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Preface

Just over 80 years ago, a brief letter from James Chadwick to Nature [1,2]
presented conclusive experimental evidence unveiling the existence of a
neutral particle (nearly) isobaric with the proton. The discovery of the
henceforth-to-be-known-as “neutron” had profound consequences for both
scientific research and the destiny of humankind, as it led to the unleashing of
the might of nuclear power in less than a decade [3].

The first use of these “neutral protons” to probe the microscopic
underpinnings of the material world around us also dates back to those early
years, with pioneering neutron-diffraction experiments at Oak Ridge National
Laboratory (USA) in the mid-1940s, and the subsequent development of
neutron spectroscopy at Chalk River (Canada) in the 1950s. Since then,
neutron-scattering techniques have matured into a robust and increasingly
versatile toolkit for physicists, chemists, biologists, materials scientists,
engineers, or technologists. At the turn of the last century, the 1994 Nobel
Prize in Physics awarded to C.G. Shull and B.N. Brockhouse recognized their
ground-breaking efforts toward the development and consolidation of neutron
science as a discipline in its own right [4]. This milestone also served to define
neutron scattering as the technique par excellence to investigate where atoms
are (structure) and what atoms do (dynamics), a popular motto across gen-
erations of neutron-scattering practitioners.

Sustained and continued developments in experimental methods over the
past few decades have greatly increased the sensitivity and range of applica-
tions of neutron scattering. While early measurements probed distances on the
order of interatomic spacings (fractions of a nanometer) and characteristic
times associated with lattice vibrations (picoseconds), contemporary neutron-
scattering experiments can cover length scales from less than 0.01 to 1000s of
nanometers, and time scales from the attosecond to the microsecond. These
advances have been made possible via a significant expansion of the range of
neutron energies available to the experimenter, from micro-electron-volts
(particularly at cold sources in research reactors) to hundreds of electron-volts
(at pulsed spallation sources), as well as by unabated progress in the imple-
mentation of a variety of novel and ingenious ideas such as position- and
polarization-sensitive detection or back-scattering and spin-labeling methods.
As a result, neutron science has grown beyond traditional research areas, from
the conventional determination of crystal structures and lattice dynamics of
half-a-century ago (not to forget their magnetic analogs), to high-resolution

xvii
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structural studies of disordered thin films, liquid interfaces, biological struc-
tures, macromolecular and supramolecular architectures and devices, or the
unraveling of the dynamics and energy-level structure of complex molecular
solids, nanostructured materials and surfaces, or magnetic clusters and novel
superconductors. Along with these scientific and technical developments, the
community of neutron scientists has also expanded and diversified beyond
recognition. Whereas the early stages of neutron scattering had its roots in
condensed-matter physics and crystallography, present-day users of central
neutron-scattering facilities include chemists, biologists, ceramicists, and
metallurgists, to name a few, as well as physicists with an increasingly diverse
range of transdisciplinary interests, from the foundations of quantum
mechanics to soft matter, food science, biology, geology, or archeometry.

This book series seeks to cover in some detail the production and use of
neutrons across the aforementioned disciplines, with a particular emphasis on
technical and scientific developments over the past two decades. As such, it
necessarily builds upon an earlier and very successful three-volume set edited
by K. Skold and D.L. Price, published in the 1980s by Academic Press as part
of Methods of Experimental Physics (currently Experimental Methods in the
Physical Sciences). Furthermore, with the third-generation spallation sources
recently constructed in the US and Japan, or in the advanced construction or
planning stage in China and Europe, there has been an increasing interest in
time-of-flight and broadband neutron-scattering techniques. Correspondingly,
the improved performance of cold moderators at both reactors and spallation
sources has extended long-wavelength capabilities to such an extent that a
sharp distinction between fission- and accelerator-driven neutron sources may
no longer be of relevance to the future of the discipline.

On a more practical front, the chapters that follow are meant to enable you
to identify aspects of your work in which neutron-scattering techniques might
contribute, conceive the important experiments to be done, assess what is
required to carry them out, write a successful proposal to a user facility, and
perform these experiments under the guidance and support of the appropriate
facility-based scientist. The presentation is aimed at professionals at all levels,
from early career researchers to mature scientists who may be insufficiently
aware or up-to-date with the breadth of opportunities provided by neutron
techniques in their area of specialty. In this spirit, it does not aim to present a
systematic and detailed development of the underlying theory, which may be
found in superbly written texts such as those of Lovesey [5] or Squires [6].
Likewise, it is not a detailed hands-on manual of experimental methods, which
in our opinion is best obtained directly from experienced practitioners or,
alternatively, by attending practical training courses at the neutron facilities.
As an intermediate (and highly advisable) step, we also note the existence
of neutron-focused thematic schools, particularly those at Grenoble [7]
and Oxford [8], both of which have been running on a regular basis since
the 1990s. With these primary objectives in mind, each chapter focuses on
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well-defined areas of neutron science and has been written by a leading
practitioner or practitioners of the application of neutron methods in that
particular field.

In the previous volume, Neutron Scattering — Fundamentals [9], we gave a
self-contained survey of the theoretical concepts and formalism of the technique
and established the notation used throughout the series. Subsequent chapters
reviewed neutron production and instrumentation, respectively, areas which
have profited enormously from recent developments in accelerator physics,
materials research and engineering, or computing, to name a few. The remaining
chapters treated several basic applications of neutron scattering including the
structure of complex materials, large-scale structures, and dynamics of atoms
and molecules. The appendix went back to some requisite fundamentals linked
to neutron—matter interactions, along with a detailed compilation of neutron
scattering lengths and cross sections across the periodic table.

