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The mission of the Joint Committee for Guides in Metrology (JCGM) is to maintain and
promote the use of the Guide to the Expression of Uncertainty in Measurement (GUM)
and the International Vocabulary of Metrology (VIM, second edition). The JCGM has
produced the third edition of the VIM (referred to as VIM3) and a number of documents;
some of which are referred to as supplements to the GUM. We are concerned with the
Supplement 1 (GUM-S1) and the document JCGM 104. The signal contribution of
the GUM is its operational view of the uncertainty in measurement (as a parameter that
characterizes the dispersion of the values that could be attributed to an unknown quan-
CUM-S1 tity). The operational view promulgated by the GUM had disconnected the uncertainty
Uncertainty in measurement in measurement from the unknowable quantities true value and error. The GUM-S1 has
VIM3 diverged from the operational view of the uncertainty in measurement. Either the dispar-
ities should be removed or the GUM-S1 should not be referred to as a supplement to the
GUM. Also, the GUM-S1 has misinterpreted the Bayesian concept of a statistical parameter
and the VIM3 definitions of coverage interval and coverage probability are mathematically
defective. We offer practical suggestions for revising the GUM-S1 and the VIM3 to remove
their divergence from the GUM and to repair their defects.
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1. Introduction

The Joint Committee for Guides in Metrology (JCGM)
was formed in 1997 [1] to maintain and promote the use
of the Guide to the Expression of Uncertainty in Measure-
ment (GUM, 1993) [2] and the International Vocabulary of
Metrology (VIM, 1993, second edition, now referred to as
VIM2) [3]. The JCGM has two working groups. The JCGM
working group 1 (JCGM WG1) has produced a number of
documents; some of which are referred to as supplements
to the GUM. We are concerned with the supplement 1, the
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GUM-S1 published in 2008 and the document JCGM 104
published in 2009. The GUM-S1 is entitled Supplement 1
to the GUM - Propagation of distributions using a Monte
Carlo (MC) method [4] and the JCGM 104 is entitled
Introduction to the GUM and related documents [5]. The
concept and definitions in the JCGM 104 apply to the
GUM-S51. The JCGM working group 2 (JCGM WG2)
published in 2008 the third edition of the VIM, identified
as VIM3 or JCGM 200 [6].

The GUM is not completely consistent with either con-
ventional or Bayesian statistical concepts [7]. However, the
GUM can be made fully consistent with Bayesian concepts
by using for the Type A (statistical) evaluations Bayesian
statistics (with non-informative prior distributions) [8].
Then the GUM concept (from conventional statistics) of
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quantifying uncertainty of the uncertainty in measurement
by ‘degrees of freedom’ would vanish. An introductory ref-
erence for conventional statistical inference is [9]. Bayesian
inference based on the use of Bayes’ rule (theorem) is
described in many textbooks and articles such as the
following [10-21]. In this paper, phrases displayed in the
italic font are direct quotes from a cited reference;
sometimes additional words are inserted in parentheses
to clarify the intended meaning.

To a statistician, the term Bayesian implies the use of
Bayes’ rule. However, metrologists use the term Bayesian
in a broad sense meaning only that the state of knowledge
about an unknown quantity is expressed by a subjective
(personal degree of belief) probability distribution.
The GUM-S1 does not use the Bayes’ rule, yet it considers
the input and output probability distributions of its Monte
Carlo method to be Bayesian. For example, the GUM-S1
makes the following statements: (i) A coverage interval is
sometimes known as a credible interval or Bayesian interval,
(ii) the use of probability distributions in Type B evaluation
is a feature of Bayesian inference, (iii) in the Bayesian context
of this Supplement, concepts such as the reliability, or the
uncertainty, of an uncertainty are not necessary [4, Sections
3.12, 5.1.2, 6.4.9.4 Note 2]. We use the term Bayesian in
the broad sense of metrologists, unless stated otherwise.

