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An analytical comparison between the fundamental mode and higher modes of vibration for an

electrostatic beam resonator is presented. Multiple mode numbers can be matched to a desired

resonance frequency through appropriate scaling. Therefore, it is important to determine which mode

yields the best performance. A dynamic model of the resonator is derived and then used to determine

the motional resistance for each mode. The resulting equation provides the basis for comparing

performance between modes using motional resistance and quality factor. As a demonstration of the

approach, a quality factor model that has been previously validated experimentally is introduced.

Numerical results for silicon resonators indicate that the fundamental mode can provide a lower

motional resistance and higher quality factor when the resonators under comparison have the same

aspect ratio or the same stiffness. [http://dx.doi.org/10.1063/1.4971249]

I. INTRODUCTION

Microelectromechanical (MEMS) resonators have

received considerable attention over the last decade for appli-

cations in wireless communications,1 timing and frequency

control,2,3 and biochemical sensing,4 among others. In many

of these applications, there is strong interest in increasing the

resonance frequencies that can be attained in order to extend

capabilities (e.g., resonators operating in the GHz range will

result in more efficient sharing of the wireless communica-

tions spectrum) or to improve sensitivity (e.g., chemical mass

sensing resolution improves with increasing frequency).

Different modes of vibration, such as flexural, contour, thick-

ness, and shear modes, achieve different frequency ranges.

Additionally, resonance frequencies are proportional to the

acoustic velocity of the materials used. As a result, the mode

of vibration and materials used must be selected carefully to

match with the frequency requirements for a given applica-

tion. For a resonator design operating with a specific mode of

vibration and optimized materials, there are two ways to fur-

ther increase its operating frequency: (1) scale down its

dimensions since resonance frequencies are proportional to 1/

S, where S is the scaling factor, or (2) use a higher vibrational

mode number rather than operating at the fundamental reso-

nance frequency. Both of these approaches often result in

weaker transduction and reduced quality factors. Therefore,

selection between the two approaches is not obvious and

detailed modeling is required to determine which approach

yields the optimal MEMS resonator design.

This paper investigates the above problem for one class

of MEMS resonators: the electrostatic beam resonator. This

was one of the first types of MEMS resonators to be devel-

oped5 and has been studied widely at the microscale6–8 and

nanoscale.9,10 The electrostatic beam resonator is composed

of a constrained beam (e.g., clamped-clamped, clamped-free,

free-free), an electrode for applying an electrostatic force to

excite vibrations in the beam, and an electrode for capacitive

measurement of the displacement of the vibrating beam. In

order to achieve a desired resonance frequency, the beam

dimensions can be scaled so that either the fundamental reso-

nance frequency or a higher mode number matches the

desired frequency, where the former resonator is smaller than

the latter. Examples of both approaches include nanoelectro-

mechanical resonators9,10 and higher mode free-free beam

resonators,11 respectively. The primary question explored in

this paper is how does one determine which of these two

approaches yields the resonator with the best performance.

Two of the most important performance metrics for resona-

tors are used to answer this question: motional resistance and

quality factor. The motional resistance is a measure of the

amplitude of the output current for a given input voltage,

while the quality factor determines the resonator’s frequency

selectivity. It is shown that by applying these metrics, one can

select the best approach based on the frequency range of

interest and the dimensional constraints due to fabrication.

In Section II, an analytical model of the dynamics of a

prototypical electrostatic beam resonator is derived. This

model is then used to derive the motional impedance, and

subsequently the motional resistance, for any flexural mode

and electrode length relative to the beam length. A frame-

work for comparing modes using ratios of motional resis-

tance and quality factor between modes is then presented. In

particular, the motional resistance ratio is discussed with

respect to different scaling laws between the fundamental

and higher modes. In order to demonstrate the proposed

comparison method, a model for quality factor in beam reso-

nators that has been previously experimentally validated is

then introduced for the same scaling conditions. Numerical

results for silicon electrostatic resonators are presented to

demonstrate how geometric scaling can affect mode selec-

tion between the fundamental and higher modes.a)E-mail: gorman@nist.gov
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II. RESONATOR DYNAMIC MODEL

The electrostatic beam resonator considered here, as

shown in Fig. 1, is similar to those investigated in Refs. 6

and 8–10. The resonator has a single clamped-clamped flex-

ural beam and a pair of electrodes, one to excite vibrations

using electrostatic force and the other to measure the beam

vibrations through capacitive sensing. As shown in Fig. 1(b),

a radio frequency (RF) input voltage, VAC, excites the reso-

nator and an output current, io, results due to the motion of

the beam and the DC bias voltage, Vb, applied to the beam.

