

Adapting the Poisson-Influenced K-Means

Algorithm for a Larger User Base

Brian P. M. Morris

Montgomery Blair High School

Zachary H. Levine, Ph.D.

National Institute of Standards and Technology

Brian Morris

1

Abstract

 A superconducting transition edge sensor (TES) can be a useful tool for counting the

number of photons in a highly attenuated pulse of light, but it requires calibration for its outputs

to be interpretable as photon numbers. The Poisson-Influenced K-Means Algorithm (PIKA) was

created to calibrate a TES given an amount of information fundamentally limited by the nature of

the device. We present a new implementation of PIKA in a Mathematica notebook, with

integrated documentation and explanation, a new system for handling input and output, and

corrections to bugs and errors that were present in the original version. This version of the

algorithm is designed to be more transparent, accessible, and adaptable than its predecessor. The

goal is enhanced ease of use and modification for researchers needing the original functionality

of TES calibration, for those working on related applications, and for those working on unrelated

applications to which the new implementation of PIKA can be adapted.

Brian Morris

2

Introduction and Algorithm Explanation

 Levine et al. [1] introduced the Poisson-Influenced K-Means Algorithm (PIKA), a variant

of the unsupervised machine learning K-means clustering algorithm that uses the knowledge that

cluster sizes should follow a Poisson distribution, as a means of calibrating a certain type of

photon counter. The goal of this project was to adapt the existing implementation of the

algorithm into a Mathematica notebook [5] for more widespread utility in calibration, and for

adaptability to other situations that cluster data based on probability models other than the

Poisson distribution. The notebook created has been accepted for publication in The

Mathematica Journal, with an expected publication date in late 2015 or early 2016 [2].

Transition Edge Sensor Behavior

 A transition edge sensor (TES) is a superconducting few-photon detector capable of

counting the number of photons in a very weak pulse of light. The device is kept just below its

superconducting phase transition temperature, above which it will enter the normal regime and

lose its superconducting properties. Photons incident on the sensor heat it beyond that boundary,

causing its resistance to rise sharply and then gradually fall to superconducting levels as the heat

dissipates. A current is run through the TES, and the change in resistance is captured by the

voltage signal of a superconducting quantum interference device (SQUID) inductively coupled

to the TES circuit.

 Figure 1 shows several groups of TES signal waveforms (each graph shows the set of

signals elicited by an ensemble of laser pulses with an average number of photons per pulse

given by �̅�). For �̅� = 4 one can clearly distinguish the different photon numbers and their

relative frequencies; for higher numbers this is more difficult. Higher photon numbers create

Brian Morris

3

higher signal spikes, but at a certain point the TES saturates in the normal regime and additional

photons change the signal maximum very little.

Fi

 PIKA’s goal is to characterize TES waveforms by photon numbers of the pulses that

cause them. The photon numbers of individual pulses cannot directly be observed; we can only

estimate the average photon number of all of the pulses, based on the nominal laser and

attenuator parameters of the light source. The principal application of this algorithm is the

calibration of TES detectors, but it has also been used for other purposes such as calibrating

variable attenuators [4].

K-Means Clustering and the Poisson Distribution

 Traditional K-means clustering consists of taking some number of data and organizing

them into clusters that minimize their members’ squared distance from the cluster mean.

Essentially this is a minimization of an objective function, the sum over each datum of its

squared deviation from its cluster mean, where deviation is measured by some relevant definition

of distance. We can use a similar approach by considering each signal as a high-dimensional

vector and deviation as Euclidean distance, so the objective function becomes

𝑂𝐾 = ∑ ∑
1

𝑁𝑡
∑[𝑉𝑖(𝑡) − �̅�𝑛(𝑡)]2

𝑡𝑖∈𝐶𝑛

𝑛0+𝐾−1

𝑛=𝑛0

,

𝑁 = 4 𝑁 = 17 𝑁 = 47 𝑁 = 1035

Figure 1: Sets of TES response waveforms elicited by ensembles of pulses with average photon numbers given by �̅�. Image
from [3].