The GUM-S1 is aligned with Bayesian concepts. The
GUM-S1 identifies the true value of an unknown quantity
(measurand) as a statistical parameter and regards that
parameter as a random variable [4, Section 5.1.1, c], [5,
Section 3.17]. A probability distribution for this random
variable describes the probabilities of the unknown true
value lying in different intervals [5, Section 3.17]. The
GUM-S1 introduced an expression of uncertainty in
measurement called a coverage interval. A coverage inter-
val is defined to be an interval containing the value of a
quantity with a stated probability, based on the information
available [4, Section 3.12], and its associated coverage
probability is the probability that the value of a quantity is
contained within a specified coverage interval. In these
GUM-S1 definitions, ‘the value of a quantity’ refers to ‘the
true value’ even though the adjective ‘true’ is suppressed
to create an appearance of fealty to the GUM [4,
Section 3.12 Note 4]. In the GUM-S1, the true value of a
quantity is assumed to be essentially unique [4, Section 1],
[6, Section 2.11 Note 3], [22, Section 2.5]. A real physical
quantity involved in measurement has a set of multiple
true values rather than a single true value, because of the
inherently incomplete amount of detail to which the quan-
tity can be specified [2, Annex D including Figures D.1 and
D.2], [6, Section 2.11 Note 1], [22, Section 2.4]. Fundamen-
tal constants of nature are exceptions. So the VIM3 gives
the following general definitions: a coverage interval is
an interval containing the set (range) of true quantity values
of a measurand with a stated probability, based on the
information available |6, Section 2.36], and the coverage
probability is the probability that the set (range) of true
quantity values of a measurand is contained within a specified
coverage interval |6, Section 2.37]. Uncertainty arising from
the finite amount of detail in the definition of a quantity is
called definitional uncertainty [6, Section 2.27]. A quantity
is considered to have an essentially unique true value

when the definitional uncertainty is believed to be
negligible [6, Section 2.11 Note 3].

The GUM-S1 has misinterpreted the Bayesian concept
of a statistical parameter and the VIM3 definitions of cov-
erage interval and coverage probability are mathematically
defective. These defects should be repaired. The GUM-S1
concepts of coverage interval and coverage probability do
not agree with the operational view of the uncertainty in
measurement promulgated by the GUM. Since the
GUM-S1 is a supplement to the GUM it should be revised
to agree with the GUM.

In Section 2, we describe the Bayesian concepts of a
statistical parameter, a probability distribution (expressing
the state of knowledge about the value of that parameter),
and an interval estimate for that value. In Section 3, we
review various concepts and terms introduced by the
GUM and identify the operational view of the uncertainty
in measurement as the signal contribution of the GUM. In
Section 4, we show that the GUM-S1 misinterprets the
Bayesian concept of a statistical parameter, and in Sec-
tion 5, we show that the VIM3 definitions of coverage
interval and coverage probability are mathematically
defective. In Section 6, we demonstrate that the GUM-S1
concepts of coverage interval and coverage probability do
not agree with the GUM. In Section 7 we offer suggestions
for revising the GUM-S1 to remove its divergence from
the GUM. Summary and concluding remarks appear in
Section 8.

2. Bayesian concepts of parameter, probability
distribution, and interval estimate

In this section we are concerned with statistical
inference for the unknown value of a statistical parameter
based on the Bayes’ rule. It is often said that in conven-
tional statistical inference a statistical parameter has a
fixed value but in Bayesian statistical inference the
statistical parameter is treated as a random variable with
a probability distribution which describes the possible
variation of that parameter [9, Section 7.2.3]. This is a
widespread misinterpretation of the Bayesian concept of
a statistical parameter. In Bayesian inference also, the
value of a parameter is fixed. That fixed value is the target
of statistical inference. What changes is a probability dis-
tribution (over the possible values for that parameter)
expressing the state of knowledge about that fixed value.

Statistician Dennis Lindley was a leading expert and
advocate of Bayesian inference. We quote Lindley from
the Ref. [15, p. 301]: “The parameter is also uncertain.
Indeed, it is that uncertainty that is the statistician’s main
concern. The recipe says that it also should be described by
a probability . . .. In so doing we depart from the conventional
attitude. It is often said that the parameters are assumed to be
random quantities. This is not so. It is the axioms that are
assumed, from which the randomness property is deduced.”