In this section, a dynamic model that describes the relation-

ship between VAC and io is derived. This model is then linear-

ized, and the voltage-current relationship is presented for a

single mode of the resonator, thereby providing an equation

for determining the motional resistance.

Several dynamic models have been presented for the

resonator shown in Fig. 1.8,9,12 The total dynamic response

of the resonator is described by the equations of motion for

the vibrating beam and an equation relating beam vibrations

to the output current. First, the Euler-Bernoulli beam equa-

tion with electrostatic forces is defined as9

qbh
@2w

@t2
þ EI

@4w

@x4
¼ e0hcf fe xð ÞV2

2 g� wð Þ2
� e0hcf fe xð ÞV2

b

2 gþ wð Þ2
; (1)

where q is the material density, E is the Young’s modulus, I
is the area moment of inertia, w is the deflection of the beam

as a function of the position, x, on the beam, b is the beam

width, and h is the beam thickness. The right side of Eq. (1)

describes the electrostatic forces, where g is the nominal gap

between the beam and electrodes, V is the summation of the

bias voltage, Vb, and the RF voltage, VAC, e0 is the vacuum

permittivity, and cf is a fringing field correction factor.9 The

length of the electrodes, Le, is introduced through fe(x),

which is defined as

fe xð Þ ¼

0 for x <
L� Le

2

1 for
L� Le

2
� x � Lþ Le

2

0 for x >
Lþ Le

2
:

8>>>>>><
>>>>>>:

(2)

Unlike previous models,8,9,12 axial force due to residual

stress and the nonlinearity due to mid-plane stretching are

not included here. Residual stress will have minimal effect

on mode selection because for a given material, it shifts the

resonance frequency and quality factor for all mode num-

bers in the same direction. Additionally, the residual stress

is low in most single crystal resonators, which are most

commonly used. Regarding the omission of the nonlinear

terms, the motional impedance is ill defined for nonlinear

resonators, so the focus here is on the small amplitude linear

response.

The charge measured at the output electrode, qo, can be

expressed as

q0 ¼ Vb

ðL

0

C dx ¼ Vb

ðL

0

e0cf hfe xð Þ
gþ w

dx; (3)

where C is the capacitance per unit length. Noting that

i0 ¼ _q0, the output current is expressed as

i0 ¼ �e0hcf Vb

ðL

0

fe xð Þ
gþ wð Þ2

_w dx: (4)

Equations (1) and (4) describe the nonlinear relationship

between the input voltage, V, and the output current, io. In

order to derive the motional impedance, we must linearize

these dynamic equations.

Equations (1) and (4) can be linearized about the equi-

librium position, w0, for a given value of Vb. Looking at Eq.

(1), it can be shown that when an arbitrary bias voltage, Vb,

is applied to the resonator and VAC¼ 0, there is no displace-

ment due to balanced electrostatic forces from the two elec-

trodes. Therefore, the equilibrium position is w0¼ 0.

Equation (3) can then be linearized about this equilibrium

point using a Taylor series expansion to first order, where the

linearized system can be written as

qbh
@2w

@t2
þ EI

@4w

@x4
¼ 2e0hcf fe xð ÞV2

b

g3
w� e0hcf fe xð ÞVb

g2
VAC:

(5)

The first term on the right-hand side of Eq. (5) represents

the linearized electrostatic stiffness, which can be disre-

garded within the context of this analysis since its influ-

ence on the resonance frequencies, and therefore the

motional impedance, is negligible. Hence, Eq. (5) can be

simplified as

qbh
@2w

@t2
þ EI

@4w

@x4
¼ � e0hcf fe xð ÞVb

g2
VAC: (6)

