieved by the combined spatial 
and size dependencies of the optical force. Particles of all sizes enter the 
flow at a point, but exit at different locations depending on size. Exiting 
particles may be detected optically or separated for further processing. The 
scheme has the advantages of accommodating a high throughput, producing 
a continuous stream of continuously dispersed particles, and exhibiting 
excellent size resolution. We performed detailed Monte Carlo simulations 
of particle trajectories through the optical field under the influence of 
convective air flow. We also developed a method for deriving effective 
velocities and diffusion constants from the Fokker-Planck equation that can 
generate equivalent results much more quickly. With an optical wavelength 
of 1064 nm, polystyrene particles with radii in the neighborhood of 275 nm, 
for which the optical force vanishes, may be sorted with a resolution below 
1 nm.
OCIS codes: (350.4855) Optical tweezers or optical manipulation; (350.4990) Particles.
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1. Introduction

Following demonstrations by Ashkin and co-workers [1, 2], optical forces have been widely
used to manipulate small particles with dimensions in the range of nanometers to micrometers
[3, 4, 5]. One of the more popular areas of application is biology where optical tweezers
have been used to study a variety of particles in liquid, including cells, bacteria, viruses, lipid
vesicles, and even DNA molecules [6].

Basic optical tweezers use a high numerical aperture (NA) microscope objective to focus a
laser beam to a diffraction-limited spot. The strong spatial gradients in optical intensity produce
trapping in three dimensions. Strong intensity gradients can also be produced by near-field
structures [7, 8, 9, 10, 11], interference fringes [12, 13, 14, 15, 16, 17], and optical fibers
[18, 19]. Many of these techniques also utilize high NA optics. The trapping volume can be
exceedingly small (< 1 μm3) and located very close to a microscope objective. Micro-fluidics
technology is used to deliver liquid-borne particles to the trapping area. Holographic arrays of
tweezers have been used to obtain larger working volumes and to operate on more particles
[20, 21].

Optical forces have great potential for solving important measurement challenges with
aerosol particles. It is possible to manipulate and measure aerosol particles without altering
or perturbing the particles as is required in diffusion mobility analysis or in collection by
mechanical filters. Measurement of aerosol particles arises in such disparate fields as climate
science, nano-particle manufacturing, homeland security, healthcare, and forensics. Optical
manipulation of aerosol particles has received some attention [13, 14, 21, 22, 23, 24, 25, 26],
but much less than manipulation of liquid-borne particles.

A desirable functional capability for any particle measurement is sorting, with size being a
natural parameter to sort. Sorting makes it possible to measure particle size distributions, to
manufacture mono-disperse particles, and to detect the presence of a specific type of particle.
Some work has been done on sorting of particles in liquids [8, 12, 20, 27, 28, 29, 30, 31], but
almost none on sorting of aerosol particles [13].

High throughput is desirable for any sorting function. High throughput can be facilitated
by parallel processing, which in turns requires a considerably larger working volume than the
trapping volume of optical tweezers. Arrays of optical tweezers have been shown to provide
parallelization [20, 29]. An alternative is to utilize low-NA optics to achieve a large sorting
volume, through which a large number of particles can flow.

Here we propose and analyze a scheme for optically sorting airborne nanoparticles. It has
the advantages of (1) utilizing a simple, low NA optical system with high particle throughput,
(2) producing a continuous stream of continuously dispersed particles, and (3) exhibiting a size
resolution better than 1 nm.

We have explored the performance of the sorting scheme using numerical simulations of
optical and collisional forces. The reliability of the numerical results is enhanced by our use of
two separate algorithms, which have been extensively compared against each other and against
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Fig. 1. The scheme for sorting particles by size consists of a narrow stream of aerosol
particles flowing across a Gaussian mode standing wave at an oblique angle. The figure is
not to scale; in particular, the optical fringes and particles are much finer than shown.

analytic results. One of the algorithms is a Monte Carlo solution to the equations of motion for
individual particle trajectories through 6-dimensional phase space. The other approach uses the
Fokker-Planck equation to determine effective velocities and diffusion constants obtained by
averaging over the interference fringes of the optical field; these functions of optical intensity
are then used to integrate the equations of motion over the large-scale structure of the field.

A key input to the simulations is the force of a standing wave (wavelength λ0) on a particle
of arbitrary radius a. We derive this force from first principles [32]. It reproduces existing
expressions for the force in the Rayleigh regime a � λ0.

In this article we restrict our attention to particles in air, but the approach is qualitatively
applicable and the results obtained are qualitatively similar to particles in liquids. In water,
for example, the drag force is nearly two orders of magnitude larger, while Brownian motion
is nearly one order of magnitude smaller. The former can be accommodated by adjusting
controllable parameters. The latter is generally beneficial.

2. Sorting scheme

We consider a system designed to sort spherical particles by size. The basic configuration, given
in Fig. 1, consists of a heterogeneous stream of aerosol particles, entrained in a global laminar
air flow, moving across a Gaussian-mode standing wave at an oblique angle. A Cartesian
coordinate system x,y,z (See Fig. 1) is chosen in which the z-axis coincides with the optical
axis and the air flows parallel to the x-z plane. Particles of all sizes enter the optical field in a
narrow input stream, but are physically separated by their interaction with the field. They exit
the field at different locations depending on their size.

In the absence of an optical field, the particle stream flows in a straight line across the optical
axis. A standing wave optical field presents a sinusoidal force directed along the optical axis.
The large gradients in a standing wave make this force comparable in magnitude to that seen
in optical tweezers. It is sufficient to impede long-range motion of particles in z, but does not
effect motion in x and y. Sorting of particles arises from the size-dependence of the optical
force combined with the dependence on distance from the optical axis. In the Rayleigh regime,
for example, some particles are small enough that they are practically unaffected by the optical
field and flow nearly undiverted in a straight line across the optical axis. Larger particles will be
diverted into a purely x-directed motion when they get close to the optical axis where the optical
field is largest. Particles of even larger size are diverted at lower field strengths that occur farther
from the optical axis. Thus particles of different sizes are physically separated from each other.
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The separation increases, by the same amount, as the particles exit the optical field and begin to
flow, again, along streamlines. The net result is a continuous dispersion of particle sizes along z.
Particle size distributions may then be measured in situ, or the different sizes may be separated
permanently for retention or subsequent analysis, depending on the application.