The present volume is dedicated to the applications of neutron scattering
techniques to magnetic and quantum phenomena. The first chapter deals with
neutron optics and spin-labeling methods and also gives a broad introduction
to the interaction of neutrons with electronic spins in condensed matter. The
following chapters discuss recent developments in the use of neutron scattering
to investigate quantum phase transitions, high-temperature superconductors,
magnetic structures, multiferroics, nanomagnetism, and nuclear magnetism.
A third volume will cover applications in biology, chemistry, and materials
science.

In closing this preface, we wish to thank all authors for taking time out of
their busy schedules to be part of this venture, Drs T. Lucatorto, A.C. Parr, and
K. Baldwin for inviting us to undertake this work, and the staff of Academic
Press for their encouragement, diligence, and forbearance along the way.

Felix Fernandez-Alonso
David L. Price
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Eulogy

Janos Major

During the preparation of this book, we were saddened by the news of the
premature death of Janos Major, a prominent member of the neutron scattering
community and coauthor of the first chapter of this volume.

Janos spent the majority of his career in the Max Planck Institute in
Stuttgart, working with Directors Alfred Seeger and then Helmut Dosch. Janos
organized essentially all the neutron works in the Dosch department with a
focus on the original development of the SERGIS concept together with Gian
Felcher and Roger Pynn. This instrument approach exploits neutron spin echo
for encoding the momentum transfer of neutrons.

Janos was a wonderful person and an exquisite scientist. Those who
worked with him enjoyed his spirited experimental and technical skills, his
dedication to science, and his steadfast loyalty to his colleagues and students.

Helmut Dosch

Felix Fernandez-Alonso
David L. Price
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g Bound scattering cross section (0. + 0;)
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P Neutron flux (typically defined as neutrons crossing per unit area
per unit time)

10) Scattering angle (=26)
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1.1 INTRODUCTION

Neutrons are magnetic particles, they possess a magnetic moment, coupled to its
spin s = 1/2. The value of this magnetic moment is 4 = 1.913 Bohr magneton
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2 Neutron Scattering - Magnetic and Quantum Phenomena

Indeed, the specific interaction of the magnetic moment of the neutrons with the
microscopic magnetic fields created by magnetic atoms offers unique opportu-
nities to probe magnetism on the microscale by neutron scattering, often with a
sensitivity not equaled by any other microscopic probe. In addition, manipulating
and observing the direction of the neutron magnetic moment in spin-polarized
neutron beams is a very powerful tool to single out in neutron scattering exper-
iments what is related to the magnetic behavior of the sample in the scattering
signal, which is a mixture of contributions of different origins.

Going a step further, there also is another side to the story. The magnetic
moment of each neutron can also be used to keep track of other relevant pa-
rameters of a neutron propagating in a beam, notably the value and direction of
its velocity. In doing this, the neutron magnetic moment is used as a measuring
device attached individually to each neutron, which can deliver information on
the neutrons individually. Such methods are called “spin labeling” and they
can be advantageously used to observe fine changes in the neutron parameters
in a scattering process. For this reason, they can offer valuable opportunities
for exploring matter by any neutron scattering process independently of
whether it is related to the magnetic properties of the sample or not at all.

Thus when we talk about neutron scattering and magnetism, on the one
hand, we need to consider exploration of magnetism in a broad variety of
materials, and on the other hand, the opportunities the magnetism of the
neutron offers to study nonmagnetic and/or magnetic phenomena in another
broad variety of materials. While most of the rest of this volume is devoted to
the first of these two large subject cases, this chapter focuses on the overview
of the second one.

1.2 PARTICLE PROPERTIES AND INTERACTIONS
OF SLOW NEUTRONS

For the study of condensed matter by particle radiation, the key parameters are
energy and momentum of the particles, in other words their frequency and
their wave number. Namely, as commonly pointed out, radiation can most
efficiently probe the sample in the space—time domain that is comparable to
the frequency and wavelength of the radiation. Thus the subnanometer
wavelength of X-rays used by Laue and Bragg allowed them to directly
observe crystalline structures on comparable length scale for the first time.
Neutron radiation of similar wavelengths in addition has frequencies close to
those of atomic scale vibrations in crystalline matter, which allowed
Brockhouse to directly observe these atomic scale motions in unprecedented
details by neutron scattering. These frequencies are quite low compared to the
energy scale of nuclear physical phenomena, so in all what follows; we will
only consider slow neutrons in the far nonrelativistic limit.

The very simple and plausible statement about frequency and wavelength
of particle radiation already needs some conceptual refinement when quantum
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mechanics is a visible part of the story—as it is here by the de Broglie relation
between velocity and wavelength v = 27h/mA and Planck’s relation between
energy and frequency E =hw (where % is Planck’s constant, m the particle
mass, A and f = 27w are the radiation wavelength and frequency, respectively).
Quantum mechanics is of course the key background of everything we
experience around us, but in many cases this does not manifest itself explicitly
and we can work with classical mechanics. This is very fortunate; we would
never master many aspects of our technology if we would, for example, need
to use the Schrodinger equation of a steam engine for understanding and
predicting its behavior.