The output current equation, Eq. (4), can be linearized

by substituting in w ¼ 0 such that

FIG. 1. Schematics of the electrostatic beam resonator: (a) solid model and

(b) electromechanical diagram, where L, b, and h are the length, width, and

thickness of the beam, Le is the electrode length, g is the nominal gap

between the beam and electrodes, VAC is the RF input voltage, Vb is the bias

voltage, and io is the output current.
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i0 ¼ �
e0hcf Vb

g2

ðL

0

fe xð Þ _w dx: (7)

The exact solution for the beam deflection is

w ¼
X1
i¼1

WiðxÞgi; (8)

where Wi(x) is the mode shape of the ith mode and gi is the

modal coordinate for the ith mode. The relationship between

VAC and io can be defined for each mode of the resonator by

applying the exact solution for a single mode to Eq. (6)13

and inserting the result into Eq. (7). Therefore, Eq. (8) can

be reduced to w ¼ WiðxÞgi. Applying the solution to Eq. (6),

the equation of motion in modal coordinates is13

€gi þ
xi

Qi
_gi þ x2

i gi ¼
�e0cf VbVAC

qbcg2

ðL

0

fe xð ÞWi xð Þdx; (9)

where c ¼
Ð L

0
W2

i ðxÞdx and is used to normalize the mode

shape. The resonance frequency of the ith mode, xi, is

defined as

xi ¼ p2�b
2

i

ffiffiffiffiffiffiffiffi
E

12q

s
b

L2
; (10)

with coefficients �bi¼ 1.506, 2.5, 3.5, 4.5, 5.5… for i¼ 1, 2,

3, 4, 5,… A viscous damping term has been introduced in

Eq. (9) to model energy dissipation in the beam, where Qi is

the quality factor of the ith mode. The mode shapes are

WiðxÞ ¼ sinhbix� sin bixþ aicoshbix� ai cos bix; (11)

where

ai ¼
sinhbiL� sin biL

cos biL� coshbiL
; (12)

and b1L¼ 4.73, b3L¼ 11.00, and b5L¼ 17.28.

Applying the modal solution to Eq. (7) yields

i0 ¼ �
e0hcf Vb

g2

ðL

0

fe xð ÞWi xð Þdx _gi: (13)

Since the vibration modes are known to be well sepa-

rated, the dynamic response of the resonator to an excitation

frequency at a single resonance frequency can be accurately

described by the equation of motion for only that mode.

Therefore, the relationship between VAC and io can be found

by taking the Laplace transform of Eqs. (9) and (13) and

combining the results such that

io sð Þ
VAC sð Þ

¼
e2

0hLc2
f V2

bHi

qbg4

s

s2 þ xi

Qi
sþ x2

i

; (14)

where

Hi ¼
1

Lc

ðL

0

fe xð ÞWi xð Þdx

( )2

; (15)

and s is the Laplace operator. Equation (14) yields the

motional impedance for all of the resonator’s modes, as

described in Section III.

III. MOTIONAL IMPEDANCE ANALYSIS

The motional impedance for the ith mode, Zmi, where

Zmi¼VAC/ioi, is found by transforming Eq. (14) into the fre-

quency domain such that

Zmi jxð Þ ¼
qbg4 x2

i � x2 þ j
xi

Qi
x

� �
je2

0hLc2
f V2

bHix
: (16)

Equation (16) provides the impedance for a single mode as

a function of frequency. In most cases, the impedance on res-

onance, or motional resistance, Rmi, is the real metric of

interest. Evaluating Eq. (16) at resonance and taking the

magnitude results in

Rmi ¼
qbg4xi

e2
0hLc2

f V2
bQiHi

: (17)

This expression for motional resistance is similar to that

shown in Refs. 14–16 but has the added benefit of including

all mode numbers and possible electrode lengths. All of the

terms in Eq. (17) are known material or geometric parame-

ters with the exception of Hi and Qi. As shown by Eq. (15),

Hi, or the H parameter, is a function of the mode shape for

the ith mode and the electrode length. Equation (15) can be

solved analytically and evaluated over the full range of the

electrode length. Values of Hi for the first three odd modes

as a function of electrode length are shown in Fig. 2. Even

modes are not presented because they are not transduced

effectively with a symmetric electrode. Since Eq. (15) is

nondimensional, the values in Fig. 2 apply to resonators of

any size, making it easy to calculate the motional impedance

assuming Qi is known.

