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Abstract—Timing and synchronization play a key role in
cyber-physical systems (CPS). Precise timing, as often required
in safety-critical CPS, depends on hardware support for en-
forcement of periodic measure, compute, and actuate cycles.
For general CPS, designers use a combination of application
specific integrated circuits (ASICs) or field programmable gate
arrays (FPGAs) and conventional microprocessors. Micropro-
cessors as well as commonly used computer languages and
operating systems are essentially devoid of any explicit support
for precise timing and synchronization. Modern computer science
and microprocessor design has effectively removed time from
the abstractions used by designers with the result that time
is regarded as a performance metric rather than a correctness
specification or criterion.

There are interesting proposals and avenues of research
to correct this situation, but the barrier is quite high for
conducting proof of concept studies or collaborative research
and development. This paper proposes a conceptual design and
use model for a reconfigurable testbed designed specifically to
support exploratory research, proof of concept, and collaborative
work to introduce explicit support for time and synchronization
in microprocessors, reconfigurable fabrics, language and design
system architecture for time-sensitive CPS.

Reconfigurable computing is used throughout the system in
several roles: as part of the prototyping platform infrastructure,
the measurement and control system, and the application system
under test.

Index Terms—Cyber-Physical Systems, Timing and Syn-
chronization, Reconfigurable computing, Testbed, Correct-by-
construction

I. MOTIVATION

Timing and synchronization play a key role in cyber-
physical systems (CPS). The typical CPS implements a mea-
sure, compute, and actuate cycle. To ensure stability of the
resulting control loop, a fundamental requirement is to control
the loop time. As CPS become more complex with multiple
sensors driving the control function and possibly with multiple
actuators involved, the timing becomes even more critical in

ensuring precise coordination and control. For example, each
application will specify the temporal relationships between the
sensor data, usually requiring simultaneous sampling within
some tolerance. Likewise, any resulting actuation will have
similar temporal constraints.

Traditionally, sensors and actuators communicate directly
with the CPS controller via analog lines, point-to-point digital
links, or via a specialized data bus such as controller area
network (CAN) or highway addressable remote transducer
(HART) protocols. In modern designs, the spatial extent or
the need for greater bandwidth has resulted in CPS with
multiple controllers, involving networks for communication.
The control of timing in such systems is much more difficult
than in the earlier, compact systems.

For safety-critical systems, time-triggered techniques are
often used and depend on hardware support for enforcement of
periodic measure, compute, and actuate cycles. Time-triggered
architectures are relatively inflexible and do not scale well.
In addition the model is a poor match for systems with
asynchronous sporadic inputs. For general CPS, designers
must use a combination of ASICs or FPGAs and conventional
microprocessors.

Unfortunately, modern computer science and micropro-
cessor design have effectively removed explicit time from
microprocessor hardware, operating systems and languages
with the result that time is essentially a performance metric
rather than a correctness specification or criterion [1]. With-
out the semantics and standard interfaces to specify timing
requirements, it becomes costly and difficult to build a CPS
with robust timing leading to a methodology where system
timeliness issues are corrected through test and adjustment.
This methodology results in customized, application specific
designs which are expensive to maintain and commission.
Furthermore, system components are less likely to be inter-
operable and adding or swapping components can result in



costly re-validation of timing requirements. Users of major or
critical CPS systems often purchase a lifetime supply of all
components since the replacement of a hardware component,
e.g. a faster microprocessor, or a change in code or firmware
typically results in expensive re-qualification of the system.

In a time-triggered architecture, it is necessary to ensure
that the computations can be completed in the allotted time.
In a CPS utilizing general purpose hardware and software,
the task of ensuring correct timing is even more difficult.
What is clearly needed is a systematic design methodology
where the designer can explicitly specify system timing and
given a target computer, software, and network environment,
be able to determine whether the proposed design can actually
be executed in this environment with the proposed timing.
Finally if the answer is yes, then the designer should be
able to compile the design into an executable form with the
assurance that during execution the system timing will agree
to the designed timing within specified error bounds. This
is simply not possible today using general purpose software
development tools and hardware platforms.

There are interesting proposals and avenues of research
to correct this situation, but the barrier is quite high for
conducting proof of concept studies or to conduct collaborative
research and development on this subject.

In this paper, we describe our vision for a testbed and
usage model designed specifically to support research, proof of
concept, and collaborative work to introduce explicit support
for time in microprocessor, reconfigurable fabrics, language
and design system architecture for time-sensitive CPS.