The first important reminder of this kind is that in quantum mechanics there
is no absolute frequency or wavelength for a radiation; it depends on the
reference frame we compare with. So, just by the existence of gravity, the fre-
quency of a neutron wave will be different by the amount corresponding to the
gravitational potential hg (where A is the height and g the value of the local
gravitational acceleration), which clearly depends on where % is measured from.
This relativity in quantum mechanics has nothing to do with Einstein’s relativity.
For the very fundamental reason of quantum mechanical relativity of the particle
frequency and wavelength (or the more frequently used wave number—often
inaccurately called momentum, also in what follows—k = 27/1), in comparing
energies and wave-numbers of radiation to phenomena on classically defined
length and time scales, such as the lattice spacing in a perfect crystal, we must
only consider frequency or wave number differences (commonly called
“transfers”) between two states of the particle radiation. To be more explicit, we
know exactly the value of the momentum transfer in a Bragg scattering process,
but additional, eventually arbitrary conditions need to be defined for translating
these values into absolute numbers for the particle parameters in a reference
frame. It is practically more significant to remember this in connection with
radiation frequencies, since the zero point of the potential energy cannot be
uniquely defined. For all practical purposes, one can consider the sum of all
potential energies—including that of a magnetic moment in a magnetic
field—to be set equal to zero in the “empty space at infinity,” at least in principle
on paper.

In order to define the properties of the neutron for the purpose of slow
neutron radiation experiments, we need to define its Hamiltonian in the low-
energy terrestrial environment of our experiments. It is a curiosity of the
history of physics that although the neutron was discovered in 1932, all
theoretical efforts remained inconclusive for the magnetic term in the
Hamiltonian related to its magnetic moment—until experiments in 1951
decided between the two main theoretically proposed candidates, with Nobel
laureates involved in the unsettled theoretical debate for two decades. This
actually indicates the fundamental fact that the discovery of the neutron and
its magnetic moment fundamentally defied our understanding of electro-
magnetism. The simple reason for this is that thinking about neutron
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scattering experiments raised for the first time the issue of overlapping
electromagnetic objects.

Although Maxwell’s theory does not rule out the overlap in space between
two electromagnetic objects, there were no practical cases to study such sit-
uations and the exclusion of overlap was assumed in all considerations. For
example, considering the magnetic fields inside magnetic matter it was
assumed that a probe needs to be considered in a hole inside the magnetic
media. It was established that for ellipsoidal holes demagnetization factors can
be defined and perpendicularly to a flat disc-shaped hole the magnetic field
inside the hole Hy, will be the corresponding component of magnetic induction
B of the magnetic medium, while along the axis of a pin-shaped hole it will be
equal to the corresponding component of the H field of the medium—
assuming that the holes do not disturb the magnetization in the medium. Felix
Bloch in 1937 tried to address the issue by assuming that the neutron could
create different shapes of holes for itself inside magnetic matter [1]. The
quantum mechanical reality, on the other hand, is that the neutron wave
function simply overlaps with the sample and its magnetization, without
causing significant deformation due to the weakness of its interaction, its
absence of electric charge, and the small neutron density in beams. Such a
situation just happened to emerge for the first time in physics history with the
magnetism of the neutron combined with its capability of traversing all kinds
of matter, including magnets.

The result of these 20 years of search concluded by experiments published
nearly simultaneously in early 1951 by Hughes and Burgy [2] and indepen-
dently by Shull et al. [3] was the following:

1. The Hamiltonian for the interaction of neutrons with magnetic fields and
substances is H = —p-B, where p is the magnetic moment vector of the
neutron and B the magnetic induction vector (B field) inside or outside
magnetic media. This in particular definitively implies that the neutrons do
not see or directly interact with the magnetic field H and with the magnetic
moments or magnetic moment density M inside magnetic materials. The
relation B = H + 47M also indicates that the magnetic field H are iden-
tical with B outside magnetized media that is characterized by the mag-
netic moment density M = 0.

2. The nature of the neutron magnetic moment is that of an Amperian current
loop and incompatible with a dipole represented by a pair of charges.

It is a surprise with respect to electromagnetic theory that Amperian cur-
rent loops and magnetic dipoles with fictitious magnetic charges at a small
distance from each other are not experimentally identical. But they indeed
behave very differently if the neutron trajectory crosses volumes with nonzero
current density j. By Maxwell equations, B is determined by the current
density distribution j via curl B =4wj/c and div B =0 (in Gaussian units
where c is the velocity of light). The magnetic moment density corresponding
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FIGURE 1 The difference between forces acting on a magnetic moment in the dipole (on the left)
and Amperian current loop model on the right.

to a given distribution of current densities is determined by the equation
curl M = j/c together with the boundary condition that M = 0 everywhere
outside the magnetic media.