The results in Fig. 2 show that the peaks in Hi are

located at the nodes for the respective mode and that the

maximum value of Hi occurs when the electrode length is

equal to the beam length for all modes. When comparing the

maxima for the presented modes, H1 is approximately 5.22

and 12.88 times greater than H3 and H5, respectively.

Looking at the values for the third and fifth modes, an elec-

trode greater than 87% and 92% of the beam length, respec-

tively, will provide the best transduction of these modes. In

practice, it is impossible to have an electrode with the same

length as the beam due to proximity with the beam anchors,

as shown in Fig. 1. Therefore, the optimal value is some-

where between 100% and the above stated values.

Minimizing the motional resistance becomes increasingly

difficult as the mode number increases because the peak

value goes down and the width of the maximum peak near

Le¼ 100% gets smaller. Having derived Eq. (17), Section IV

will focus on comparing the motional resistance and quality

factor for different mode numbers operating at the same nat-

ural frequency.
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IV. MODE SELECTION

The electrostatic beam resonator can operate at its fun-

damental resonance frequency or in a higher mode of vibra-

tion. Therefore, two different resonators can be designed to

have the same resonance frequency while operating in differ-

ent modes. In this section, we start by looking at how the

motional resistance derived in Section III can be used to

determine the best mode number to select for a desired oper-

ating frequency. In order to compare the relative perfor-

mance of two resonators, devices A and B, the ratio of the

motional resistances of the two resonators will be examined.

In this analysis, device A operates in its fundamental mode

and device B operates in an odd higher mode. The motional

resistance ratio between devices B and A, RB/A, can be found

using Eq. (17) and is written as

RB=A ¼
gB

gA

� �4 VbA

VbB

� �2 bB

bA

hALAHAQA

hBLBHBQB
: (18)

The subscripts, A or B, indicate the device for each

parameter.

There are three important assumptions related to practi-

cal constraints on the resonator design and fabrication that

will simplify the analysis of RB/A. First, it is assumed that

there is a maximum aspect ratio of beam width to thickness

such that b� h/d, where d is set by the etch process for the

device layer, and devices A and B have the same d. For

example, d is between 25 and 40 for deep reactive ion etch-

ing depending on the tool and process. Second, it is assumed

that gA¼ gB. It is possible to fabricate small gaps without

constraints on the beam thickness by using a trench refill

approach6 or a mechanism for reducing the gap during oper-

ation.17 Therefore, we assume that these advanced

approaches would be used when pushing the performance

limits. Finally, the bias voltage, Vb, is assumed to be the

same for devices A and B. The break down voltage of a vac-

uum gap, which is typically around 300 V for silicon,18 is

much higher than the bias voltage range used in most appli-

cations. Furthermore, the electrostatic force due to Vb is bal-

anced such that pull-in can only occur due to a combination

of a large VAC and Vb.

Noting these assumptions, from Eq. (18), the ratio of the

motional resistance ratio can be reduced to

RB=A ¼ XA=BQA=B; (19)

where XA=B ¼ LAHA=LBHB and QA=B ¼ QA=QB. In order to

determine which resonator has the lower motional resistance,

quality factors must be known, either through experiments or

modeling. Before including quality factor values in this anal-

ysis, it is useful to look at the parameter XA/B. In order to pro-

vide fair and reasonable comparisons between modes, three

specific scaling conditions relating Devices A and B are

described here and used in the following analysis.

Case 1 assumes the same beam width for devices A and

B, bA ¼ bB. Using this relationship, the following can be

obtained from Eq. (10):

XA=B ¼
�bA

�bB

HA

HB
: (20)

Case 2 constrains the resonators to have the same bend-

ing stiffness such that

FIG. 2. Hi as a function of electrode length for modes (a) one, (b) three, and

(c) five. Respective mode shapes (half of the beam) relative to the electrode

length are included to show their influence on the parameter.
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XA=B ¼
�bA

�bB

 !8=5

HA

HB
: (21)

This is derived from the static stiffness of a doubly clamped

beam defined at the center of the beam and the requirement

that devices A and B have the same resonance frequency.