Physicist E.T. Jaynes was also a leading expert and
advocate of Bayesian inference. We quote Jaynes from
the Ref. [12, p. 11]: “For decades Bayesians have been
accused of “supposing that an unknown parameter is a
random variable”; and we have denied hundreds of times,
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with increasing vehemence, that we are making any such
assumption. We have been unable to comprehend why our
denials have no effect, and that charge continues to be made.
Sometimes, in our perplexity, it has seemed to us that there
are two basically different kinds of mentality in statistics;
those who see the point of Bayesian inference at once, and
need no explanation; and those who never see it, however
much explanation is given. But a Seminar talk by Professor
George Barnard, given in Cambridge in February 1984, pro-
vided a clue to what has been causing this Tower of Babel sit-
uation. Instead of merely repeating the old accusation (that
we could only deny still another time), he expressed the ortho-
dox puzzlement over Bayesian methods in a different way,
more clearly and specifically than we had ever heard it put
before. Barnard complained that Bayesian methods of param-
eter estimation, which present our conclusions in the form of a
posterior distribution, are illogical; for “How could the distri-
bution of a parameter possibly become known from data
which were taken with only one value of the parameter actu-
ally present?” This extremely revealing comment finally gave
some insight into what has been causing our communication
problems. Bayesians have always known that orthodox termi-
nology is not well adapted to expressing Bayesian ideas; but at
least this writer had not realized how bad the situation was.
Orthodoxians trying to understand Bayesian methods have
been caught in a semantic trap by their habitual use of the
phrase “distribution of the parameter” when one should have
said “distribution of the probability”. Bayesians had supposed
this to be merely a figure of speech; i.e. that those who used it
did so only out of force of habit, and really knew better. But
now it seems that our critics have been taking that phraseol-
ogy quite literally all the time. Therefore, let us belabor still
another time what we had previously thought too obvious
to mention. In Bayesian parameter estimation, both the prior
and posterior distributions represent not any measurable
property of the parameter, but only our own state of knowl-
edge about it. The width of the distribution is not intended
to indicate the range of variability of the true values of the
parameter, as Barnard’s terminology led him to suppose. It
indicates the range of values that are consistent with our prior
information and data, and which honesty therefore compels
us to admit as possible values. What is “distributed” is not
the parameter, but the probability.”

The set of all possible (permissible) values for a statisti-
cal parameter is called parameter space. In Bayesian statis-
tical inference, a ‘new’ random variable with a probability
distribution over the parameter space is introduced. Its
probability distribution expresses the state of knowledge
(uncertainty) about the fixed value of the parameter. Baye-
sian statisticians refer to this new random variable as non-
observable to distinguish it from random observations
(with assumed sampling probability distributions) which
are observable. A non-observable random variable has no
counterpart in conventional statistical inference; therefore,
it is a new random variable.

Bayesian authors tend to use the same lowercase Greek
letters such as 0, #, p for three different things (i) the fixed
value of a parameter which is unknown and the target of
statistical inference, (ii) possible values for the parameter
which form the parameter space, and (iii) a random vari-
able with a probability distribution over the parameter

space [10-21]. Even though the probability distribution
of the random variable is defined over the parameter
space, it is not the parameter. The parameter has a fixed
value. To help clarify the concepts, in this paper we will
use an uppercase Greek letter @ for a (non-observable)
random variable with a probability distribution expressing
the state of knowledge about the fixed value of parameter,
lowercase letter 0 for its possible values in the parameter
space, and the symbol 7[ @] for the fixed value of parame-
ter [22, Section 3]. The fixed value 7[ @] is one of the pos-
sible values 0 (a particular one) of the random variable @.