Brian Morris

4

where 𝑉𝑖 is the signal vector for observation 𝑖, �̅�𝑛 is the mean of cluster 𝑛, and 𝑁𝑡 is the number

of time points. One can do better, though, with the knowledge that photon numbers follow a

Poisson distribution. We introduce another term 𝑂𝑃𝐶 = − ln ℒ, where ℒ is the likelihood,

according to the Poisson distribution, of a group of clusters associated with a group of photon

numbers having the particular sizes that a given clustering asserts that they do, given the mean

photon number of the ensemble of pulses. The objective function is now

𝑂𝐾𝑃𝐶 =
1

2𝜎2
𝑂𝐾 + 𝑂𝑃𝐶 ,

where 𝜎 is a constant relating the two terms, which we can estimate from the data because 𝑂𝐾 is

itself the negative log-likelihood of a normal distribution, and 𝐾 is determined by which photon

numbers we expect to see at least once from the Poisson distribution. PIKA minimizes the

objective function by moving waveforms to neighboring clusters. Once the clusters are

optimized, each waveform is assigned an effective photon number by a linear interpolation

between the two closest cluster means.

Initial Clustering and Geometric Interpretation

 PIKA needs an initial clustering upon which to improve. Random cluster assignment is

an option, but a better alternative is to give the observations a rough order by photon number, so

that the initial guess is actually a meaningful estimate. This is done via the dot product method:

each observation is assigned an initial effective photon number

𝑛𝑒𝑓𝑓 = �̅�
�̅� ⋅ 𝑉𝑖

‖�̅�‖2
,

Brian Morris

5

where �̅� is the entire ensemble’s mean, not a cluster mean �̅�𝑛. The initial clusters are sized to fit

each observation and conform to the Poisson distribution, and the observations are placed in the

clusters by order of effective photon number.

 The geometric interpretation of PIKA and the dot product method is a curve and a line,

respectively, evolving through hyperspace, shown in Figure 2. The dot product method projects

each observation onto the mean waveform vector (a line) and then assumes that photon number

scales linearly with distance along the mean vector (which is not actually true but suffices for a

first guess) to convert distance relative to the mean to photon number relative to the mean. PIKA,

in contrast, finds a piecewise linear approximation of a curve that passes through the cluster

means, and projects each observation onto that. Both essentially measure photon number by

progress along a one-dimensional path through high-dimensional space.

Figure 2: The geometric interpretation of PIKA and the dot product method: a line and a curve evolving through high-
dimensional space. Image from [2].

Brian Morris

6

Performance of the Original Implementation

 Several papers [1], [4] have applied the Poisson-Influenced K-Means Algorithm (PIKA)

to real data sets and demonstrated its level of utility. The results and data in this section come

from Ref. [1], in which the algorithm was used to calibrate a transition edge sensor (TES). The

raw data are voltage waveforms from the TES elicited by pulses of photons. PIKA is applied to

the data to cluster the waveforms by photon number.

 Figure 3 shows the optimized cluster means of two PIKA runs (�̅� = 22.6, solid red, and

�̅� = 31.6, dotted blue). Waveforms in the raw data have shapes similar to these optimized

means.

Figure 3: Optimized cluster mean waveforms from two ensembles with different average photon numbers (22.6, solid red, and
31.6, dotted blue). Image from [1].

 The mean waveforms generated appear more or less independent of �̅�. This is consistent

with physical reality, as the shape of an individual waveform should depend only on the photon

number of the pulse that elicited it, not on the average photon number of the ensemble to which

the pulse belongs. PIKA gives roughly the same shape for each particular photon number

regardless of the mean photon number with which it is supplied.

 The effective photon numbers (𝑛) calculated by PIKA follow a Poisson distribution with

a comb-like structure of Gaussians centered on the integers (Figure 4, with �̅� = 2.00).

Brian Morris

7

Figure 4: The effective photon numbers resulting from PIKA follow a Poisson distribution, with Gaussian spread around each
integer effective photon number. This data set has an average photon number of 2.00. Image from Ref. [1].

 As 𝑛 increases, the teeth of the comb become less defined – that is, the peak visibility

(𝑚𝑎𝑥 − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 + 𝑚𝑖𝑛) falls, and with it the photon-resolving capability. Figure 5 shows

the decline in peak visibility for effective photon numbers given by the dot product method (blue

diamonds) and by PIKA (red circles).

Figure 5: Peak visibility, with uncertainty, for effective photon numbers derived from the dot product method (blue diamonds)
and PIKA (red circles). Image from Ref. [1].

 PIKA retains nonzero visibility (i.e. the uncertainty does not include 0) through 𝑛 = 23,

whereas the dot product method alone loses visibility after 𝑛 = 19.