This problem involves an optical force, a drag force from the air, and diffusion of particles
due to random collisions with air molecules. The latter makes the problem three-dimensional,
but for the conditions we explore, diffusion in the y-dimension is not so important.

3. Optical force on a dielectric sphere in a standing wave

Expressions for the force on a spherical particle in terms of the Mie coefficients have been
known since the classic work of Debye [33]; a general formula has been given by Barton et
al. [34]. We consider the force exerted on a spherical dielectric particle of arbitrary radius by a
standing wave.

The force exerted by an arbitrary electromagnetic field on an arbitrary object can be obtained
by generalizing the point charge in the Lorentz force equation to a charge density and a
current density and then integrating over the object volume. Gauss’s law and Ampere’s law
make it possible to describe the charge and current densities in terms of material properties,
i.e., dielectric permittivity ε and magnetic permeability μ . The Maxwell-Faraday equation and
Gauss’s law for magnetism can then be used to obtain the electromagnetic force on an object
[35]

〈F〉=
∫

∇ · 〈T̄〉 dV − 1
c2

∫ ∂ 〈S〉
∂ t

dV (1)

in terms of the divergence of the Maxwell stress tensor

T̄ ≡ (ε0EE+
1
μ0

BB)− 1
2
(ε0 |E|2 + 1

μ0
|B|2)Ī (2)

and the time rate-of-change of the Poynting vector S. The integral is over the volume of the
object. The brackets 〈〉 indicate a time-average over optical frequencies, Ī is the identity matrix
and E and B are the electric and magnetic field vectors, respectively. These fields must be
obtained from the incident fields by applying the appropriate boundary conditions at the object
surface. EE and BB are dyadics. We will only consider situations in which the electromagnetic
field has a single optical frequency time-dependence, so the last term in Eq. (1) does not
contribute to the time-averaged force.

In a material medium, the electromagnetic stress tensor must be accompanied by
corresponding terms describing the momentum carried by the medium [36]. In the case of a
particle in vacuum, such terms vanish. We will proceed from this point as if the electromagnetic
properties of air are identical to those in vacuum.

Considering a spherical particle, it is easier to evaluate the force when the volume integral is
converted to a surface integral using the Divergence Theorem

〈F〉=
∮
〈T̄〉 ·dA, (3)

where the surface of integration must be outside the particle, i.e., the fields must be those
external to the particle [32]. Both incident and scattered fields are included in E and B.

We are concerned with the force generated by a low numerical aperture standing wave, so
we consider an infinite plane standing wave with electric field

E(x,y,z, t) = x̂E0 ∑
±

cos(ωt ± k0z) , (4)
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where ω/(2π) is the optical frequency, k0 = 2π/λ0 is the wave number of the optical field, λ0

is the free-space wavelength, and z is the coordinate along which the waves propagate. This
field creates a time-averaged intensity

〈I(z)〉= 2I0 (1+ cos2k0z) , (5)

where

I0 =

√
ε0

μ0

|E0|2
2

(6)

is the power per unit area in each plane wave.
We have obtained the force on a spherical particle of arbitrary radius in a plane standing

wave by numerically evaluating Eq. (3). The validity of the results is ensured by our use of
two different approaches to the numerical evaluation, which were implemented in isolation. In
one approach, the incident and scattered fields were derived analytically (in terms of Bessel
and Hankel functions) and then evaluated numerically at the surface of the particle. In the
second approach, the fields inside the particle were derived analytically (in terms of Bessel
functions only). The fields on the external surface of the particle were then obtained from the
continuity of the tangential components of the electric and magnetic fields and the continuity of
the normal components of the electric displacement and magnetic induction. The force obtained
from numerical evaluation of these fields is in agreement everywhere with the force obtained
by the first approach.

The five-term expansion of Eq. (3) about k0a = 0

〈F〉 ≈ ẑ
4π

105ck2
0

I0 sin(2k0z)
5

∑
�=1

[
c1�Im(a�−b�)

+c2�Im(a�−1a∗� −b�−1b∗�)+ c3�Im(a�b
∗
�)
]

(7)

is an excellent analytic approximation to the time-averaged force of a standing wave on a
spherical particle in vacuum for the range of parameters we consider. The Mie coefficients
a� and b� are given by Zangwill [35]. Values for the coefficients ci� are given in Table 1. The
first term in Eq. (7) represents a product of the incident electric field and the scattered field,
whereas the following two terms represent the product of the scattered field with itself.

Table 1. Exact values of the ci� coefficients in Eq. (7)

� c1� c2� c3�

1 630 0 630
2 −1050 630 −350
3 1470 −1120 245
4 −1890 1575 −189
5 2310 −2016 154

For k0a → 0, Eq. (7) reduces to

〈Fz〉=−8πk0a3I0
c

n2
p −1

n2
p +2

sin(2k0z), (8)
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Fig. 2. Comparison of different expressions for the optical force versus a/λ0 for λ0 = 1064
nm, np = 1.57, and k0z = π/4. The force is normalized by the factor I0πa2, so that the
plotted functions give the force per unit of optical power incident on the sphere. The dashed
black line is the Rayleigh expression Eq. (8). The blue curve is the 5-term expression of
Eq. (7). The red curve is the actual force obtained from high-order numerical evaluation of
Eq. (3).

which agrees with the expression for the gradient force in the Rayleigh limit [37] when the
optical field is a plane standing wave. The Clausius-Mossotti term (n2

p−1)/(n2
p+2), frequently

introduced in the literature by an ad hoc argument involving scooped spheres and dipoles,
is seen here to originate naturally as the lowest order consequence of the electromagnetic
boundary conditions at the surface of a dielectric sphere, in particular, through the Mie
coefficient b1 [32].