The difference between predictions for neutron trajectories by the two
microscopic models of magnetic moments is illustrated in Figure 1 [4]. The
forces on the neutron traversing a magnetic field for the dipole and current
loop models respectively are:

Fg=F"+F" u grad)B = grad(p-B) — p x curl B (1)

1
F. = de = fdl xB=- /grad(B-df) - /(div B)df = grad(p-B)
2

where the definitions of the different forces F are shown in Figure 1, together
with the line and surface integration over dl and df. The magnetic moments in
the two cases are ed and If/c, respectively, with e standing for the magnetic
dipole charge and [ for the current in the Amperian loop. Equations (1) and (2)
give measurably different results if curl B « j is not zero. The more, Eqn (2)
defines a force corresponding to the potential energy —p-B. In contrast, the
force in Eqn (1) cannot be derived from a potential energy: different trajec-
tories between the same points lead to different changes of the particle energy
(i.e., candidate for a perpetuum mobile). Fortunately, the experiments by
Hughes and Burgy [2] have shown that the neutron acceleration on the surface
of a magnetized ferromagnetic layer corresponds to Eqn (2) and contradicts
Eqn (1). By going to the end of the arguments based on this observation, one
can inversely show that the magnetic moments in the magnetic material
interacting with the field created by the neutron magnetic moment can also
only be of the nature of Amperian current loops and not that of dipoles.

In sum, the key result of this old controversy is that for the interaction of
the neutron magnetic moment with fields created by macroscopic currents and/
or microscopic ones on the atomic scale inside magnetic matter can be
described by the Zeeman energy type Hamiltonian of

H, = _H'B(nt) 3

One important mathematical consequence of this equation is that when
we calculate the neutron scattering cross section related to this part of the
interaction, its Fourier transform in the space variable r as a function of the



6 Neutron Scattering - Magnetic and Quantum Phenomena

conjugated momentum transfer vector variable Q becomes —p-M (Q),
where the subscript L indicates the component perpendicular to Q. If in
Eqgn (3) we would have the H field instead of B, in the cross section formulae
we would in contrast end up with —p-M||(Q), i.e., with the component of
M(Q) parallel to Q. Shull et al. [3] used this difference with respect to the
direction of the momentum transfer vector to conclude in favor of the
Hamiltonian in Eqn (3).

With this established, the full Hamiltonian for slow neutron propagation
through space and matter becomes:

2mh?
m

H(r,1) = %mv2 —p-B(r, 1) + mgh + Zbi(l +cli-o)o(r —r;(r)) (4)

Here the summation goes over the Fermi pseudopotentials of all the nuclei
i of different elements and isotopes that constitute the materials the neutrons
traverse and/or scatter on. The interaction parameters (“scattering lengths”) b;
and c; are tabulated for the most common isotopes, together with the values of
the nuclear spins I;. Finally, o is the Pauli spin operator for the neutron and
r;(¢) the position of the nucleus i at time #. For neutrons with large wavelength
compared to the atomic distances (or, more precisely, for neutron momentum
transfers much smaller than the inverse of atomic distances), the summation
over the nuclei in Eqn (4) will result in an effective volume average nuclear
potential V,(r, ), that is determined by the local average of the scattering
length density over all nuclei within a volume element. If on average the nuclei
are polarized, i.e., their spin has a preferred orientation, the average of the
terms including c¢; will lead to a nonzero spin-dependent component of the
potential that acts on the neutron spin ¢ as an effective magnetic field. This is
called the nuclear pseudomagnetism and has been experimentally well
established by the work of Abragam and collaborators [5].

The values of the four terms in Hamiltonian (Eqn (4)) for representative
experimental conditions in neutron scattering are in the range of 5 meV for the
kinetic energy (at v=978ms '), 60neV for the Zeeman energy (at
B =0.995T), 100 neV for the gravitational potential energy (at z = 0.98 m),
and for most materials less than 250 neV for the volume average nuclear
potential, 250 neV being the actual value for natural Ni metal. These potentials
can be converted into the critical neutron velocities below which the neutrons
cannot pass the potential energy barrier and totally reflect. This leads for
example to critical velocities of 3.40, 4.42, and 6.92 m s~! for the three po-
tential energy terms in Eqn (4) for, respectively, B=1T, h =1 m, and the
isotopic composition and density of natural Ni metal.

It is important to note that the small volume average potential V,(r, t) for
the nuclear interaction term in Hamiltonian (Eqn (4)) does not imply that it is
always a small perturbation. In fact this term is the slow neutron limit of the
nuclear strong interaction which can become overwhelming. One overarching
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reason for this is that the parameters b; and c¢; generally are not real numbers
and can have a significant imaginary part, formally turning e.g., an extended
plane wave into a decaying wave. This corresponds to absorption of the
neutrons by nuclear reactions with the nuclei i. A high density of absorbing
nuclei in the sum turns part of the space into obstacles to neutron propagation.
The other reason is that by their point-like shape each & function potential term
in Eqn (4) adds a spherical wave centered on its position to the solution of the
Schrodinger equation. Constructive interference between the large number of
spherical waves in the summation over all nuclei i can represent a much larger
potential at certain wave number transfers than the volume average. The
probability of particle scattering processes is determined by the absolute
square of the Fourier transform V,,(Q) of the potential V,(r). This will thus
scale with the square of the number of particles within a coherence volume
element in the sample within which constructive interference of scattering
from individual nuclei i takes place (e.g., a small monocrystalline grain in a
polycrystalline sample). In contrast, the volume average potential considered
above scales proportionally to the number of particles involved. This
consideration also applies for the Zeeman term in the Hamiltonian (Eqn (4)):
the function B(r, 7) can show periodic variation inside coherence volumes for
constructive interference in a magnetic sample and lead to very strong per-
turbations in the solution of the Schrdodinger equation even if the volume
average of the magnetic potential remains in the weak range discussed above.
It is worth noting at this stage that in most practical samples the coherence/
correlated volumes of the microscopic structure is rather small (well below
1 mm), while in perfect crystals or in certain directions in low dimensional
structures it can reach several centimeters or more.