Finally, case 3 requires devices A and B to have the

same aspect ratio of length to width. A fixed aspect ratio will

significantly reduce the difference in compliance between

the fundamental mode and higher mode resonators, making

it a reasonable design choice. Applying a fixed aspect ratio

to Eq. (10), where the natural frequency for devices A and B
is the same, results in

XA=B ¼
�bA

�bB

 !2

HA

HB
: (22)

Note that Eqs. (20)–(22) are the same except for the expo-

nent on �bA=
�bB, where the exponent is defined by the scaling

law and ranges from 1 to 2 for the three cases. These three

cases span a wide range of the design space when scaling

between resonators

The analysis of Eqs. (20)–(22) shows that XA/B is small-

est when Le¼L as long as Le> 0.34 L for X1/3 and Le> 0.26

L for X1/5. Since there is no practical reason to choose an

electrode length shorter than 0.34 L, comparing the resona-

tors with Le¼L will provide the best case scenario for higher

mode resonators. For Le¼L, it was found that X1/3¼ 2.25

and X1/5¼ 3.53 for case 1, X1/3¼ 1.35 and X1/5¼ 1.62 for

case 2, and X1/3¼ 0.97 and X1/5¼ 0.97 for case 3. Therefore,

in general, if QA/B� 1, then RB/A� 1. This means that if it

can be determined that QA/B� 1, then the fundamental mode

resonator would be the optimal choice in terms of motional

resistance and quality factor. Only the first three odd modes

are considered in this analysis for brevity but higher modes

could be investigated without any changes in approach.

The optimal mode number is the one with the lowest

motional resistance, Rmi, and highest quality factor, Qi,

although it may not always be that simple, as discussed below.

Equation (19) and the quality factor ratio, QA=B, can be used

to determine the optimal mode number. Clearly, if RB/A< 1

and QA/B< 1, then the device B is the better resonator and

vice versa. In order to push the analysis further, models for

quality factor that have previously been experimentally vali-

dated are now introduced. The two dominant sources of

energy dissipation for vacuum packaged electrostatic beam

resonators are thermoelastic dissipation19,20 and anchor loss.21

Surface dissipation can also play a role in the quality factor,

particularly for nanoscale resonators.22,23 However, it has

been shown that surface dissipation can largely be mitigated

in microscale resonators through surface treatment.21 Another

possible source of energy dissipation is pressure damping due

to molecular interactions with the resonator. However, it has

been shown that for vacuum packaged beam resonators oper-

ating at or below 1 Pa, which is now easily attainable in her-

metic packaging, pressure damping is negligible.24 As a

result, surface dissipation and pressure damping are ignored

in this analysis.

The quality factor due to thermoelastic dissipation25 can

be modeled as

QTED ¼
cpq

Ea2T0

� �
1þ xsð Þ2

xs
; (23)

where

s ¼ b

p

� �2
cpq
j
; (24)

and cp is the specific heat, j is the thermal conductivity, a is

the coefficient of thermal expansion, and T0 is the equilib-

rium temperature of the beam. QTED can be calculated at any

angular frequency, x, and the above model is used for all

modes, although with limitations in accuracy for the higher

modes. This model has been shown to be reasonably accurate

in predicting the quality factor when x� s,25–27 which is

when thermoelastic dissipation is typically much larger than

anchor loss. Outside of this range, the combination of ther-

moelastic dissipation and anchor loss must be considered.

The quality factor due to anchor loss21 for a clamped-

clamped beam can be modeled as

Qa ¼ u
2:43

3� tð Þ 1þ tð Þ þ
1:91Q� �

1

�bivi

� �2

L

b

� �3

; (25)

where t is the Poisson’s ratio and
Q

and vi are defined in

Ref. 21. A correction factor, u, where u¼ 0.263, was added

to the original equation21 because it was found that there is a

consistent multiplicative error of 0.263 between the calcula-

tions and the values reported in Ref. 21 for a doubly clamped

beam. The effective quality factor is then defined as

Qtot ¼ QTEDQa=ðQTED þ QaÞ. Note that Qtot is a function of

the beam length and width, but not the beam thickness and

gap size. Equations (23)–(25) have been shown experimen-

tally to be reasonably accurate for beam resonators operating

at 1 MHz and below.21,28 For example, the error range and

mean error for this model have been shown to be þ2.9% to

þ80% and 32.2% for atomic force microscopy (AFM) canti-

levers28 and �17.2% to 6.5% and 7.0% for electrostatic

beam resonators,21 respectively. A positive error indicates an

overestimate of the quality factor. While the error range is

large, particularly for the AFM cantilevers, the model still

provides sufficient fidelity for this comparison, as will be dis-

cussed in detail later.