Figure 2 compares three different expressions for the force on a spherical dielectric particle
in a standing wave: the Rayleigh expression of Eq. (8), our analytic approximation Eq. (7),
and the essentially exact force obtained from evaluating Eq. (3) to order � = 30. The force is
normalized by the factor I0πa2, so that the plotted functions give the force per unit of optical
power incident on the sphere. The force is everywhere proportional to sin2k0z, with z = λ0/8
in the figure.

The Rayleigh expression diverges qualitatively from the exact solution for a/λ0 > 0.1, while
our approximate expression is in excellent agreement for the range of a/λ0 shown in Fig. 2,
including the irregular behavior. The force vanishes for particles of certain sizes [47]. This is
to be expected when the particle size has a certain relationship to an integral number of fringes
of the optical field. It is perhaps surprising that the force changes sign even though the particle
center remains fixed relative to the standing wave. When the force is negative, a particle with
index of refraction greater than that of the medium prefers to sit in the intensity maximum.
When the force is positive, the particle prefers to have its center in the intensity minimum. For
our scheme, this small shift of position has no practical significance.

The vanishing of the optical force for certain discrete radii is potentially useful for tying
particle sizes to an SI length standard because the radii at which the zero-crossings occur are
proportional to the optical wavelength. The latter can be measured accurately to high precision.
There is also a dependence on the particle index of refraction, but this parameter can also be
measured independently.
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The preceding results have been derived for a plane standing wave, but we can use them
directly in simulating the force from a Gaussian TEM00 mode standing wave because the forces
arising from the finite radial extent of the beam are small enough to be ignored relative to the
axial force from the interference fringes. Considering a Rayleigh length much greater than the
spatial extent of the sorter, the TEM00 mode looks like a collimated beam and the force can be
approximated by

〈Fz〉= 〈F(0)
z 〉I0 sin2k0z e

− 2(x2+y2)

w2
0 , (9)

where 〈F(0)
z 〉 is the force per unit irradiance exerted by a plane standing wave when the particle’s

position is such that 2k0z = π/2, I0 is the intensity of each plane wave at the waist, and w0 is
the e−2 intensity radius. The Rayleigh length corresponding to a given beam waist radius is

zR =
πw2

0

λ0
. (10)

4. Collisional forces

In this section, we describe the general theory of the transport of spherical particles in a fluid,
then discuss two models for calculating particle trajectories under the combined influences
of optical forces and collisional forces. One model solves the three-dimensional equations
of motion numerically, using a Monte Carlo algorithm to account for the random nature of
collisional forces. Here, collisions are incorporated as random changes in particle velocity, so
the six-dimensional phase-space probability distribution is utilized. A second model greatly
simplifies the picture of collisions, by assuming that the velocity-space distribution equilibrates
with the background gas in a time much shorter than the time required for a particle to move
a significant distance. This and the quasi-1D symmetry of the optical field allows the particle
dynamics along the optical axis to be described with a one-dimensional spatial probability
distribution function. Effective velocities and diffusion coefficients describe the modification
of trajectories produced by the one-dimensional fringes of a given magnitude. The particle
trajectories perpendicular to the optical axis are described by integrating the equations of
motion across the radially-inhomogeneous optical field using the effective fluid parameters
appropriate to each location.

The use of two different numerical approaches adds confidence to the correctness of results.
The second method is quite a bit faster computationally. We begin this section with background
common to both models, Section 5 discusses the Monte Carlo specific issues, and Section 6
discusses the use of effective velocities and diffusion constants.

The trajectory of a particle under the influence of collisions with air molecules is stochastic
and can be described by the time evolution of the single-particle phase-space probability dis-
tribution function f such that

f (r,v, t|ri,vi, ti) d3r d3v (11)

gives the probability that a particle will, at time t, be found within the volume d3r about r and
within the velocity range d3v about v after having an initial position ri and initial velocity vi

at time ti, hereafter taken to be 0. The probability distribution function is normalized such that
integration over all final positions and velocities yields a probability of one. The time evolution
of f is described by the Boltzmann equation

d f
dt

= v ·∇ f +∇v · F(r, t)
mp

f +

(
d f
dt

)
c
, (12)
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in which ∇v is the gradient in velocity-space, F represents the optical forces on the particle,

mp is the particle mass, and
(

d f
dt

)
c

represents the stochastic forces of collisions between the

particle and surrounding molecules. We will not consider situations in which the particle density
is large enough that interactions between particles are significant.

The momentum exchange between particle and air molecule in a given collision is such a
small fraction of the particle momentum that the particle trajectory through phase space can be
described as a continuous process using the Fokker-Planck formalism [38]. In the present case,
the collision cross section is independent of velocity and both the collisions and medium are
isotropic. This allows us to write the collision operator as

(
d f
dt

)
c
=−∇v · (C f )− Dv

2
∇2

v f , (13)

where the vector C is the coefficient of convection and the scalar Dv is the coefficient of
velocity-space diffusion. Realizing that the net flux in velocity-space must vanish when the
particle probability distribution f has equilibrated with the air molecules, and equating the
convection term with the drag force, it is possible to express the Fokker-Planck coefficients in
terms of the particle mobility μ as

C = −v− v0

μmp

Dv = −2kBT
μm2

p
,

(14)

where v0 is the velocity of the medium, kB is the Boltzmann constant, and T is the absolute
temperature of the medium.

Chandrasekhar [39] has given the fundamental solution to Eq. (13), which generalized to a
moving medium is

f =

[
mp

2πkBT (1− e−t/τ)

]3/2

×exp

(
−mp|v− v0 − (vi − v0)e−t/2τ |2

2kBT (1− e−t/τ)

)
,

(15)

where

τ ≡ μmp

2
(16)

is the time constant for equilibration of the particle kinetic temperature with the air temperature.
For a particle with a = 100 nm in air at standard temperature and pressure, τ ≈ 50 ns.