Solving the Schrodinger equation exactly for the Hamiltonian (Eqn (4)) for
any practical situation of a neutron experiment is a hopeless exercise, so what
we are concerned with is to find good approximations together with their
precise conditions of validity. As we will discuss in the next section, these
established approximations are very accurate in most of neutron scattering
work and in addition much simpler than, for example, for light and X-ray
radiations.

1.3 NEUTRON STATES AND WAVE FUNCTIONS

The energies involved in the various terms of Eqn (4) under common neutron
scattering experimental conditions as reviewed above fully justify of taking all
the potential energy terms as perturbations and work in terms of eigenstates of
free particles in vacuum, in absence of magnetic fields and gravity. The
complete set of eigenstates of the unperturbed Hamiltonian will then be given
by wave functions |¢) = |k, x), where the wave number vectors k of plane
waves can take any value in a continuum (and is related to the neutron velocity
v by the relation 7k = mv), and the spin variable x can take the two eigenstates
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|1) and || ) with respect to any defined coordinate system. All general neutron
states can be reproduced as a superposition of this continuum of eigenstates:

® = [(a (ke 1))dk = / ) Ya)eitr 0 dic

T > + a, (k)ei(krfwt)

* ‘X> fa(k)ei(k’_“”>dk
5

where the various amplitude distribution functions a are complex scalars. It is of
fundamental importance that the single particle state ® cannot be assumed to be
factorized into spatial and spin variables, as illustrated on the rightmost side
following the crucial # sign in Eqn (5). Instead, in general, it has a spin variable
part that itself is a function of wave number K, and the unfortunately widespread
imposition of factorization in the literature is at variance with the basic principles
of quantum mechanics. In reality, the exact quantum mechanical state of a single
neutron can also be unpolarized (i.e., zero expectation values for all three spin
components) as a result of superposition (which nowadays frequently is called—
without any change of meaning—*“entanglement”) over various wave numbers.
Such a superposition, usually arbitrarily factorized into a spatial and spin
component, is often called a “wave packet” and received a lot of attention in the
literature. We will show in what follows an efficient optical scheme for the
approximate solution of the Schrodinger equation for Hamiltonian (Eqn (4)) for
experimental slow neutron beam work which is in a sense the opposite of the
wave packet concept.

Wave packets are often considered to start with a minimum size compatible
with the uncertainty principle and due to the dispersive nature of the w(k)
function they spread in width with propagating in time. However, this
spreading just corresponds to the spreading out in space of a group of classical,
point-like particles due to their differences in classical velocity. For a nu-
merical example, a minimal size wave packet of 0.1 mm rms width and
average velocity of 1000 m s~ ' will spread by the uncertainty principle over
100-m flight path by only about 30%. In this wave packet, the spread of
neutron velocity is less than 1 ppm, so the packet can be considered as
monochromatic by any practical standards and measures in neutron beam work
(outside perfect crystal interferometry, for which we have excluded the clas-
sical picture by definition). So for the purists, the point-like classical particles
with at the same time perfectly defined position and velocity can be repre-
sented by such very monochromatic wave packets, in order to stay in
comfortable terms with the Heisenberg uncertainty principle. In reality, the
significance of this principle for nonrelativistic particle beam experiments, is a
simple mathematical consequence of Fourier transformation, which enters due
to the representation of spatial wave functions as a superposition of the plane
wave eigenfunctions of the free particle Hamiltonian. (For this reason the
“violation” of the Heisenberg inequality for the so-called “compressed”
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particle states is also of no significance: it is just elementary mathematics with
the Fourier transform of other than Gaussian velocity distribution functions.)

Another aspect of simultaneously measuring parameters that correspond to
noncommutative operators in quantum mechanics is the determination of the
components of the particle spin S. Here, any given quantum mechanical spin
wave function |x) has perfectly well defined expectation values for the spin
components operator (x|Sq|x), @ = x, y, z and these components form a vector
with absolute value |S|. In particle beam experiments, the result corresponds to
probabilities of detection inside well-defined parameter pixels and the particle
detection events are uncorrelated and reproducible repetitions. Therefore the
statistical precision of the results (probabilities) increases as /N with the
number N of events detected, and there is no principal limit on the precision of
determining any probabilities, i.e., expectation values. Therefore, while a
single particle detection event cannot correspond to perfectly defined value of
the three components of a spin operator, by collecting sufficient repetitions, the
expectation values of these components can be simultaneously determined
with unlimited precision.

Thus we can conclude that instead of speculating about quantum me-
chanical wave packets, in all experimental situations where particle trajec-
tories are subject to slowly varying environment for their propagation, every k
component in the particle wave function in the general representations of Eqn
(5) (which also includes wave packets) can be perfectly considered as a point-
like classical particle with for all practical (i.e., observable) purposes infinitely
well-defined classical trajectory r(f), hence similarly well-defined velocity and
wave number (related as v(r)=Kk(#)/hm) and spin S(7) at any instant along the
trajectory. Furthermore, the solution of the quantum mechanical equation of
motion reduces to representing the particle by a distribution of classical point-
like particles following the classical trajectories. The full beam thus becomes a
global, combined distribution of such point-like particle distributions repre-
senting putative quantum mechanical wave packets in the beam. It needs to be
stressed that, while this classical approach is fully well defined and unam-
biguous, nature provides no hint or recipe for constructing wave packets or
their distributions for real life slow particle beam experiments, for example,
whether a measured distribution of particle velocities corresponds to a single
coherent wave packet following Eqn (5), or it is an incoherent ensemble of
some number of more monochromatic wave packets with different average
velocities.