The ultimate outcome of the research enabled by the
proposed testbed should be the development of modular, in-
teroperable system components including novel microproces-
sor architectures, software design, communication interfaces,
compilers and semantics where timing correctness can be
explicitly described and verified. Explicit time specifications
can be enunciated, incorporated into application and soft-
ware/firmware design and executed in such a way that the
timing in the executing system matches the time specifications
of the designer to within the accuracy of the CPS real-time
clock. In other words, the ultimate goal is to enable correct-
by-construction CPS system timing.

II. TESTBED RESEARCH CHALLENGE AREAS

One of the primary impediment to a designer’s ability
to have correct-by-construction timing is the availability of
explicit support for time in the code stack from microprocessor
to hardware, e.g., to support design requirements such as
“raise on pin 3, a signal x microseconds following the time a
signal was raised on pin 2 to within the precision of the local
clock where x is a value determined at run time by system
state”. Timing specific instructions cannot be specified such
that it would be reliably executed today except by custom
design in ASICs or FPGAs. If explicit time was appropriately
supported, then it would be possible to design true, portable
real-time operating systems (OS), programming languages

would emerge to build on this capability, and time-sensitive
application and communication design practices would follow.

One of the key research challenges is enabling bounded
timing support in the code stack. Of course there have been
prior efforts in this direction [2]. Another example is the
Programming Temporally Integrated Distributed Embedded
Systems (PTIDES) model developed at the University of Cal-
ifornia Berkeley [3]. More research challenges and potential
solutions have also been discussed in the National Institute
of Standards and Technology (NIST) Cyber-Physical Systems
Public Working Group [4]. Stemming from the challenge of
enabling hardware agnostic timing support in the code stack is
the ability to define common semantics and interfaces to en-
able correct-by-construction on a variety of microprocessors.
Another research challenge is the ability to measure and verify
that the system can achieve worst-case bounded timing or be
able to handle graceful degradation if timing requirements are
not achieved.

There are of course other issues such as providing syn-
chronized clocks in each node and ensuring that network
communications realize timing specifications. However the
state of the art in clock synchronization is quite good using
available technologies such as Global Navigation Satellite
Systems (GNSS), Network Time Protocol (NTP) [5], IEEE
1588 Precision Time Protocol [6], or Conseil Europen pour
la Recherche Nuclaire’s (CERN) White Rabbit [7][8]. The
situation with networks is less satisfactory but there is a
concerted ongoing effort in the IEEE 802 community to enable
time-sensitive networking (TSN) [9].

We envision a distributed testbed bringing together a com-
munity of multi-disciplinary experts to enable exploration
of time aware interfaces, methodologies, and measurement
capabilities to the simple CPS architecture diagrammed in
Figure 1. Illustrated are four CPS nodes communicating via
a fabric and with each node interacting with the external
physical world to be measured and/or controlled.

As illustrated, each node consists of a system stack with
custom hardware at the bottom, interacting with the external
physical world and the communication fabric. This layer
is typically a combination of an FPGA, digital to analog
converters (DACs), analog to digital converters (ADCs), com-
munication physical layer (PHYs), input/output (I/O) etc., with
standard computer interfaces to the operating system of the
microprocessor. The designer creates code running on the
microprocessor and a closely connected or integrated recon-
figurable fabric, which in conjunction with the underlying
hardware, realizes the functional and timing specifications of
the CPS.

The following sections describe a conceptual design and use
model for a testbed designed specifically to support research,
proof of concept, and collaborative work to introduce explicit
support for time in microprocessor, reconfigurable fabrics,
language and design system architecture for time-sensitive
CPS. Because the testbed includes a physical monitoring and
control scenario, it will be possible to quantitatively compare
different approaches by measuring the timing performance of
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Fig. 1. Simple CPS

two or more proposed designs. One of the objectives of the
testbed architecture is to support the exploration of application
designs and practices in explicit timing support in hardware,
operating system and code design stack of underlying real-time
applications. For distributed systems, the proposed testbed
could be expanded to enable research on time-sensitive net-
work components and practices.

III. THE TESTBED ARCHITECTURE

The proposed testbed architecture is illustrated in Figure 2.
The key elements are as follows:

• Four CPS nodes described in section III-A. These are
connected to a communication fabric and interface to
testbed physics.

• Communication fabric: Standard gigabit Ethernet imple-
mented with an IEEE 1588 bridge to enable precise clock
synchronization among the distributed nodes. Synchro-
nization is needed to ensure timing requirements can be
estimated and measured in a distributed system.