Bayesian statistical inference starts with a prior proba-
bility distribution (@) for @ defined over the parameter
space which represents the state of knowledge (uncer-
tainty) about t[®] before the current information
[21,22]. The prior distribution is updated using the Bayes’
rule in view of all available information I and all assump-
tions A made to obtain a posterior probability distribution
n(@|I,A) for @ defined over the parameter space which
represents the state of knowledge about 7[ @] after the cur-
rent information. The information I includes current obser-
vations and all available information (data) about the other
parameters. The assumptions A include the mathematical
or computational model of measurement, likelihood func-
tion (assumed sampling distributions for the observed
data), and probability distributions for the unknown
parameters. From the posterior distribution one can obtain
an interval estimate for 7[@] of desired probability. For a
specified interval (0,0,) of the parameter space, the
fraction of posterior probability density function which
corresponds to that interval is called the posterior proba-
bility Pr{0;< @ < 0, |I,A} of the interval (0,,0,). A Bayesian
interval estimate (0}, 0y,) for the fixed value 7[ @] is the high-
est probability density (HPD) interval under the posterior
distribution (@ |I,A) having a specified probability. The
posterior probability Pr{0,< @ < 0,|1,A} is the probability
under 7(@|LA) of the values in the interval (0,0y)
regarded as a subset of the parameter space [14, Sec-
tion 5.1.5], [21,22]. A Bayesian interval estimate (0,0;) is
often referred to as a credible interval, especially to distin-
guish it from the corresponding conventional (frequentist)
confidence interval. We will describe two practical inter-
pretations of the Bayesian posterior distribution n(@|I,A)
and the probability Pr{0, < @ < 0,|I,A} of an interval (0, 05).

A theoretical interpretation of a Bayesian posterior
probability distribution (@ |I,A) for @ is that it describes
the probability of each possible value ¢ of @ being the
fixed but unknown value 7[@] (evading the issue of zero
probability for a single value) [13, Section 1.2]. This is the
logical basis for the interpretation of the posterior proba-
bility Pr{0,;< @ < 0,|ILA} as the conditional probability
based on the information I and the assumptions A that
‘the fixed value [ @] lies within the fixed interval (0,,0;)
[16,21].

An operational interpretation of a Bayesian posterior
probability distribution n(@® |I,A) for @ is that it describes
for each possible value 0 of @ the probability with which
the value 0 could be attributed (assigned) to the unknown
value [ @] (again evading the issue of zero probability for
a single value). According to the operational interpretation,
the posterior probability Pr{0;< @& <0,|I,A} is the
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conditional probability based on the information I and the
assumptions A of ‘the values in the fixed interval (0, 0,,) that
could be attributed to the fixed value t[@] [22, Note 3.1].
Whether or not a Bayesian interval estimate (0,0;)
captures the fixed but unknown value t[@] depends on
the qualities of the underlying information I and the
assumptions A. The information I and the assumptions A
on which a posterior distribution (@ |I,A) is conditioned
are subject to deficiencies in the model of measurement,
the assumed likelihood function, and the assumed proba-
bility distributions for the unknown quantities [22, Notes
3.3, 3.4]. Uncertainty arising from possible deficiencies in
the underlying information I and the assumptions A is
not included in a Bayesian posterior probability
distribution or in an interval estimate obtained from that
distribution. When the authenticity of the information I
or the validity of the assumptions A is questionable, an
interval estimate (0, 0,) may not include t[@]. When the
true value 7[@] is unknowable, the truth of the claim that
an interval estimate (0, 0) includes 7| @] cannot be known.
The operational interpretation of a Bayesian probability
distribution is mute about the success of an interval
estimate (0, 0p) in capturing the unknown value 7[@].
Note 2.1: A key feature of Bayesian inference is that it
requires a prior probability distribution for the fixed but
unknown value of a parameter. The prior distribution is
updated using the current information to obtain a poste-
rior distribution. High echelon measurement laboratories
receive periodically the same physical artifacts for
re-calibration. Thus they have historical records of the
results of measurement for the same artifacts. But metrol-
ogists do not use the previous results of measurement as
prior information to obtain current results of measure-
ment: “the purpose of current measurement is to make
sure that the value of the artifact did not change; therefore
we do not use historical results as prior information”. In
metrology, how beneficial is a prior distribution that is
not based on factual information (data)? Also, how can a
metrologist be sure that the measurand did not change
during the time period between obtaining the data on
which a Bayesian prior probability distribution might be
based and obtaining the current measurements (excluding
non-informative improper prior distributions)?