Quality factor has been calculated using the above

model for silicon resonators since silicon is the most com-

monly used material for these devices. The material proper-

ties for silicon used in the analysis are q¼ 2329 kg/m3,

E¼ 130 GPa, t¼ 0.28, a¼ 2.6 � 10�6 1/K, cp¼ 712 J/(g K),

j¼ 90 W/(m K), and T¼ 300 K.29,30 The beam width

and resonance frequency ranges considered here are 1 lm

� b� 20 lm and 100 kHz� fn� 20 MHz, respectively,

which covers most of the beam resonators found in the liter-

ature. Using the calculated quality factors, QA/B was evalu-

ated for all three scaling cases described above and for

comparisons between the fundamental mode and the third

and fifth modes.
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The results for case 1 are shown in Fig. 3, where the

beam width shown on the y axis is for device A (fundamental

mode). Figure 3 shows that QA/B is less than one throughout

the entire parameter range, meaning that device B always

has a higher Q for this case. Specifically, 0.45<Q1/3< 0.84

and 0.28<Q1/5< 0.80. Assuming Le¼ L and substituting the

QA/B bounds into Eq. (19) results in 1.0<R3/1< 1.89 and

0.99<R5/1< 2.82. Therefore, the motional resistance of

device A is generally smaller than or equal to device B.

Clearly, there is a tradeoff between Rm and Q for case 1,

such that mode selection in this case is based on which

parameter is more important for the application.

Figure 4 shows the QA/B results for case 2. When the res-

onators have the same stiffness, the quality factor is always

better for the fundamental mode resonator, where the ranges

for QA/B are 1.13<Q1/3< 5.18 and 1.19<Q1/5< 12.86. The

corresponding ranges for RB/A are 1.53<R3/1< 7.0 and

1.93<R5/1< 20.83. Therefore, these results indicate that the

fundamental mode is always the optimal mode for case 2.

Finally, QA/B was calculated for case 3, as shown in Fig. 5.

The quality factor for the fundamental mode resonator is larger

than for the higher modes throughout the entire parameter

space, where 1.92<Q1/3< 17.21 and 4.0<Q1/5< 78.06.

Similarly, the motional resistance of device A is significantly

lower than device B over the entire parameter range where

1.86<R3/1< 16.69 and 3.88<R5/1< 75.72. This analysis

indicates that when the aspect ratio of length to width is equal

for all resonators, the fundamental mode resonator will outper-

form higher mode resonators in both quality factor and

motional resistance by at least nearly a factor of two and signif-

icantly more in most cases.

The results for the three cases point to higher modes

always having a larger motional resistance. Furthermore, the

fundamental mode resonator will have higher quality factor

for cases 2 and 3 and the higher mode resonator will achieve

higher Q for case 1. For case 1, device B must be longer than

device A by a factor of �bB=
�bA (2.32, 3rd mode; 3.65, 5th

mode) in order to have the same resonance frequency. The

higher mode resonators are therefore significantly more com-

pliant (12.49X, 3rd mode; 48.63X, 5th mode) making them

more likely to fail in fabrication and in the field, thereby lim-

iting their feasibility. Recall that it was assumed that Le¼ L
and ga¼ gb. In practice, Le< L and in many cases ga< gb,

pushing these conclusions further in favor of the fundamen-

tal mode.

The above conclusions are based on the assumption that

the quality factor model is perfect, which of course is not

true. It is therefore useful to look at how tolerant the above

conclusions are to model uncertainty. If the uncertainty is

large enough, QA/B could be greater than one for case 1 or

less than one for cases 2 and 3, thereby changing the conclu-

sions in the above analysis. In order to analyze how much

FIG. 3. QA/B for case 1 (same beam width). (a) Device B operated in the third mode and (b) device B operated in the fifth mode. White contour line represents

QA/B¼ 0.57.