Looking at the part of Eqn (5) just before the # sign, one can observe that
for each value of k the neutron spin wave function |x(k)) is a simple super-
position of | 1) and || ) spin eigenstates. In the above sense, this means that the
expectation values of the three spin components S, = (x(k)|a4|x(k)) for
« =x, y, z form a classical spin direction vector S(k) of unit length (full po-
larization). Due to the Zeeman term in the Hamiltonian, this spin direction
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vector evolves according to the classical Larmor precessions, following the
equation:

—=7v;[SxB 6

dar el ] ©)
where for neutrons the Larmor constant y; = 29.164 kHz mT'. Furthermore,
the wave packet will advance in space with the group velocity i.e., in view of
the de Broglie equation with the classical particle velocity: dw/dk = v.

1.3.1 Wave versus Geometrical Optics in Neutron Scattering
Experiments

The above description of beam propagation in terms of classical particle tra-
jectories has been developed into high art over centuries of development of
optical devices of highest performance, together with full understanding of the
limits of conditions where wave optical effects can be neglected. We conclude
our general considerations on the propagation of neutron radiation in this light.
As well known from classical optics, wave optical effects are due to inter-
ference between possible optical paths, which will only be observed (i.e., do
not destructively average to zero) if the optical path differences between the
various possible geometrical trajectories a particle can take do not exceed
considerably its wavelength. Following Huygens’ principle, if the interference
between the various possible trajectories cancels to zero, we will be left with
the geometrical optical trajectory. In a typical scattering experimental setup we
work with beams of diameter d collimated over a distance [ > d between
diaphragms. The path differences between beam trajectories within such an

envelope will amount to the order of A = /2 4 d? — | = d*/2l. Deviations
from geometrical optics represented by the classical point-like particle tra-
jectories are expected if these path differences are comparable or less than the
wavelength of the radiation. In typical neutron scattering experiments
d ~ lcm and I ~ 10 m define the orders of magnitude, so we end up with
A = 500 nm, i.e., far above the radiation wavelength of interest 0.05—2 nm. In
comparison, for synchrotron X-rays d ~ 20 um and / is similar as above, and
we arrive at A = 0.02 nm, which is rather small compared to the wavelength A
in the range of 0.1 nm =1 A. Situations similar to X-rays are also common in
experiments with visible light, where A is much larger, ~ 500 nm.

Thus we can conclude that in typical neutron scattering work, geometrical
optics provides a very good approximation for describing the propagation of
the radiation across the instruments in sizable cross section beams. This re-
duces the high precision description of the neutron spin behavior along the
particle propagation to a particularly simple and reliable process: follow by the
classical Larmor equation of motion the point-like magnetic moment, which
experiences at any moment of time a well-defined local B = B(r(¢), ?) field
along a fully well-defined point-like classical particle trajectory r(z).
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In contrast in the case of electromagnetic radiations, in particular synchrotron
X-rays, wave optics is commonly required for describing not only the scat-
tering samples but inseparably including the scattering instruments them-
selves. Of course, wave optics needs to be used for describing the neutron
scattering processes in condensed matter samples, where the significant optical
path differences are due to the A scale microscopic arrangements of the po-
sitions of scattering atoms. The facility of limiting the wave optical approach
to the microscopic scattering process while the radiation propagation through
the scattering instruments can be treated independently and by the much
simpler geometrical optical means is a very important simplification in data
interpretation, which helps to make neutron scattering the most quantitatively
understood probe in particle scattering study of matter. Geometrical optics is
also valid for neutron propagation within the samples before and after the
scattering events (in particular in the case of multiple scattering). These events
are actually limited in space to the particular coherence volume in the sample,
where the scattering takes place. This coherence volume can be as small as a
single atom for incoherent scattering, correspond to a perfect monocrystalline
grain in a powder or mosaic single crystal, or extend to much of the whole
sample volume for a perfect single crystal or in a homogenous layer structure.

Similar considerations also apply to modulating particle radiation in time.
As long as the characteristic times of modulation are much longer than the
periods corresponding to the frequency range of the radiation, wave propa-
gation effects remain insignificant.

Interference between the various k components in the wave packet is the
basic principle of the wave packet picture; it is what makes the packet a packet
in space. Nevertheless, such interference in real beams has never been
unambiguously observed in experiments with Fermion particles [6], since the
putative coherence (phase relation) between the amplitudes at two different
wave numbers a(k) and a(k’) within the amplitude distribution becomes
random over different wave packages corresponding to different individual
particles. In an ensemble of particles this is the expression of the random phase
statistics: (a*(k)a(k’)) = 0 if k # K'. In Boson radiation, this phase coherence
can be induced by stimulated emission (lasers) or modulation by external
intervention by a macroscopic device, but it is also absent in spontaneous
emission. This leaves us with the common, time honored wisdom that any
particle can only interfere with itself (except for the cases of stimulated Boson
emission and external modulation mentioned above), i.e., on average in an
ensemble of particles only diagonal interference terms a*(kK)a(k) can be
observed, all the rest averages to zero.