3. Operational view of uncertainty in measurement is
signal contribution of GUM

The most visible concepts and terms introduced by the
GUM are as follows: (i) Type A and Type B evaluations of
uncertainty, (ii) measurement equation, (iii) linear propa-
gation of uncertainties, (iv) and standard measurement
uncertainty. Type A and Type B are new labels for an old
classification of methods for evaluating uncertainty. This
classification came into being because certain components
of uncertainty could not be evaluated by statistical meth-
ods so technical judgment was needed. Type A (statistical
methods) and Type B (other methods) are labels that were
used in the recommendations of the CIPM (International
Committee for Weights and Measures) on which the
GUM is based [2, Section 0.7]. However, it is noteworthy
that the GUM bestows on a Type B evaluation the same

respect that is traditionally given to a Type A evaluation.
Indeed the GUM states the following: One may therefore
conclude that Type A (statistical) evaluations of standard
uncertainty are not necessarily more reliable than Type B
(other) evaluations, and that in many practical measurement
situations where the number of observations is limited, the
components obtained from Type B evaluations may be better
known than the components obtained from Type A evalua-
tions [2, Section E.4.3]. A Type B evaluation is obtained
from an assigned probability distribution expressing the
state of knowledge based on the pool of available informa-
tion (data) and scientific judgement. A Type B probability
distribution is intended to be minimally subjective and
maximally based on data [2, Section 4.3]. The GUM
declares a Type A evaluation (based on formulas from
conventional statistics) as a parameter of a probability
distribution expressing the state of knowledge |2,
Section 4.1.6]. Therefore a probability distribution repre-
sented by a Type A evaluation, and a Type B probability
distribution have the same interpretation: both express
the state of knowledge. The declaration of a Type A evalu-
ation as expressing the state of knowledge is required in
the GUM to legitimatize combining Type A and Type B
evaluations. This declaration of the GUM can be made
authentic by using Bayesian statistics for the Type A
evaluations, and interpreting a Type B distribution as a
Bayesian probability distribution [8].

The concept of a measurement equation (referred to as a
mathematical model of the measurement in the GUM and a
measurement function in the VIM3) is a new contribution
of the GUM. A measurement equation Y=fX;,...,Xy)
describes a method for determining a measured value and
its associated uncertainty for the measurand Y from the
measured values and uncertainties for various input quan-
tities Xy, ..., Xy [23]. There is a one-to-one correspondence
between the sources of uncertainty considered and the
input quantities of the measurement equation. A measure-
ment equation is based on technical knowledge of the
measurement procedure and practical experience. An input
quantity may have its own measurement equation.

The GUM-S1 gives an impression that linear propaga-
tion of uncertainties (LPU) method for combining compo-
nents of uncertainty is the main contribution of the
GUM. This is a narrow view of the GUM. The LPU method,
also called as the root-sum-of-squares (RSS) method or the
delta method, was widely used before the GUM was pub-
lished. In fact this method was introduced by Gauss for
independent components in the year 1823 [21, Section 5.5].
The GUM formally recognized a previously used method
for combining standard deviations.

The GUM promulgated an operational perspective of
the uncertainty in measurement [2, Section E.5.1]. Accord-
ing to the GUM (i) a measured value (referred to as a result
of measurement in the GUM) is a value attributed to an
unknown quantity [2, Section B.2.11], and (ii) measure-
ment uncertainty is a parameter (associated with a mea-
sured value) that characterizes the dispersion of the
values that could reasonably be attributed to an unknown
quantity, conditional on the presently available knowledge
[2, Section B.2.18]. Uncertainty in measurement expressed
as a standard deviation is called standard measurement
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uncertainty [2, Section 2.3.1]. It follows that measurement
is the process of assigning (attributing) values to an
unknown quantity.

The GUM does not explicitly define the coverage proba-
bility of a result of measurement expressed as an interval.
However, it is clear from various citations in the GUM that
the coverage probability of an interval is the probability of
the values in that interval which could be attributed to the
unknown quantity [2, Sections 0.4, 2.3.5 Note 1, 3.3.7,
6.2.2]. The GUM does not explicitly state its interpretation
of a probability distribution represented by a measured
value and its associated uncertainty. In view of the defini-
tions of a measured value and its associated uncertainty
in measurement (and the GUM interpretation of coverage
probability), a probability distribution in the GUM can have
no meaning other than that it describes the probabilities of
the values that could be attributed to an unknown quantity.
The GUM interpretation of a probability distribution corre-
sponds to the operational interpretation of a Bayesian prob-
ability distribution (discussed in Section 2); therefore, we
will refer to it as an operational interpretation.