• Physics: A selection of devices to be used in simple CPS
applications. See section III-B.

• Physics Monitoring and Control: Instrumentation to mon-
itor, configure and control the experiment physics to pro-
vide ground truth timing measurements for comparison
with the specifications of the CPS system being tested.
See section III-C.

• Testbed Site Computer: The computer has three main
functions:

– Communication Monitor and Device Configuration:
This interface monitors traffic on the testbed com-
munication fabric, e.g., with Wireshark. It also in-
terfaces with the Physics Monitoring and Control
instrumentation. It provides the interface to the four

CPS nodes for downloading node FPGA and soft-
ware.

– Local Testbed Management: Manages the operation
of the testbed. Included is user session manage-
ment, loading of default CPS node designs, etc. A
repository of testbed site approved introductory code
samples similar to “hello world” would be main-
tained here. The repository of code contributed will
enable the community to share code and evolve the
algorithms and software implementations to ensure
hardware portability and system scalability as each
user may apply improve upon the code to fit their
use case and system. The repository will also aid
in growing the ontology for enabling explicit tim-
ing support by exploring frequently used semantics
needed to describe the timing requirements. Through
exposure to a wide variety of CPS use cases as
well as experimental algorithms and methodologies,
the distributed testbed will enable the community to
ensure semantics for explicit timing support are ad-
equately captured and provide the flexibility needed
to meet a wide range of CPS timing requirements.
Flexibility in application requirements and hardware
relies on a high quality, stable and complete ontology
to describe the features that are pertinent to reliable
system timing. See section III-D.

– Interface to Remote Users: Provides an interface
to remote user sites to permit download of CPS
node design, monitoring of the network, CPS node
performance, and physics monitoring and control. It
provides security and login functions.

• Internet: The public Internet is used for communications
between remote user sites and testbed sites.

• User Site Computer: The user site computer has the
following functions:

– Interface to Remote Testbed: Provides an interface to
remote user sites to permit download of CPS node
design, network monitoring, CPS node performance,
and physics monitoring and control. It also provides
security and login functions.

– User Interface, Design and Configuration Tools: The
interface enables exploration of explicit timing sup-
port methodologies, such as PTIDES, to allow a
remote user to generate FPGA design, to program
and compile software for the microprocessor, to
download FPGA designs and code executables, and
to monitor and configure the CPS. FPGA design
interfaces and code compilers could execute on the
client side or done remotely on tools executing at the
remote testbed site. The tools and the testbed would
enable experimenting with different:

∗ designs for hardware support of explicit time,
∗ designs for true real-time operating systems,
∗ languages, compilers, and other software develop-

ment infrastructure
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∗ techniques for exploiting explicit time in applica-
tions both within a single node and in a distributed
CPS system.

A. Testbed CPS Node Architecture

The architecture of each of the four CPS testbed nodes is
illustrated in Figure 3 and consists of a circuit board with the
following components:

• An FPGA: A fairly large FPGA to give users plenty
of room to try out designs. Several options will be
supported: the FPGA can have resident microprocessors
either for user code or to implement all or part of the
network or clock synchronization stacks, or the FPGA
will serve as an interface to a separate chip level im-
plementation of the microprocessor design. In any case,
the FPGA will contain IEEE 1588 hardware clock to
provide synchronized clock service among the peers in
the CPS. It also contains any needed network interface.
The clock will interface to user FPGA designs and/or to
the microprocessor. It should be noted that it is our intent
to support new and evolving standards such as the IEEE
TSN [9].

• A microprocessor: The specific microprocessor, associ-
ated memory and support are to be determined as well
as whether a different microprocessor should be on each
board to allow investigation/proof that a explicit timing
support methodology, such as correct-by-construction,
can be invariant to microprocessor speed, cache size,
etc. The testbed intends to include a wide range of
hardware designs for supporting explicit time. Some of
the hardware currently shown in the FPGA block may
reside in the microprocessor.

• Ethernet PHY with IEEE 1588 support: These PHYs
are readily available and simplify the implementation of

DACs, ADCs, and
digital I/O

Ethernet PHY with
IEEE 1588 support

FPGA

Microprocessor with user code,
support such as UDP stack

To Network FabricTo Physics

Test Bed Circuit Board

User FPGA
Design

IEEE 1588 Clock and
Stack, Network Interface

Fig. 3. Testbed Node Architecture

the IEEE 1588 stack. The PHY will also provide data
connectivity to the gigabit network fabric.

• Physics interface: A selection of DACs, ADCs and digital
I/O will be provided. The specifics depend on the details
of the experimental physics section of the testbed.