Brian Morris

8

Materials and Methods

 This project was conducted using the Wolfram Mathematica 10 “front end” in order to

create a Mathematica notebook file (.nb) based on several Mathematica kernel files (.m). [5] The

algorithm implementation is based on that described in Ref. [1], and the images in the notebook

come from the public domain and from various researchers associated with the National Institute

of Standards and Technology [1-3].

Transportation to Notebook:

 The existing code had been created in an older version of Mathematica as a collection of

Mathematica kernel files, which I combined into one document and updated to ensure

compatibility with Mathematica 10 and the new integrated arrangement of code. The original

implementation consisted of a main file that executed the algorithm on a given data set and

called functions defined in ancillary files. In moving these files to the notebook, I organized the

function definitions by type, removed unused functions, and further divided the main execution

code into several newly defined functions that sequentially captured the main file’s functionality.

Error Correction:

 There were two types of errors present in the early versions of the notebook file: those

introduced in the transition from kernel files to the notebook, and those that existed in the

original code. In resolving the first kind, the newly introduced errors, I identified and fixed

syntactical and runtime errors by testing whether the code would execute without issue when run

on various data sets, and I corrected logical errors by comparing the results of the updated code

with those of the original code for various data sets. The preexisting errors were more pernicious,

Brian Morris

9

requiring a careful verification that each component of the updated code worked precisely as

intended and that the mathematical reasoning underlying each step of the algorithm was sound

and accurate.

Documentation:

 The documentation given in the notebook file consisted of two varieties: a general

explanation of the algorithm and a description of the functionality of individual elements of the

code. The general explanation drew from and expanded upon the description given in the

original paper [1], and gave more derivations justifying the proper function of the algorithm as

well as additional information on the physical background of the code and its theoretical

significance as a machine learning algorithm. The particular functionality descriptions elaborate

on the documentation of the original implementation and provide explanatory information such

as instructions for running the code with data and a terminology scheme for variable and

function names.

Update of Input and Output Systems:

 While the original implementation had strictly file-based input and output systems, I

created new functions to handle input and output in a self-contained manner in the notebook. In

the new version, the user has the option to give input using an external file or to use form-based

input contained in the notebook document itself. Output is now centralized in a tab-based

organizational object that can be viewed in the notebook or saved as a separate file.

Brian Morris

10

Results

Structure of the Notebook

 The notebook document [2] begins with an

element that executes PIKA (Section 1). Activation

of this element creates an input form that allows

the user to specify options about the execution and

to give a directory containing the raw data upon

which PIKA should be run. This form, when

submitted, runs the algorithm on the given data

with the given options by calling the function

runPIKA, defined in a later section.

 Following the execution element is a

section that describes the overall purpose of and

theory behind the algorithm, as well as its physical

motivation for TES calibration (Section 2). New to

the notebook is a section clarifying the

nomenclature of variables and functions in the

implementation (Section 3).

 This is followed by Section 4, which

outlines a procedural skeleton of the

implementation, including a definition for

runPIKA, the primary runner function for the

algorithm (Figure 6). The function consists of three
Figure 6: The definition for the runPIKA function.

Brian Morris

11

nested loops, the outermost iterating over a list of mean photon numbers to test for the data, the

middle iterating a preset number of times to optimize the clustering, and the innermost iterating

over each waveform in the data set and deciding whether to move it to an adjacent cluster. On

each level, runPIKA calls functions defined in the next section. This organizational scheme is

new to the notebook: in the prior version, neither runPIKA nor the functions it calls were defined,

and the implementations of those sub-functions comprised the main, three-layer body of the

algorithm.

 Section 5 defines the functions called by runPIKA in the order in which they are called,

and Sections 6 and 7 define functions called by those functions. Section 6 focuses specifically on

the formulas that efficiently compute the change in the objective function caused by a transfer of

a waveform from one cluster to another, giving derivations to justify their validity in addition to

defining functions for them. These formulas avoid the computationally expensive recalculation

of the objective function from scratch that a naïve implementation of the algorithm would use.

Section 8 contains general-purpose functions organized by type, including functions that handle

form-based input and tabular graphical output, both of which are new to the notebook.

Correction of an Objective Function Update Formula

 In the original paper, one of the formulas to update the K-means component of the

objective function was incorrect (Equation (A4) in Ref. [1]). The notebook corrects the formula

and gives a new derivation ensuring its validity, explained below.