The operational view of the uncertainty in measure-
ment is the signal contribution of the GUM because it over-
turned the pre-GUM paradigm of metrology which was
concerned with true value and error to the modern concept
of evaluated uncertainty from the recognized sources that
are judged to be significant [23]. Uncertainty in measure-
ment is an evaluated quantity; it does not include uncer-
tainty from unrecognized sources and components of
uncertainty that are judged to be negligible (this judgment
can sometimes be wrong). The operational view, promul-
gated by the GUM, disconnected the uncertainty in mea-
surement from the unknowable quantities true value and
error [1, Section E.5.1].

Note 3.1: In metrology, a true quantity value is
unknowable. The link of a result of measurement (a mea-
sured value with its associated uncertainty) with the
unknown target of measurement is assured by the calibra-
tion of the measurement system using artifacts of assigned
reference values. The reference values serve as surrogates
for the unknowable true values of artifacts. High accuracy
measurement techniques used to assign reference values
are assessed by inter-comparison.

4. GUM-S1 misinterprets Bayesian concept of statistical
parameter

The JCGM 104 states the following. The true values of the
input quantities Xy, ...,Xy are unknown. In the approach
advocated (in the GUM and the GUM-51) X4, ..., Xy are char-
acterized by (univariate) probability distributions and treated
mathematically as random variables. These distributions
describe the respective probabilities of their true values lying
in different intervals, and are assigned based on available
knowledge concerning Xi,...,Xy [5, Section 3.17]. If the
symbols X;, ..., Xy refer to the input quantities then the
JCGM 104 declares that an input quantity is treated (math-
ematically) as a random variable. If the symbols X, ..., Xy
refer to the true values of the input quantities then the
JCGM 104 declares that a true quantity value is treated
as a random variable. Thus the JCGM 104 treats either a

‘quantity’ or a ‘true quantity value’ as a random variable.
In either case a probability distribution for that random
variable describes the probabilities of different intervals
containing the true value. This is the GUM-S1 definition
of a probability distribution. It corresponds to the theoret-
ical interpretation of a Bayesian probability distribution
(discussed in Section 2).

The GUM-S1, recommends a Monte Carlo Method
(MCM) to determine a numerical probability density func-
tion (PDF) for the output random variable Y corresponding
to a mathematically specified joint probability distribution
for the input random variables X, ..., Xy of the measure-
ment equation Y=f(Xy, ..., Xy) [4, Section 7]. According to
the GUM-S1, the numerical PDF for Y determined by MCM
is used to obtain (1) the expectation of Y, taken as an estimate
y of the quantity, (2) the standard deviation of Y, taken as the
standard uncertainty u(y) associated with y, and (3) a cover-
age interval containing Y with a specified probability (the cov-
erage probability) [4, Section 5.1.1, c]. In the parts (1) and (2)
of this statement, Y is a random variable with a PDF having
an expected value and a standard deviation. In the part (3),
Yis the true value of the measurand (in view of the GUM-S1
definitions of coverage interval and coverage probability).
Therefore the GUM-S1 uses the symbol Y for the true value
of the measurand and treats it as a random variable with a
PDF (expressing the probabilities of different intervals con-
taining the true value). The GUM-S1 is aligned with Baye-
sian concepts [4, Sections 3.12, 5.1.2, 6.4.9.4 Note 2].
From that viewpoint, the GUM-S1 identifies the true value
of a quantity as a statistical parameter and treats that
parameter as a random variable. As discussed in Section 2,
this is a misinterpretation of the Bayesian concept of a sta-
tistical parameter: the value of a parameter is always fixed.
What changes is a probability distribution which expresses
the state of knowledge about that fixed value.

The GUM uses an uppercase Roman letter such as X;or Y
for two different things: (i) a physical quantity (specified by
its description) and (ii) the corresponding random variable
(with a probability distribution describing the probabilities
of the values that could be attributed to that quantity) [2,
Section 4.1.1 Note 1]. This use of one symbol for these
two different things does not cause communication diffi-
culties in the GUM. The GUM-S1 uses an uppercase Roman
letter such as X; or Y for three different things: (i) a quantity,
(ii) the true value of that quantity, and (iii) the correspond-
ing random variable expressing the state of knowledge
about that quantity. Using one symbol for ‘a quantity’ as
well as ‘the true value’ of that quantity confuses two differ-
ent concepts |6, Sections 1.1, 1.19, 2.11].