The Einstein-Smoluchowski equation relates the diffusion constant D to mobility by

D = μkBT (17)

and thus to Dv = −2(kBT )2/(Dm2
p), demonstrating that diffusion in velocity space and in real

space are manifestations of the same underlying phenomenon. In our Monte Carlo model
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Fig. 3. The mobility for a spherical particle in air at standard temperature and pressure
according to Fuchs [40] compared to the �g → 0 limit.

we treat collisions of the particle with air molecules as velocity-space diffusion. A particle’s
random velocity walk then leads deterministically to a diffusion in real space. In our model
based on effective velocities and diffusion constants, collisions are treated directly as a diffusion
in real space. Both approaches lead to the same result.

Fuchs [40] gives for the mobility of a particle in a gas

μ =
1+A �g

a +Q �g
a e−ba/�g

6πηa
(18)

in terms of the gas viscosity η and molecular mean free path �g. The constants A = 1.25,
Q = 0.42, and b = 0.87 were obtained empirically and �g = 68 nm at standard temperature and
pressure. In the large particle limit (a/�g 	 1), the Fuchs expression results in Stokes’ Law for
the drag force on a particle

Fd =−6πηa(v− v0). (19)

For small particles (a/�g < 10), the numerator in the Fuchs expression accounts for the
transition from fluid to molecular dynamics in which the mobility μ varies as a−2. The Fuchs
mobility is compared, in Fig. 3, to mobility in the limit �g → 0.

5. Monte Carlo simulation of particle trajectories

Multiplying the Boltzmann equation by v and integrating over all phase-space and multiplying
the Boltzmann equation by r and integrating over all phase-space yields the equations of motion
for a particle

dvp

dt
=

F(r, t)
mp

+

(
dvp

dt

)
c

(20)

drp

dt
= vp (21)

where
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rp =
∫ +∞

−∞
r f d3v d3r

vp =
∫ +∞

−∞
v f d3v d3r (22)

and the force in the term F(r,t)
mp

is due entirely to optical forces.
The trajectory of a particle is determined numerically from this system of equations using a

fourth-order Runge-Kutta discretization method [41], given an initial velocity and position. The
collision term is dealt with by randomly selecting a change in velocity Δv ≡ vfinal − vinitial from
the time-dependent probability distribution function Eq. (15) given a discrete time interval Δt.
Then

(
dvp

dt

)
c
=

Δv
Δt

. (23)

The interval Δt = 10 ns was found to achieve satisfactory results. It is much longer than the
mean collision time of order 10 fs, yet small enough that a representative particle does not
have time to change its position significantly in the external (optical) force field. A particle
with radius a = 40 nm and moving at thermal velocity moves only about 1 nm in 10 ns. Larger
particles move even shorter distances.

Although numerically intensive, the Monte Carlo approach is fully three-dimensional and
can easily accommodate an arbitrary optical field and other forces.

6. Particle trajectories using effective velocities and diffusion constants

Here, we describe an alternate approach to calculating particle trajectories. We work on two
length scales: (a) the submicrometer length scale of an individual optical fringe, and (b) the
millimeter length scale of the system as a whole. We solve the Fokker-Planck equation for the
spatial probability distribution (in contrast to the velocity-space probability distribution in the
previous section) of a particle as a function of time in a 1D optical interference pattern. By
considering the time-evolution of the probability distribution of a particle, it is possible to find
an effective velocity and effective spatial diffusion constant in a regime in which the position
and second moment both change linearly in time. After crossing a fringe, the particle finds itself
facing a symmetry-equivalent optical landscape, so the macroscopic motion of the particle can
be defined by the microscopic constants. Integration of these constants through the experimental
setup leads to predictions which are comparable to the Monte Carlo results. Software for this
section is available [42].

6.1. Fokker-Planck equation in a plane wave basis

The mathematical content of the “slowly varying” assumption is that we model the mean motion
and its variance in one dimension and that we neglect the small forces in the x̂ direction.
Because the particle is large compared to the air molecules, it undergoes overdamped Brownian
motion and satisfies the Fokker-Planck equation [43]

∂ f (z, t)
∂ t

= D
∂ 2 f (z, t)

∂ z2 −μ
∂
∂ z

[F(z) f (z, t)]. (24)

The diffusion constant D of the particle is tied to the mobility μ by Eq. (17), F(z) is the static
force on the particle, and f (z, t) is the probability distribution for the location of a particle at
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time t. (It is the 1D analogue of the distribution used in the previous section, integrated over all
velocity space.) Unlike the previous section, here we assume that the particle achieves thermal
equilibrium before it moves a significant distance. Physically, f represents a localized function.
However, we describe it as an artificially periodic function for mathematical convenience, with
the artificial period chosen to be larger than the extent of f .

Since the external force is smooth and periodic, we anticipate a rapidly converging expansion
for the probability distribution f (z, t) in a Fourier basis:

f (z, t) =
1

NΛ

∞

∑
n=−∞

cn(t)e
inkz, (25)

where Λ = λ0/2, the cn(t) are complex expansion coefficients, and k = 2π/(NΛ), where N
is the number of interference fringes between the artificial periodic replicas of the solution.
Because f (z, t) is real, c−n = c∗n. Moreover, the probability normalization is constant in time,
i.e.,

1 =

∫ NΛ/2

−NΛ/2
dz f (z, t), (26)

which implies c0 = 1. Putting these facts together,

f (z, t) =
1

NΛ

(
1+2Re

∞

∑
n=1

cn(t)e
inkz

)
. (27)

We consider the case of a standing wave optical field and a convective background with the
form

F(z) = F0 +F1 sin(2πz/Λ), (28)

where F1 is the optical force from Eq. (9). The influence of the background fluid with velocity
v0 is implemented by setting the spatially invariant force term to F0 = v0/μ using Eq. (18).
Substituting Eq. (25) and Eq. (28) into the partial differential Eq. (24) leads to the system of
ordinary differential equations

d
dt

cn(t) = −Dn2k2cn(t)+ iv0nkcn(t)

−μ
2

F1nkcn−N(t)+
μ
2

F1nkcn+N(t).