 We can decompose the K-means term of the objective function as

𝑂𝐾 = ∑ 𝐽𝑛

𝑛0+𝐾−1

𝑛=𝑛0

,

Brian Morris

12

where

𝐽𝑛 = ∑
1

𝑁𝑡
∑[𝑉𝑖(𝑡) − �̅�𝑛(𝑡)]2

𝑡𝑖∈𝐶𝑛

.

𝑁𝑡 is the number of time points, 𝑉𝑖(𝑡) is the waveform 𝑖 evaluated at time 𝑡, and �̅�𝑛(𝑡) is the

mean waveform of cluster 𝐶𝑛 (associated with photon number 𝑛) evaluated at time 𝑡. If we

transfer a waveform 𝑗 from the cluster 𝐶𝑏 to the cluster 𝐶𝑎, the new clusters formed are 𝐶𝑎
+ =

𝐶𝑎 ∪ {𝑗} and 𝐶𝑏
− = 𝐶𝑏 − {𝑗}. In addition, we can prove that

𝐽𝑎
+ = 𝐽𝑎 + (

𝑚𝑎

𝑚𝑎 + 1
)

1

𝑁𝑡
∑[𝑉𝑗(𝑡) − �̅�𝑎(𝑡)]

2

𝑡

and

𝐽𝑏
− = 𝐽𝑏 − (

𝑚𝑏

𝑚𝑏 − 1
)

1

𝑁𝑡
∑[𝑉𝑗(𝑡) − �̅�𝑏(𝑡)]

2

𝑡

,

where 𝑚𝑛 is the size of cluster 𝐶𝑛 before the transfer. These formulas allow us to compute the

change in the K-means component of the objective function without recalculating it in an

inefficient manner.

 The proof of these formulas requires two lemmas. Throughout the proof, we will treat the

signal waveforms as vectors, so that 𝑉𝑖(𝑡) is understood to be the 𝑡th component of the vector 𝑽𝑖,

and likewise with the mean waveforms �̅�𝑛.

Lemma 1:

𝐽𝑛 = ∑
|𝑽𝑖 − �̅�𝑛|2

𝑁𝑡
𝑖∈𝐶𝑛

= ∑
|𝑽𝑖 − 𝑽𝑗|

2

2𝑚𝑛𝑁𝑡
𝑖,𝑗∈𝐶𝑛

Proof:

Brian Morris

13

 The first expression for 𝐽𝑛 is true by definition; now we show that the second is

equivalent.

∑
|𝑽𝑖 − 𝑽𝑗|

2

2𝑚𝑛𝑁𝑡
𝑖,𝑗∈𝐶𝑛

=
1

2𝑚𝑛𝑁𝑡
[𝑚𝑛 ∑ |𝑽𝑖|2

𝑖∈𝐶𝑛

− ∑ 2 𝑽𝑖 ⋅ 𝑽𝑗

𝑖,𝑗∈𝐶𝑛

+ 𝑚𝑛 ∑ |𝑽𝑗|
2

𝑗∈𝐶𝑛

]

=
1

𝑁𝑡
∑(|𝑽𝑖|2 − 𝑽𝑖 ⋅ �̅�𝑛)

𝑖∈𝐶𝑛

=
1

𝑁𝑡
∑ 𝑽𝑖 ⋅ (𝑽𝑖 − �̅�𝑛)

𝑖∈𝐶𝑛

=
1

𝑁𝑡
∑(𝑽𝑖 − �̅�𝑛) ⋅ (𝑽𝑖 − �̅�𝑛)

𝑖∈𝐶𝑛

,

which is equivalent to the first expression. The final step is valid because ∑ (𝑽𝑖 − �̅�𝑛)𝑖∈𝐶𝑛
= 0.

∎

Lemma 2:

|𝑽𝑘 − �̅�𝑛|2 +
𝑁𝑡 𝐽𝑛

𝑚𝑛
= |𝑽𝑘|2 − 2 𝑽𝑘 ⋅ �̅�𝑛 +

1

𝑚𝑛
∑ |𝑽𝑖|2

𝑖∈𝐶𝑛

Proof:

|𝑽𝑘 − �̅�𝑛|2 = |𝑽𝑘|2 − 2 𝑽𝑘 ⋅ �̅�𝑛 +
1

𝑚𝑛
2

∑ 𝑽𝑖 ⋅ 𝑽𝑗

𝑖,𝑗∈𝐶𝑛

.