B. Testbed CPS Physics

The testbed physics enables testing of time sensitive designs
applied to realistic CPS applications and the comparison of
alternative designs. The selection of components should be
simple at first but at a minimum should provide devices suit-
able for analog, digital and frequency dependent applications.
Examples might include one or more of the following:

• Two small laboratory bench size motor-generator sets,
mock transmission lines, capability to measure wave-
forms or phase, and capability to connect/disconnect from
a load. This could be used to mimic power system
applications such as synchronizing two generators prior
to connecting to a load.

• A digital pattern generator and capture device to allow
testing of stimulus response applications with sporadic
or patterned signals.

• Two or more vibration sensors, perhaps mounted on the
motor-generators to allow testing of machine condition
monitoring style applications where frequency control of
ADCs is important.

• The physics could be implemented in a Hardware-in-
the-Loop (HIL) simulation manner, in which a powerful
computer is running a model of the physics in real-time.

C. Testbed CPS Physics Monitoring

The testbed monitoring capabilities will depend on the
specifics of the testbed physics. The monitoring will generate
a variety of time series data which could be fused together
from local or remote locations. Ideally the physics and moni-
toring should be designed together and in many cases can be



implemented using standard small scale laboratory equipment
available from several manufacturers. In some cases this
equipment can be synchronized to the IEEE 1588 timescale
to simplify comparison of ground truth monitoring with the
results obtained from the CPS nodes. In the case where
the physics are done via HIL simulation, physics monitoring
would be integrated into the model and connected directly to
the rest of the system.

D. Testbed Hello World Examples

As with any set of tools, users will experience a learning
curve. A proven way to shorten the learning curve is to
provide hello world examples that illustrate how to formulate
the FPGA and code designs, load them into the testbed and
observe the results. The current testbed design is comprised
of:

• A simple time-triggered application: The measure, com-
pute, and actuate cycle could be implemented in the
FPGA in combination with microprocessor code. This
would be suitable for implementing the power generation
test example mentioned in section III-B. This technique
is discussed in [10].

• A PTIDES-based application: The PTIDES model [3]
could be implemented for a simple control or measure-
ment system. The power systems example would be
appropriate as would monitoring and response to sporadic
signals. Such a test application is described in [11].

• A National Instrument (NI) Reconfigurable I/O (RIO)
system, where the application under test could be de-
veloped in LabVIEW using both Real-Time and FPGA
modules, implemented on a CompactRIO controller, and
the physics could either be a physical experiment and
NI-PXI equipment would be used as measurement and
control, or the Physics could be an HIL simulation
implemented in NI PXI equipment using real-time and
FPGA RIO hardware and software, and the measurement
and control sub-system would be integrated with the
physics. [12]

IV. THE TESTBED USAGE MODEL

Initially we envision separate testbeds at the location of
the core group of participants. This will make it easier to
converge on a suitable and robust design for the testbed. As
the number of users grows we will want to replicate all or part
of the testbed in their own facilities. The testbed hardware and
software tools would be open source.

• The designs, code and parts lists will be made available
to the technical community.

• Once the testbed model is deployed, the idea would be to
expand towards a modular, distributed testbed to enable
remote access to one or more locations that would be
available to researchers and to encourage collaborative
efforts. One of our goals in presenting this paper at this
conference is to solicit open feedback and start building
a community around this effort.

Ideally researchers in remote locations could reserve time
on a testbed. Remote access to the testbed would provide
monitoring of usage, agreement on testbed policy, etc. They
would use the provided design tools to implement their designs
which would then be loaded onto the testbed. Execution
would be monitored by the users to verify performance and
correctness of the implementation.

After some experience with the testbed, it might be ap-
propriate to provide additional open source examples. The
repository is critical to publicizing successful developments
arising out of the use of the testbed. What is needed is the
ability of interested researchers and potential industrial users
to leverage the proposed solutions and to experiment with the
code without having to recreate the entire system in their own
facility.

Provision would be made for multidisciplinary researchers
to collaborate enabling systems, compilers and networking re-
searchers, among others, can evolve their technologies realize
correct-by-construction.

Finally it is critical to develop clear, well documented exam-
ples and tutorials to encourage and educate system designers
and developers. Depending on the selection of the initial
example this work should be done by people with experience
with the example techniques and applications.