(29)

The relation c−n = c∗n means that it is sufficient to solve only for n > 0. Terms with n < 0 may
be eliminated from the equation in favor of terms with positive n. In the special case v0 = 0, the
solution is symmetric and the cn are real. Moreover, the sum is truncated after a finite number of
terms Nterm, i.e., we assume cn = 0 for n > Nterm. These relations suffice to limit the number of
cn which need to be found to Nterm. Because F(z) has period Λ, by Bloch’s theorem the system
Eq. (29) splits into N independent sets of coupled equations. Furthermore, each independent
system of equations is tri-diagonal. The net result is that the computational burden is very low,
with a few seconds required to solve the equations in a particular case.
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Fig. 4. The solution of the Fokker-Planck equation for a = 100 nm, Λ = 532 nm, I0 =
0.4 GW/m2, and vd = 707 μm/s. The solutions occur starting from the initial condition in
blue, then in four steps of 64 μs represented sequentially by green, red, gold, and black
curves.

A typical solution to the Fokker-Planck equation is shown in Fig. 4. An initial Gaussian
quickly relaxes within its well, shown by the shift between the blue and green curves, and then
more slowly populates the first well downwind as the central well is depopulated. A very small
population of the first well upwind is also visible.

6.2. Analytic limits and program tests

The Fokker-Planck equation has certain recognizable limiting cases. If D = 0 and F1 = 0, Eq.
(24) reduces to the advection equation (a one-way wave equation). If F(z) = 0, we obtain the
diffusion equation at zero velocity and the drift-diffusion equation at finite velocity. The case of
neglecting diffusion is given in Appendix A and that of neglecting drift is given in Appendix B.
Setting any one parameter among D, v0, and F1 to zero leads to an analytic result for Eq. (29).
We verified all three cases numerically for Gaussian starting distributions.

6.3. Extraction of effective velocities and diffusion constants

The goal of this section is to obtain two functions veff and Deff characterizing the linear increase
in the mean and variance rate of f (z, t) as a function of particle diameter and field intensity.
The system of differential equations is started with a Gaussian distribution of width σ = Λ/8
centered in one of the wells. The times need to be large enough so that there is intra-well
equilibration. Numerically converged results are achieved with the parameters in Table 2.

The mean and variance are calculated as a function of time and locally fit to a linear function.
The parameters of Table 2 were chosen so that the results yield nearly constant values for veff

and Deff in the second half (in time) of the simulation after the intra-well equilibration. Typical
results are shown in Fig. 5 for the solution corresponding to Fig. 4. Dean and Oshanin have
recently observed similar behavior and analyzed the transient term [44].

Effective velocities for several particle radii from 40 nm to 140 nm are shown in Fig. 6.
They have been normalized to the velocity at zero optical force. Small particles are relatively
unaffected by the optical field, but the effect grows with particle radius. The differences in these
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Table 2. Parameters used for converged solution of Eq. (29). Small a means 40 nm ≤
a ≤ 110 nm; medium a means 120 nm ≤ a ≤ 170 nm; large a means 180 nm ≤ a ≤ 300
nm

Parameter Small Medium Large Unit Remark
a a a

N 32 32 32 -
Λ 532 532 532 nm λ0/2
Δt 0.5 1 4 μs
Nstep 512 512 1024 -
Nterm 512 512 256 -
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0
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0.6

Fig. 5. Time evolution for the velocity in z, vobs, which is the average over 1/16 of the total
time range, of a spatial distribution of particles of radius a = 100 nm in a standing wave
with I0 = 0.4 GW/m2 and a flow velocity v0 = 0.707 mm/s. A second average is taken in
the shaded interval to determine veff, the large-time limit of vobs.

effective velocities permit optical sorting, as we see below.

6.4. Use of effective constants of motion

In principle, the effective velocities and effective diffusion constants could be used as input to
Monte Carlo modeling where the steps need to be small compared to changes in the fringe-
averaged optical intensity which is typically 1 mm. By comparison, a direct application of
Monte Carlo to the drift-diffusion equation requires steps which are small compared to Λ, equal
to 532 nm in our example.

However, the simplicity of the geometry allows a more direct approach. We take the x-
component of velocity to be a constant vx = v0 sinθ with θ defined by Fig. 1 We will also
use vz = v0 cosθ . Because the system is translationally invariant in z, the z motion does not
affect the accumulation of either displacement or variance in z position. In the y direction, we
need to make an additional physical assumption that the total diffusion in y is small compared
to the scale length of the optical field. We test this assumption at the end.

The mean displacement in z compared to displacement without an optical field is given by
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Fig. 6. Normalized effective velocity across interference fringes versus optical intensity I0
for different particle radii in nm (shown next to each curve).

z1 =
∫ t1

t0
dt

{
vz,eff[x(t)]− vz,0

}

=
1
vx

∫ x1

x0

dx
{

vz,eff(x)− vz,0
}

(30)

where a particle starts at position (x0,0,z0) and ends at (x1,0,z1), making use of the uniform
motion in x. We use the subscript “eff” to denote an average over multiple fringes of the optical
field. The variance in z1 (σ2

z ) has two contributions. First, we have the effect of 1 dimensional
diffusion in z during the mean crossing time. This is given by

[
σ (D)

z

]2
=

2
vx

∫ x1

x0

dxDeff(x). (31)

The important contributions to Eqs. (30) and (31) come from different regions. For the velocity
integration, the differences in the central region drive the whole phenomenon. For the diffusion
integration, since most of the path is through a relatively less intense field, and since the results
add in quadrature, the reduction (or even a small increase) in the effective diffusion constant at
high intensity has only a few percent effect on the result compared to simply using the zero-field
value for the duration of the transit.

A second contribution to σ2
z arises from the variations in crossing times. After the time

t1 = (x1 − x0)/vx, the distribution of particles acquires a variance in x given by σ2
x = 2Dt1.