From the proof of the previous lemma,

𝐽𝑛 =
1

𝑁𝑡

(∑|𝑽𝑖|2

𝑖∈𝐶𝑛

−
1

𝑚𝑛
∑ 𝑽𝑖 ⋅ 𝑽𝑗

𝑖,𝑗∈𝐶𝑛

),

so,

Brian Morris

14

1

𝑚𝑛
∑ 𝑽𝑖 ⋅ 𝑽𝑗

𝑖,𝑗∈𝐶𝑛

= ∑ |𝑽𝑖|
2

𝑖∈𝐶𝑛

− 𝐽𝑛𝑁𝑡.

Thus,

|𝑽𝑘 − �̅�𝑛|2 = |𝑽𝑘|2 − 2 𝑽𝑘 ⋅ �̅�𝑛 +
1

𝑚𝑛

(∑ |𝑽𝑖|2

𝑖∈𝐶𝑛

− 𝑁𝑡 𝐽𝑛)

and the lemma follows.

∎

Theorem 1:

 Suppose we add or remove a waveform 𝑽𝑝 to or from a cluster 𝐶𝑛, forming a cluster 𝐶𝑛
′ .

Then,

𝐽𝑛
′ = 𝐽𝑛 ± (

𝑚𝑛

𝑚𝑛
′

)
|𝑽𝑝 − �̅�𝑛|

2

𝑁𝑡
,

where 𝑚𝑛
′ = 𝑚𝑛 ± 1 is the size of the newly formed cluster.

Proof:

 From Lemma 1,

𝐽𝑛
′ = ∑

|𝑽𝑖 − 𝑽𝑗|
2

2𝑚𝑛
′ 𝑁𝑡

𝑖,𝑗∈𝐶𝑛
′

.

(Note the summation over 𝐶𝑛
′ , not 𝐶𝑛.) Since 𝑽𝑝 is the waveform to add to or remove from 𝐶𝑛,

we can write

Brian Morris

15

𝐽𝑛
′ =

1

2𝑚𝑛𝑁𝑡

(∑ |𝑽𝑖 − 𝑽𝑗|
2

𝑖,𝑗∈𝐶𝑛

± ∑ |𝑽𝑝 − 𝑽𝑗|
2

𝑗∈𝐶𝑛

± ∑ |𝑽𝒊 − 𝑽𝑝|
2

𝑖∈𝐶𝑛

± |𝑽𝑝 − 𝑽𝑝|
2
)

=
𝑚𝑛

𝑚𝑛
′

𝐽𝑛 ±
1

𝑚𝑛
′ 𝑁𝑡

∑ |𝑽𝑝 − 𝑽𝑗|
2

𝑗∈𝐶𝑛

=
𝑚𝑛

𝑚𝑛
′

𝐽𝑛 ±
𝑚𝑛

𝑚𝑛
′ 𝑁𝑡

(|𝑽𝑝|
2

− 2 𝑽𝑝 ⋅ �̅�𝑛 +
1

𝑚𝑛
∑ |𝑽𝑗|

2

𝑗∈𝐶𝑛

).

From Lemma 2,

𝐽𝑛
′ =

𝑚𝑛

𝑚𝑛
′

𝐽𝑛 ±
𝑚𝑛

𝑚𝑛
′ 𝑁𝑡

(|𝑽𝑝 − �̅�𝑛|
2

+
𝑁𝑡 𝐽𝑛

𝑚𝑛
)

= (
𝑚𝑛

𝑚𝑛
′

±
1

𝑚𝑛
′

) 𝐽𝑛 ± (
𝑚𝑛

𝑚𝑛
′

)
|𝑽𝑝 − �̅�𝑛|

2

𝑁𝑡
,

and the theorem follows.

∎

Equation (A4) in Ref. [1] erroneously asserted that the formula for removal of a waveform from

a cluster was 𝐽𝑏
− = 𝐽𝑏 − (

𝑚𝑏−1

𝑚𝑏
)

1

𝑁𝑡
∑ [𝑉𝑗(𝑡) − �̅�𝑏(𝑡)]

2

𝑡 instead of 𝐽𝑏
− = 𝐽𝑏 − (

𝑚𝑏

𝑚𝑏−1
)

1

𝑁𝑡
∑ [𝑉𝑗(𝑡) −𝑡

�̅�𝑏(𝑡)]
2
.