The misinterpretation of the Bayesian concept of a sta-
tistical parameter in the GUM-S1 can be repaired by intro-
ducing a new symbol for the true value of a quantity and
making it clear that the true value is fixed, rather than a
random variable [22, Note 4.2].

5. VIM3 definitions of coverage interval and coverage
probability are mathematically defective

The VIM3 definitions of a coverage interval and its asso-
ciated coverage probability are stated in Section 1. Suppose
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a physical quantity X has an interval (range) of true values
7[X]. Suppose the interval |X] is believed to be so small
that the state of knowledge about 7[X] may be adequately
represented by a measured value (with evaluated uncer-
tainty) or by a univariate probability distribution attribu-
ted to the random variable X. Suppose (x;,x;) is a result of
measurement for the quantity X expressed as an interval.
A single point on the number line has zero width; an inter-
val can have any positive width, large or small. Now imag-
ine that the interval (x,xy) is so tiny that its width is even
less than that of the interval 7[X]. Then the interval of true
values t[X] cannot be contained within the interval (x;xy,).
Consequently, the coverage probability for that tiny inter-
val would be zero regardless of the probability distribution
used to represent the quantity X. Thus the VIM3 definitions
of a coverage interval and coverage probability require that
intervals of width less than the range of true values 7[X]
have probability zero.

A number of probability distributions to express the
state of knowledge about a quantity are described in the
GUM-S1 [4, Section 6.4]. These distributions (which
include normal and rectangular distributions) have contin-
uous probability densities. The coverage probability of an
interval is the fraction of the probability density function
(PDF) corresponding to that interval. Every interval in the
support of a continuous probability distribution has a pos-
itive probability no matter how tiny that interval may be.
In particular, every probability distribution described in
the GUM-S1 would assign a positive (non-zero) probability
to a tiny interval whose width is less than that of the inter-
val t[X]. Thus none of the probability distributions
described in the GUM-S1 satisfies the requirement of the
VIM3 definitions of coverage interval and coverage proba-
bility that intervals of width less than the range of true val-
ues t|X| have probability zero. Indeed no probability
distribution for the variable X can be specified which
satisfies this requirement of the VIM3 definitions. Thus
the VIM3 definitions of coverage interval and coverage
probability break down for intervals of width smaller than
the range of true values. Therefore these definitions are
mathematically defective.

The VIM3 concept of a coverage interval is well-defined
only for those quantities which have single (unique) true
values. Therefore the VIM3 definitions of coverage interval
and coverage probability can be repaired by replacing the
phrase ‘the set of true quantity values' with the phrase
‘the single true quantity value’.

6. GUM-S1 concepts of coverage interval and coverage
probability do not agree with GUM

Suppose a quantity X has as an essentially unique true
value 1[X] and (x,x,) is a result of measurement for X
expressed as an interval. The GUM-S1 refers to the interval
(x,,x;) as a coverage interval and looks at it in terms of
whether it contains or it does not contain the unknown
true value 7[X]. A claim that 7[X] is contained within the
interval (x,xp) is either true or false. The true value t[X]
is unknowable even in principle [6, Section 2.11]. Therefore
the truth of the claim that z[X] is contained within (x,x;)

can never be known. The GUM-S1 coverage probability of
an interval (x,x;,) is a degree of belief assigned to the truth
of the claim that the fixed true value t[X] is contained
within the fixed interval (x;,x,). The first edition of the
International Vocabulary of Metrology (dated 1984, now
referred to as the VIM1) defined the uncertainty in mea-
surement as an estimate characterizing the range of values
within which the true value of a measurand lies [24]. The
GUM-S1 concept of a coverage interval (with its associated
coverage probability) is essentially a pre-GUM concept of
uncertainty from the VIM1. Thus the GUM-S1 has restored
an essentially pre-GUM concept of uncertainty in measure-
ment which was concerned with capturing (covering) the
true value of the measurand in a computed interval.