FIG. 4. QA/B for case 2 (same bending stiffness). (a) Device B operated in the third mode and (b) device B operated in the fifth mode. White contour line repre-

sents QA/B¼ 1.75.
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the values of QA/B shown in Figs. 3–5 can change due to

model uncertainty, the maximum modeling errors demon-

strated in previous results are used. As stated earlier, the

model error was found experimentally to be in the range of

þ2.9% to þ80% for AFM cantilevers28 and �17.2% to

þ6.5% for electrostatic beam resonators.21 The results from

the first example are used here since they yielded a larger

error distribution. For case 1, if QA is off by þ2.9% and QB is

off by þ80%, which is the worst case for this error range,

QA/B must be less than 0.57 for the conclusions for case 1 to

hold. Similarly, QA/B must be greater than 1.75 for cases 2

and 3. These values are equivalent to being tolerant to

627.3% modeling error in all three cases if the uncertainty in

QA and QB is assumed to be the same but with opposite sign.

Looking at Fig. 3, where the white contour line repre-

sents QA/B¼ 0.53, it is clear that QA/B< 0.53 for the majority

of the parameter space for case 1. Similarly, QA/B> 1.75

throughout most of the parameter space for case 2, as shown

in Fig. 4. Finally, QA/B> 1.75 for case 3 without exception

(see Fig. 5). While not definitive, these results provide rea-

sonable confidence that the fundamental mode resonator will

have the higher quality factor for cases 2 and 3, while the

higher mode resonator will have the greater quality factor for

case 1, with some exceptions that are shown in Figs. 3 and 4.

There are two caveats to these conclusions on mode selec-

tion that warrant further consideration. First, surface dissipa-

tion was ignored in this analysis because it has been shown

that it can be mitigated through surface treatment.21 However,

it may play a major role in the quality factor for deeply scaled

resonators. Second, to our knowledge, the anchor loss model,

Eq. (25), has only been validated experimentally up to 1 MHz,

such that the upper part of the presented frequency range

remains unvalidated. These issues require further experimental

investigation to provide a more definitive conclusion on select-

ing the mode number with the best motional resistance and

quality factor. If other energy dissipation models are found to

more accurately predict the quality factor, the equations

derived here will still provide a concise approach for selecting

the mode number for optimal performance.

V. CONCLUSION

A dynamic model for electrostatic beam resonators has

been derived that describes the relationship between the

input voltage, VAC, and output current, io, for all modes and

for varying electrode length. This model has been used to

derive the motional resistance for each mode as a function of

electrode length. The resulting equations were used to estab-

lish two performance metrics for comparing two resonators

operating at the same frequency but in different modes: the

motional resistance ratio and quality factor ratio. Using an

accepted model for quality factor that has previously been

experimentally validated, the quality factor can be calcu-

lated. This can then be used to find the motional resistance

ratio and quality factor ratio between the two resonators. It

was found that if the quality factor of a fundamental mode

resonator is greater than that of a higher mode resonator

operating at the same resonance frequency, then the funda-

mental mode resonator would also have lower motional

resistance, making it the better choice.

This approach for mode selection was demonstrated for

three geometric scaling cases between the fundamental and

higher mode resonators: case 1: same beam width; case 2:

same bending stiffness; and case 3: same aspect ratio (length/

width). The results indicate that the fundamental mode pro-

vides a lower motional resistance for all three cases.

Furthermore, the quality factor is higher in the fundamental

mode resonator except in case 1, where the width of the two

resonators is the same. The resulting long slender beam reso-

nators operating in a higher mode for case 1 are generally not

desirable since they are more likely to fail during fabrication

and operation due to their significantly lower stiffness. As a

result, the outcome of the presented analysis is that the funda-

mental mode will generally provide the best performance for

silicon resonators. This assertion could change for different

materials and geometric constraints. An analysis of the effect

of uncertainty in the quality factor model found that the mode

selection conclusions would hold throughout most of the

parameter space for beam geometry if the bounds on model-

ing error are the same as found in previous work. The derived

equations and method for optimal mode selection provide a

clear framework for comparing resonators and are compatible

with any quality factor model, which we expect will improve

in accuracy in the future.
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