Discussion

 The notebook document [2] was designed to improve the original Poisson-Influenced K-

Means Algorithm (PIKA) implementation in terms of accessibility, adaptability, and

transparency, with the goal being to streamline the end-user experience for scientific researchers

and metrology labs using and modifying the algorithm for their own purposes. We foresaw two

Brian Morris

16

primary categories of uses for the notebook. The first included transition edge sensor (TES)

calibration and similar applications [1], [4], for which ease of use would be essential. The second

included applications to scenarios governed by probability distributions other than the Poisson

distribution and scenarios without a metric for ordering signal waveforms (the effective photon

number of a waveform supplies such a metric in TES calibration), for which ease of modification

would also be important.

Motivation for Transition from the Original Implementation

 PIKA was originally implemented [1] as a Mathematica kernel package, as opposed to a

Mathematica notebook, consisting of a main execution file that called functions defined in

separate, ancillary files. Input and output were strictly file-based: a separate user-defined input

file would set constants and options and give a directory containing the data to process, and

graphical and numerical outputs as well as the log file would be saved to the directory containing

the input file. The code and documentation were separated from the overarching algorithm

description (found in the original paper. The objective of the transition to the notebook was to

give a more cohesive presentation of the implementation’s functionality in order to expedite the

end-user’s comprehension.

Advantages of the New Version

 The notebook is a single multi-sectioned document that integrates functional

implementation, specific documentation, and general explanation. The documentation is more

extensive than in the original version, with inline comments supplemented by explanatory

paragraphs in a contrasting text style to facilitate visual differentiation between code and

Brian Morris

17

documentation. The lengthy main execution file from the original implementation has been split

into isolated, individually digestible pieces that make clear the nested-loop structure of the

algorithm, its overall functionality, and the contributions of particular sections. Unused functions

have been removed and obsolete and unclear names, for example variable names whose meaning

drifted during the development of the algorithm, have been changed. Mathematica allows for

cosmetic formatting of certain elements of active code (such as, for instance, using a full-size

fraction bar in place of a slash for the division function), which we have adopted in the notebook

as appropriate to visually clarify the scope and nature of the operators used.

 The input/output system is almost entirely new to the notebook. The notebook retains the

option to use a separate, static file for user-defined options and constants, but by default, input is

handled through an interactive form contained in the document itself. Output is now centralized

in an interactive tab-based object (Figure 7) containing graphical, textual, and numerical output,

organized and labeled by the type of output and the number of the run from which it came. The

new systems for input and output make the new implementation far more self-contained than the

old, although both systems allow one to work instead with separate files.

Brian Morris

18

Figure 7: The interactive object that centralized output in the notebook. Graphs of initial and final cluster mean waveforms are
shown here.

 Finally, the notebook makes some efficiency improvements over the original

implementation, especially with the system for reading data, and corrects some bugs and errors

present in the original version. A particularly important correction was to the error in one of the

efficient objective function update formulas mentioned in the previous section. The error was not

of great practical importance, since the quantity erroneously reciprocated was very close to unity

Brian Morris

19

and so the change was negligible, but the correction puts the algorithm on a more firm theoretical

basis. In addition, the notebook supplies more rigorous justifications for the update formulas.

Conclusion

 We have presented a new implementation of the successful and useful Poisson-

Influenced K-Means Algorithm, intended for easier use and adaptation by other researchers. We

anticipate its utility not only for its original purpose in transition edge sensor calibration and

related applications, but also for other applications involving non-Poisson statistics or signals

without a natural ordering.

References

[1] Z. Levine et al., “Algorithm for finding clusters with a known distribution and its

application to photon-number resolution using a superconducting transition-edge sensor,”

J. Opt. Soc. Am. B 29, 2066-2073 (2012).

[2] B. Morris and Z. Levine, “The Poisson-Influenced K-Means Algorithm, a Maximum-

Likelihood Procedure for Clusters with a Known Probability Distribution” The

Mathematica Journal, accepted.

[3] T. Gerrits et al., “Extending single-photon optimized superconducting transition edge

sensors beyond the single-photon counting regime,” Opt. Express 20, 23798-23810

(2012).

[4] Z. Levine et al., “Absolute calibration of a variable attenuator using few-photon pulses,”

Opt. Express 23, 16372-16382 (2015).

[5] Mention of commercial products does not imply endorsement by the authors’ institutions.