Neglecting a term of order σx/(x1−x0) throughout this argument, the standard deviation in the
crossing times is given by σt =σx/vx. The drift in z acquires a corresponding standard deviation

σ (v)
z = 〈vz,eff〉σt , (32)

where the average is the integral in Eq. (30). These two processes - 1D diffusion and variable
time t0 drift - are independent, so the total variance in x is given by
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σ2
z =

[
σ (D)

z

]2
+
[
σ (v)

z

]2
. (33)

The variance of position in the y direction is given by the diffusion constant times the crossing
time; symbolically,

σ2
y = 2D

x1 − x0

vx
. (34)

If we pick the highest value of D used in this study, namely 2.2× 10−10 m2/s, picking the
parameters from Table 2 yields σy = 43 μm which is small compared to the beam waist.
This justifies the assumption that the diffusion in y may be neglected. Methods of tracking
nanoparticles optically has been reviewed recently [45]. It is possible in principle to observe
veff and Deff directly by optical means.

7. Results

We show optical sorting of aerosol particles by simulating conditions readily implemented
in an actual device. Table 3 gives numerical values for simulated parameters. High-power
frequency-stabilized lasers with wavelength λ0 = 1064 nm are commonly available. A Fabry-
Perot cavity of modest finesse (≈ 1000) and small numerical aperture (≈ 10−3) can be used to
establish a standing wave with intensities great enough to achieve the same magnitude of forces
commonly used in optical tweezers. The larger beam waist of the present approach requires
more power than optical tweezers, but it renders diffusive transport in y irrelevant and makes a
high throughput possible.

Table 3. Parameter values used in simulations

Parameter Symbol Value Units
Optical wavelength λ0 1064 nm
Beam waist radius w0 500 μm
Particle index of refraction np 1.57 -
Air speed v 1 mm/s
Air viscosity η 18.6 μNs/m2

Air temperature T 298 K
Bounds of travel in x x0,x1 ±1.5 mm
Angle between flow and z-axis θ 45 degrees

We assume spherical particles of polystyrene, with a real index of refraction np = 1.57 [46].
There is no optical absorption by the particles and we do not consider interactions between
the particles. The small spatial scale and low flow rate considered ensure laminar flow with
Reynolds number Re ≈ 0.2.

The particles are entrained in the 1 mm/s laminar flow of air at standard temperature and
pressure from a point source. Although an experimental implementation would utilize a finite
diameter particle source instead of a point source, predictions for the former can be estimated
by convolving our results over any size input aperture. In doing so, it should be remembered
that the flux density from an aperture will be concentrated in the center of the aperture with
a parabolic profile because the flow velocity vanishes at the edge of the aperture. The release
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Fig. 7. Mean trajectories for particles with radii of a=40, 50, 60, 70, 80, 90, 100, and 110
nm propagating at a velocity of 1 mm/s through a standing wave with w0 = 500 μm and
I0 = 2 GW/m2. The 1/e2 full width of the fundamental Gaussian mode optical field is
shown in green.

point is x1 =−3w0. The air velocity vector is in the x-z plane and oriented at 45◦ to the optical
axis.

Figure 7 shows mean trajectories, from the Monte Carlo model, for several populations of
particles characterized by radii from 40 nm to 110 nm travelling across an optical field with
I0 = 2 GW/m2. These simulated trajectories reflect what is shown schematically in Fig. 1, with
the dispersion of different particle sizes along the z coordinate in the output plane. The smallest
particles travel in nearly a straight line across the optical field, intersecting the output plane
near z1 = 0. Larger particles are deflected by the optical field and intersect the output plane
at negative values of z1. All particle trajectories have been projected onto the x-z plane in this
figure, but the simulation was fully three-dimensional.

Figure 8 shows, for the same data, spatial distributions of the particle populations in the
output plane. The solid lines are Gaussian fits and provide a reasonably accurate, though not
detailed, description of the distributions. This simulation included 1600 individual particles of
each size. It follows from Fig. 8 that a continuous uniform distribution of particle sizes going
into the sorter will produce a continuous distribution in the output plane. Any given point, or
interval, in the output plane corresponds to a distribution of particle sizes whose mean value is
a function of z. The width of each size distribution is also a function of z and is about 10 nm
(FWHM≈ 2σa) for radii near a = 70 nm.

Table 4 shows a comparison of our two methods for calculating particle trajectories. Here,
we compare the positions and one standard deviation widths of the distributions shown in Fig.
8 (Monte Carlo) with the corresponding values obtained from the effective velocity method.

The widths of the spatial distributions are determined by diffusion during the time the
particles transit the optical field from the point source to the output plane. Although the optical
field suppresses diffusion for some part of that transit time, depending on particle size, this
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Fig. 8. Spatial distributions in the output plane (x = 1.5 mm) for each particle size.

Table 4. Ratios of results from the Monte Carlo model divided by results from the effective
constants of motion model for I0 = 2.0 GW/m2

a/nm z1 σz

40 1.12 1.01
50 1.11 0.98
60 1.05 1.00
70 1.02 1.04
80 1.01 1.04
90 1.01 1.08
100 1.01 1.05
110 1.00 1.03

suppression is not very important in determining distribution widths. Most of the diffusive
expansion of the particle stream occurs immediately after release from the point source because
diffusive expansion is proportional to t1/2. Figure 9 compares the distribution widths in the
output plane for I0 = 0.4 GW/m2 with those obtained when no optical field is present (I0 = 0).
The difference in distribution width at the output is due almost entirely to the difference in
particle size.

We use the effective constants of motion approach to explore particle sorting over a larger
range of particle sizes and a range of optical intensities. First, we look at the mean deflection
z1 of particles in the output plane as the result of interaction with the optical field. Figure 10
gives |z1| as a function of particle radius for a number of values of I0. (All values of z1 are
negative or zero.) In general, the deflection increases like the absolute magnitude of the force
(Fig. 2), though the increase is not linear with either radius or intensity. The radius a = 275 nm
corresponds to the first zero-crossing of the force (Fig. 2). The deflection also vanishes here,
but unlike the force, it does not reverse sign for larger a. The function of the standing wave
in this sorting configuration is simply to provide a barrier to particle movement along z and a
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Fig. 9. Distribution width in the output plane versus particle size with and without an optical
field.
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Fig. 10. Deflection of particles as a function of radius for several values of intensity I0 in
GW/m2. All values of z1 are negative or zero.

reversal in the sign of the force simply corresponds to a change of π in the phase of the fringes,
but the nature of the barrier remains essentially the same. Thus, as a increases toward the zero-
crossing, deflection decreases. It vanishes at the zero-crossing, but then increases again as the
magnitude of the force increases with further increases in a.