The concept of a coverage interval introduced by the
GUM-S1 does not exist in the GUM or the VIM2. The
GUM defined the uncertainty in measurement as a param-
eter that characterizes the dispersion of the values that
could reasonably be attributed to the measurand. The
uncertainty in measurement does not refer to the true
value of the measurand. In the GUM, the coverage proba-
bility of an interval (x,,xs) is the probability of the values
in that interval which could be attributed to the measur-
and X. The GUM view of the coverage probability of an
interval (x;,x,) is silent about the relationship between that
interval and the true value 7[X] of the measurand X. The
operational view of the uncertainty in measurement and
the concept of coverage probability promulgated by the
GUM had disconnected the uncertainty in measurement
from the true value of the measurand. Thus the GUM-S1
concepts of coverage interval and coverage probability do
not agree with the GUM.

7. Suggestions for revising GUM-S1 to remove its
divergence from GUM

The divergence of the GUM-51 from the GUM concept of
uncertainty in measurement arises primarily from adopt-
ing the interpretation of a probability distribution that it
describes the probabilities of the unknown true value lying
in different intervals (see, Sections 1 and 4). The diver-
gence of the GUM-S1 from the GUM can be removed by
adopting the operational interpretation of a probability
distribution that it describes the probabilities of the values
that could be attributed to an unknown quantity (see,
Sections 3 and 6).

The adoption of operational interpretation of a
probability distribution will render the GUM-S1 concept
of a coverage interval superfluous. We suggest that the
GUM-S1 concept of a coverage interval should be replaced
with an interval result; that is, a result of measurement
expressed as an interval. An interval result represents a
range of values that could reasonably be attributed to a
quantity conditional on the presently available knowledge.
The coverage probability of an interval result is the prob-
ability of the values in that interval that could be attribu-
ted to the unknown quantity. An interval result and its
associated coverage probability are well-defined whether
the unknown quantity has a unique true value, an essen-
tially unique true value, or a set of multiple true values
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with a non-negligible definitional uncertainty [6, Sec-
tion 2.11 Note 3]. The term interval result is analogous
to the statistical term interval estimate. A confidence
interval and a Bayesian credible interval are examples of
interval estimate.

The adoption of operational view of a probability
distribution and the replacement of the concept of a cover-
age interval with the concept of an interval result should
remove the divergence of the GUM-S1 from the GUM while
maintaining its alignment with Bayesian concepts.
Enactment of this proposal will not affect procedures for
determining results of measurement, magnitudes of evalu-
ated uncertainties, and the assigned coverage probabilities.

8. Summary and concluding remarks

The GUM-S1 has misinterpreted the Bayesian concept
of a statistical parameter by identifying the true value of
the measurand as a statistical parameter and treating that
parameter as a random variable. The value of a parameter
is always fixed. What changes is a probability distribution
which expresses the state of knowledge about that fixed
value. The VIM3 definitions of a coverage interval and its
coverage probability are mathematically defective because
they break down for a result (of measurement) expressed
as an interval of width smaller than the range of true val-
ues. We have offered simple suggestions to repair these
two defects. The JCGM 104 is not a helpful introduction
to the operational view of the uncertainty in measurement
established by the GUM [22]; therefore, this document
should be withdrawn.

The GUM-S1 introduced the idea of a coverage interval
as the dominant expression of uncertainty in measure-
ment. A coverage interval is defined as an interval contain-
ing the true value of the measurand with a stated
probability (called coverage probability). The GUM-S1 idea
of a coverage interval is essentially a pre-GUM concept of
uncertainty which was concerned with covering the true
value of the measurand by a computed interval. The
GUM promulgated an operational view of the uncertainty
in measurement as a parameter that characterizes the dis-
persion of the values that could be attributed to the mea-
surand. In the GUM, the coverage probability of a result
expressed as an interval is the probability of the values
in that interval which could be attributed to the measur-
and. The operational perspective of the GUM had discon-
nected the uncertainty in measurement from the true
value of the measurand. Thus the GUM-S1 concept of cov-
erage interval does not agree with the GUM. Either the
divergence of the GUM-S1 concept of a coverage interval
from the GUM should be removed or the GUM-S1 should
not be referred to as a supplement to the GUM. We have
offered practical suggestions for revising the GUM-S1 to
remove its divergence from the GUM while maintaining
its alignment with Bayesian concepts.
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This article reflects only the views of the authors on the
topics discussed, and does not necessarily reflect the
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may have about those topics or about the GUM and the
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