This observation also has a maybe surprising logical consequence: the
inherent coherence length of radiation such as neutron beams is infinity.
Indeed, if the observable interference only can occur for infinite plane waves
with a well-defined wave number k interfering with themselves, infinite
coherence length is a basic part of the picture. There is no experimental
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evidence for the opposite, although many publications talk of coherence length
in an erroneous context. Any observed interference pattern is an ensemble
average over a large number of particles with a wave number distribution in
the classical sense. So the interference pattern is a classical average over all the
particles observed in the experiment, and it only proves that the inherent
coherence of each particle is larger than what appears in the results due to the
distribution of the parameters describing the states of each particle in the
ensemble. All experimental studies accomplished by now confirmed that such
a lower observed limit for inherent particle coherence length was simply the
inverse of the width of the proper cut across the classical wave number dis-
tribution f(k) of the more or less monochromatic ensemble of detected parti-
cles (fully independently of how the monochromatic selection of the particles
came about, e.g., by using a monochromator at the generation of the beam or
an analyzer before detection, or both, or something else). Particle beams
invariably show as much coherence as the fully classical mechanical beam
monochromaticity allows us to observe at all, with no sign of any underlying
limitation of quantum mechanical or particle property character.

1.3.2 Summary of High Precision Rules for Neutron Beam
Propagation

To summarize all the observations and considerations above, the complete set
of basic rules governing beam propagation in neutron scattering work is
recapitulated below, including all possible interactions of slow neutrons, in
particular all possible magnetic effects. Beam propagation between scattering
and absorption processes in samples and beam shaping devices and other
materials present (diaphragms, collimator, choppers, beam windows, guides,
air, etc.) can roughly be called beam optics, which in the case of neutrons are
classically deterministic. Probabilistic scattering and absorption by nuclear
reactions are the other part of the story. These rules are approximations with
more than satisfactorily precision and specific to neutron beam work by having
assumed typical geometrical configurations of neutron scattering experiments.
Expressions like “infinitely well defined” are used in the sense of comparison
with the precision that can at all be achieved in such experiments. These rules
do not necessarily hold for scattering work with other radiations, such as light
or synchrotron X-ray.

1. Between probabilistic scattering and absorption events inside matter, the
neutrons propagate as point-like classical particles with infinitely well-
defined trajectories r(f), each carrying a classical magnetic moment with
perfectly well-defined direction at any instance of time. (This is no
contradiction to the uncertainty principle: (1) classical distribution of
particle parameters also provides measurement uncertainties masking
smaller effects and (2) for a large number N of detected particles the
principal uncertainty limit is divided by v/N.)



Neutron Optics and Spin Labeling Methods Chapter | 1 13

2. The magnetic moment direction vector follows the classical Larmor pre-
cession motion governed by the Zeeman energy —p-B(r(¢), 1), where the
magnetic induction field B shows time dependence as seen by the point-
like neutron along its infinitely well-defined classical trajectory across
the magnetic fields both inside and outside materials. This energy repre-
sents a conservative potential if the B field is in itself time independent
B = B(r), and the sum of the kinetic and all potential energies remains a
constant over the classical trajectory of the point-like neutron.

3. The neutrons also follow classical mechanical trajectories (as determined
including the volume average nuclear potential V,) between quantum
probabilistic scattering processes inside matter. The probabilistic beam
attenuation due to scattering and absorption by nuclear reactions needs to
be factored into the effective description of the classical trajectories r(f).

4. Neutrons do not interact with magnetic moments in any other way than via
the Zeeman interaction with the B field, that can equally be well created by
macroscopic currents and microscopic ones related to magnetism in mat-
ters via the relation curl M = j/c.

5. The neutron scattering processes are of wave mechanical nature, in contrast
to the classical point-like particle propagation (1—3) between probabilistic
scattering events. They need to be determined using adequate quantum
mechanical approaches for both the Zeeman term in the Hamiltonian if the
B field shows short range variations and the term with the sum of the
nuclear interaction potentials of individual nuclei.

6. Scattering events that can be handled by approximate theories such as first
Born approximation involve correlated/coherence volumes of the scattering
matter, which is most often point-like small (<1 mm) on the scale of
neutron scattering sample volumes. Exceptions are large perfect crystals
(including neutron interferometers made from such crystals), for which the
Schrodinger equation must be essentially solved exactly without much
approximation.

7. In contrast to the finite, structurally correlated volumes that can coherently
contribute to the neutron scattering processes inside materials, the neutron
radiation by itself has no inherent limit of coherence lengths. Observations
of apparently limited coherence are due to classical averaging of the re-
sults over the classical (velocity) distribution of the effectively detected
particles. In neutron beams interference only involving a single well-
defined wave number k component of the initial particle state could be
observed by now, classically averaged over the classical distribution of
particle states k.

1.4 THE PRINCIPLES OF SPIN LABELING

In neutron scattering experiments, the initial velocity vector v; of the incoming
neutron is compared to final velocity vy of the scattered neutron, in order to
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determine the scattering probability as a function of the neutron energy
transfer and momentum transfer (or scattering vector):

1 1
E:hwzimvg—imv? (7)
1 1
Q= AT (8)

Conventionally this is achieved by creating a monochromatic and colli-
mated incoming beam with a well-defined distribution of the initial velocities
v;, which practically means eliminating from the incoming beam all neutrons
that are not close enough to the desired central value v;. The value of the final
velocity is then analyzed by an independent process of measuring vy
Achieving very high resolutions by this conventional approach might already
become impractical due to the prohibitively high beam intensity loss in
selecting the highly monochromatic incoming beam and analyzing the scat-
tered beam parameters with the same kind of elimination method. In spin
labeling, the spin of each individual neutron in the incoming neutron beam will
be used to measure the velocity and label the neutron by the result of this
measurement for the purpose of comparing it to the final velocity of the same
neutron after scattering. (If the neutron did not scatter, it will still carry this
initial state information while continuing its trajectory without change of
velocity.)