The vanishing of the optical force imposed by a standing wave on particles of certain sizes
is known [47], but its potential exploitation for determination of absolute particle sizes has not
been realized. Particles with radii corresponding to the zero-crossings exit the optical field at
the edge of the sorted particle stream with both larger and smaller particles deflected to the left
in Fig. 7. This enables an easy identification of the desired particles because one need only find
the edge of the sorted stream, instead of an absolute position. The radius corresponding to the
zero-crossing is a function only of the wavelength of the optical field and the index of refraction
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of the particle (and the medium when it differs from unity). The wavelength can be adjusted
to nearly any desired value and measured absolutely to any practically useful precision by
common methods. The index of refraction can also be determined by other well-known means,
although not with the same level of precision. Nevertheless, the precision is likely good enough
to obtain particle size values to better than 0.1 % absolute accuracy.

The dispersion of particle sizes along the output plane is the derivative dz1/da of the
deflection. In Fig. 10, one can see ranges of particle radius that are potentially most attractive
for sorting particles by size. The Rayleigh regime is one such region, using relatively large
intensities. Even better are the regions on either side of the zero-crossing (a = 275 nm) where
the deflection is the most sensitive to particle radius. The neighborhood of maximum deflection
(a = 205 nm), on the other hand, is less desirable for sorting. Although the deflection is large,
a wide range of particle sizes end up at the same position in the output plane.

More generally, values of a for which the force has an extremum or a zero-crossing also
correspond to zero dispersion. There are two such values for the range covered in Fig. 10, but
there are many more such values as a increases because the force continues to alternate between
positive and negative values. Although zero-dispersion is generally to be avoided, these points,
particularly the zero-crossing points, offer the possibility of creating bimodal size distributions.
For example, an input distribution covering the range a = 250 nm to a = 300 nm, will result in
bimodal distributions across the output. At z1 = 29 μm, the distribution will have modes with
mean values a= 272 nm and a= 278 nm. Unimodal size distributions, including monodisperse
distributions, can be created by utilizing regions of the deflection curve farther from the extrema
and zero-crossing points.

The sorting resolution depends on, in addition to dispersion dz1/da, the width of the
spatial distributions created by each particle size, the distributions illustrated in Fig. 8. More
specifically, the resolution is the standard deviation σa of the size distribution as a function of
particle radius (as opposed to position) at a given location in the output plane. Resolution has
the units of length. In addition, we define resolving power R as the ratio

R ≡ a
σa

, (35)

where σa and a are the standard deviation and mean of the relevant size distribution. The
resolving power as a function of particle radius for I0 = 0.4 GW/m2 is shown in Fig. 11.
Resolving powers larger than 100 are indicated in regions near the zero-crossing point. There
are much wider ranges of particle size for which the resolving power exceeds 10. In these
regions, resolving powers in excess of 100 can be obtained by combining two sorting stages in
series. A resolving power of 100 is sufficient for many applications. Similar resolving power
has been reported for an array of optical tweezers [16].

We have discussed the deflection and resolving power as though the features in those curves
are fixed with respect to particle size. In fact, high resolving power regions can be shifted rela-
tive to particle size by changing the optical wavelength. This allows for considerable flexibility
in creating and measuring size distributions.

Finally, we consider particle throughput. There are two factors affecting throughput that are
relevant to this specific geometry for sorting particles. One is perturbation of the optical field by
the particles being sorted and another is the maximum flux of particles that can be put through
a point-like source.

We imagine obtaining a standing wave of sufficient intensity inside of a resonant optical
cavity. The power loss from the cavity by scattering from particles must be small compared to
mirror loss so that the power in the cavity is not dependent on the number of particles. Power
loss in an empty cavity is Pc(1− R) where Pc is the circulating power and R is the mirror
reflectivity. Power loss by optical scattering from N particles with scattering cross section σ is
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Fig. 11. Resolving power versus particle radius for I0 = 0.4 GW/m2. In general, the size
distribution is bimodal because two particle sizes, one smaller than the zero-force size
(a ≈ 274 nm) and one larger, will be deflected to the same position. The blue curve is
obtained using only one mode of the distribution. The green curve includes both. The inset
shows the probability that a particle observed at z1 = −29 μm has radius a, assuming a
uniform distribution of input radii.

Ps = INσ . (36)

Assuming a Gaussian mode with beam waist w0 and particles distributed uniformly across the
beam between x =−√

2w0 and x =+
√

2w0,

Ps =
Nσ

2
√

πw2
0

Pc (37)

where we have used erf(2) ≈ 1. Making scattering losses negligible in comparison to mirror
losses, gives the constraint

N � 2
√

πw2
0
1−R

σ
. (38)

Particle throughput Γ is the product of N and the velocity Vc/
√

2 across the optical field divided
by the distance, which we have taken as 2

√
2w0. Thus,

Γ �
√

π
2

w0
1−R

σ
Vc. (39)

Using the values R = 0.999, a = 50 nm giving σ = 1.7× 10−17 m2, Vc = 1× 10−3 m/s, and
w0 = 0.5 mm gives the constraint Γ � 3×107 s−1.

Commercially-available aerosol generators are generally limited to particle densities of 1014

m−3. This limits the flux of particles that can be generated by a source of finite size. Considering
a tube source with cross-sectional radius r = 18 μm and a cross-sectionally averaged flow
velocity of 1 mm/s, the corresponding flux is Γ = 102 s−1. This is not a fundamental limit as
there are a number of changes that can be made to increase this limit. Particle sources, as many
as 100, can be placed in parallel along the length of a cavity, as long as sufficient separation
is maintained. The finesse of the cavity can be increased by an order of magnitude, allowing
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the flow velocity and flux to be increased proportionally. It may also be possible to increase
the particle density, by as much as an order of magnitude, for the short times during which the
particles are being sorted.