V. BENEFITS OF THE TESTBED

Aside from the principal benefit of enabling individual and
collaborative research on explicit time support in the node
stack, other possible uses and benefits include:

• Allowing semiconductor manufacturers to explore trade-
offs on the distribution and form of hardware timing
support in microprocessor, the development of time-
explicit tool chains and the like. This capability should
shorten their learning curve, allow beta demonstrations
to gather customer feedback and make it much easier
for manufactures to confidently incorporate the advances
arising out of the use of the testbed.

• Plugfest activity: The testbed should be relatively portable
which should enable its use for conducting tests and
demonstrating the new technologies. The presence of the
testbed should encourage expansion of the ideas explored.

• University teaching projects: Many universities include
projects for classes in embedded system design, control
and related subjects. A distributed testbed enables stu-
dents to develop code on a variety of platforms for differ-
ent CPS scenarios, without having to acquire potentially
costly equipment.

• Developing a cadre of researchers, students, and others
who are familiar with the developed techniques would
be of great benefit to societal innovation. One of the
barriers to changing system design and programming
methodologies is the lack of an experience base and
thorough validation. The emerging cadre of experienced
students by learning through community and online ex-
amples would facilitate adoption and encourage the idea
to proliferate in a variety of domains and platforms.



The testbed concept would be an ideal way for industry
to rapidly gain experience and innovate safety-critical
systems more rapidly.

• As a way of promoting the principles and technologies
for time-explicit design, the testbed would be an ideal
demonstration platform easily used by application en-
gineers. Introductory, open-source examples would be
a boon to proliferating the understanding, adoption and
expansion of the ideas.

• The proposed testbed would also benefit standards de-
velopment and other industry efforts to enable explicit
timing support in dealing with CPS.
The testbed can be particularly useful in allowing re-
search groups and industry to rapidly evaluate academic
work in the area of CPS timing and to promote collabora-
tive development of standard interfaces among consortia,
government, and academic researchers. As a result, an
important aspect of the testbed is to make the interfaces
open, generic and interoperable, so that some other
equipment or processor can be used to build the system,
and evaluated. Such organizations include The AVNU
Alliance, http://avnu.org/, the Industrial Internet Consor-
tium (IIC), http://www.industrialinternetconsortium.org/,
and the IEEE 802.1 TSN http://www.ieee802.org/1/pages/
tsn.html working group.

VI. ROLE OF RECONFIGURABLE COMPUTING (RC) AND
FPGA TECHNOLOGY IN THE TESTBED

Reconfigurable computing and FPGA technology play a key
role in this project. It will be used at least in the following
subcomponents:

• System interface for the testbed nodes. RC/FPGAs will be
used to implement the deterministic networking interface
and the logic to interface to microprocessors and I/O.

• Device under Test. Since the researchers using this facility
are mainly trying to test out new technologies, RC and
FPGAs provide a great vehicle to test their designs. A
shared or dedicated FPGA can used also be part of the
testbed node.

• Deterministic networking. As part of the system interface,
this component will rely on existing (IEEE 1588) or new
(IEEE TSN) standards to provide a global notion of time
and deterministic data transfer, respectively. Since these
are going to be evolving standards, having the flexibility
of the FPGA is very important.

• Physics modeling. The testbed user has an option of inter-
facing to the real physics associated with their system, or
to simulate the physics with HIL infrastructure based on
high performance instruction processors or RC/FPGAs.

• Measurement infrastructure. In order to accurately corre-
late results of the interaction of a CPS cyber-controller
and the plant/physics, the measurement infrastructure
would interface to the deterministic network using
RC/FPGAs to enable measurement processing in real-
time. In addition, the testbed would also support mea-
surement capabilities for explicit timing support. Through

experience, the efforts of the testbed can determine the
pertinent metrics needed to ensure distributed, determin-
istic, and interoperable timing support.

VII. CONCLUSION

We have proposed a conceptual design and use model
for a reconfigurable testbed designed specifically to support
research, proof of concept, and collaborative work to introduce
explicit support for time and synchronization in micropro-
cessors, reconfigurable fabrics, language and design system
architecture for time-sensitive CPS. Reconfigurable computing
is used throughout the system in several roles: as part of
the prototyping platform infrastructure, the measurement and
control system, and the application system under test.

Disclaimer: Certain commercial entities, equipment, or ma-
terials are identified in this document in order to describe the
experimental design or to illustrate concepts. Such identifica-
tion is not intended to imply recommendation or endorsement
by the National Institute of Standards and Technology, nor is
it intended to imply that the entities, materials, or equipment
are necessarily the best available for the purpose.

Official contribution of the National Institute of Standards
and Technology; not subject to copyright in the United States.
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