A throughput of 104 s−1 was referenced by Ladavac, Kasza, and Grier [16] for sorting of
colloids by an array of optical tweezers, but the work cited [48] did not discuss a throughput
higher than a few colloids per second. Recent efforts on sorting a continuous stream of colloids
have achieved throughputs of tens of particles per second [7, 12, 29, 49, 50, 51]. Schemes
involving arrays of optical tweezers are inherently limited in throughput. Particles being sorted
in a tweezer array are more likely to be found in a trap than between traps [48] and trap volumes
are not large enough to interact with more than 1 or 2 particles simultaneously.

8. Conclusions

The trajectories of aerosol particles in air flowing through an optical field are determined by the
interplay of optical forces, convection, and diffusion. The latter two are produced by random
collisions of the particles with air molecules.

We have derived, from first principles, the optical force on spherical dielectric particle of
arbitrary radius in a standing wave. For a/λ0 → 0, our evaluation of the Maxwell stress tensor
is equivalent to the expression denoted as the gradient force by Harada and Asakura [32, 37].
For larger radii, the force alternates between positive and negative values with decreasing
amplitude, a result that has been observed previously [47].

We have evaluated collisional forces using two distinct approaches, implemented in isolation
from each other, in order to validate our results. The first method integrates the microscopic
equations of motion to determine individual particle trajectories for large populations of
particles. Brownian motion is incorporated with Monte Carlo methods. The second method
solves the macroscopic fluid equations of motion. Computational efficiency is achieved by
averaging velocity and the diffusion coefficient over the fine-scale features of the optical field
before integrating the macroscopic equations of motion. These methods have enabled us to
explore particle trajectories in air flowing through a standing wave Gaussian mode optical field.

We have presented and demonstrated a relatively simple optical scheme capable of sorting
particles with high throughput and high resolution resolving power. This scheme diverges from
the paradigm of high numerical aperture optics based on optical tweezers.

A. Fokker-Planck equation without diffusion

If we neglect diffusion, or equivalently, consider T = 0, we may obtain an analytic result for the
effective velocity of a point particle traversing the interference fringe. If we fix the drift velocity
v0 > 0, there is some sufficiently small value of the optical potential I0 for which the optical
well no longer traps the particle. In this case, the effect of the optical potential is to modify
the average velocity of travel through the potential, but not to bring it to zero. The average is
that of a point particle moving through a complete spatial period Λ. We introduce v(z) to be the
instantaneous speed at position z. The time t1 to cross an interference fringe is given by

t1 =
∫ Λ

0
dz

1
v(z)

= μ−1
∫ Λ

0
dz

[
F0 +F1 sin

(
2πz
Λ

)]−1

= μ−1Λ
(
F2

0 −F2
1

)−1/2
, |F1|< |F0|. (40)

We use Eq. (40) to obtain the effective velocity
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veff ≡ Λ
t1

= μ
(
F2

0 −F2
1

)1/2
= v0

(
1− F2

1

F2
0

)1/2

. (41)

If there is no optical force, i.e., F1 = 0, then v0 = μF0 is recovered. As the optical force F1

increases, the effect is to reduce the average speed. Ultimately, the average speed falls to zero
with a square root singularity as F1 → F0 from below. In this limit, the particle is marginally
trapped. The greatest sensitivity of the effective velocity veff = Λ/t1 on small changes in the
optical force F1 occurs near marginal trapping. Our program reproduces the analytic result of
Eq. (41).

B. Fokker-Planck equation without drift

If we have no drift but have diffusion, and consider the limit of large well depth, Kramers [52]
has given an analytic solution. The transition rate is given by

1
τ
= μM

ωAωC

2π
e−ΔU/kT (42)

where the potential energy surface is given by

U(z)≈ Mω2
A

2
(z− zA)

2 (43)

near the quadratic minimum at z = zA and

U(z)≈ ΔU − Mω2
C

2
(z− zC)

2 (44)

near the quadratic maximum at z = zC. The exact form of the potential surface does not enter
the quoted result.

For this numerical test, we use Stokes’ Law, Eq. (19), and the Rayleigh force law, Eq. (8).
The energy of a particle in a light field is given by the integral of the 1D optical force

U(z) =
4πn2a3I0

c

n2
p −1

n2
p +2

cos

(
2πz
Λ

)
. (45)

From Eq. (45), we may give the energy difference between the top and the bottom of the well
as

ΔU =
8πn2a3I0

c

n2
p −1

n2
p +2

. (46)

Similarly, by a second order Taylor expansion of the cosine

Mω2
A

2
=

Mω2
C

2
=

MωAωC

2
=

8π3n2a3I0
cΛ2

εp − εm

εp +2εm
.
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Fig. 12. The escape rate from the well of a standing wave versus intensity I0. Kramers’
analytic formula valid for small escape rates is shown in blue. The escape rate found
numerically from the effective fluid constant model is in red. The ratio of the two is in
the inset for the same range of intensities.

As a validity check, we compare our solutions to those obtained from Kramers’ formula
for transition rates of a particle over a barrier due to Brownian motion [52]. To make this
comparison, we need to connect the transition rates to the diffusion constant. Derrida [53] gives
the diffusion constant and the effective velocity as

Deff =
Λ2

2
(k(hop)

+ + k(hop)
− ) (47)

and

veff = Λ(k(hop)
+ − k(hop)

− ). (48)

where the dimensional constant Λ is added here. Equation (47) may also be obtained by
comparing at large times the Gauss-Weierstrass solution to the heat equation for the continuous

case to the discrete Poisson distribution arising from hopping. The k(hop)
± are the hopping rates

with (+) and against (−) the convective current. For simplicity, we confine the check to the

case without a convective fluid, i.e., veff = 0 so k(hop)
+ = k(hop)

− . The transition rates found from
the Kramers’ rate equation discussed above and the Fokker-Planck equation are shown in Fig.
12. The numerical solution is seen to approach Kramers’ asymptotic formula for large values
of the trapping, which is a key test of our program.
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