It is worth mentioning from the outset that the practical reason for resorting
to spin labeling is to refine resolution by the high sensitivity of the method
and/or the gain in intensity due the decoupling of resolution and beam
monochromaticity (e.g., in practice 0.001% quasi-elastic energy resolution can
be achieved with 10% monochromatic beam). Nevertheless, for defining all
the relevant scattering parameters (e.g., the momentum transfer Q in a high-
resolution quasi-elastic experiment), the incoming beam usually needs to be
monochromatized to a moderate degree and collimated, and the same can
apply to the scattered beam too. The incoming beam preparation and scattered
beam analysis/detection naturally involve spin polarization and polarization
analysis, respectively.

The simplest example is to consider a neutron on a well-defined straight
trajectory across a uniform magnetic field B, assuming that the free fall in the
earth’s gravitational field only negligibly changes the velocity (which is the most
frequent case). If we align the neutron spin perpendicular to the magnetic field at
a position xg along the trajectory, the Larmor precession of the neutron spin will
act as a clock attached to the neutron, and the time elapsed by the flight along the
trajectory will be measured by the precession angle ¢ = 27y Bt, where B = |B|.
(Note that this expression is numerically correct if the angle is measured in
radians and the frequency in Hertz units in the definition of v;, as given above.)
After advancing a certain distance / along the trajectory, the neutron flight time
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from position xy becomes a label of the velocity of the neutron by the relation
v =I/t. From a strict point of view, this labeling cannot distinguish between
precession angles ¢ and ¢ + 27n, where n is an integer number. We will see
below a simple experimental trick how to remove this ambiguity.

The point x( and the direction with respect of which the precession angle ¢
is measured is defined by a neutron spin flipper device, which can turn the
neutron spin direction away from the “natural” direction of being parallel to
the magnet field, as originally produced by the neutron spin polarizer device,
e.g., a magnetized neutron mirror. To envisage this, we need to be familiar
with two particular extreme cases of the solution of Eqn (6), beyond the ca-
nonical Larmor precession on a conic surface around the direction of a con-
stant field B with the angle between B and S remaining constant: namely the
cases of slowly and rapidly varying direction of the magnetic field B(7) =
B(r(r)) as seen by the neutron advancing along the trajectory r(f).

1. Adiabatic limit: If the change of the direction of field B(¢) is slow
compared to the angular velocity of the Larmor precession wy(f) =
2wy B(¢), the angle between B(f) and S(f) remains a constant.

2. Majorana limit: If the change of the direction of field B(?) is fast compared to
the angular velocity of the Larmor precession wy(f), the direction of S re-
mains unchanged during the time of the rapid jump of the direction of B(¢).

The simple rectangular coil device of usually one layer of Al winding
(quite transparent to neutrons) makes use of these limits for rotating the
neutron spin in a desired direction during the passage of the neutron across the
coil [7]. In the case shown in Figure 2, the direct current (DC) through the coil
creates a field of the same strength as the external constant field, i.e., inside the
coil the resulting magnetic field makes an angle of 45° with the external field
direction. When the neutrons enter through the windings inside the coil, 45°
jump of the field direction to the resulting field direction inside the coils
happens gradually through the thickness of the winding, but fast enough for
being in the Majorana limit, i.e., S remains in its original direction parallel to
the external field. Inside the coil the neutron spin will thus precess around the
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FIGURE 2 Neutron spin flipper coil operated by DC current. The figure shows the details for the
case of 90° spin flip, the same device can be used with different parameter settings for 180° or
other spin direction rotations.
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resulting constant field at 45° and it will exit the coil without substantially
changing direction inside the winding. If the parameters are set up such that
the neutron spin has the time inside the coil for a half precession, the direction
of S on exit from the coil will be parallel to the coil axis and perpendicular to
the external field. Thus the exit surface of the coil defines the position xo,
where the Larmor precession labeling starts and the axis of the coil is the
direction from which the angle ¢ is measured. The precession field has to
satisfy the adiabatic condition (1) above: if its direction changes along the
trajectory, it has to change adiabatically slowly. In practice, the thickness of
such a flipper coil can be 0.5—1 cm and the field inside the coil a few Gauss.

In order to determine the change of velocity of Larmor-labeled neutrons,
we need to reverse the angle of total precession at a well-defined point and let
them precess over a magnetic field with the same strength over an identical
length (more precisely, with same product of field and length). The most
common way to reverse the angle of precession is to apply a 180° spin flip by
the same way shown in Figure 2, just changing the field and orientation of the
coil with respect of the external field so that the resulting field inside the coil
is perpendicular to the external one and inside the coil the neutron makes a
180° precession around the coil axis. Such a rotation will leave the spin
component parallel to the field inside the coil unchanged, and reverse the two
others. This corresponds to a mirror reflection of a precessing neutron spin
direction with respect of the plane of the coil, i.e., transforming a precession
angle ¢ measured with respect to the direction of coil axis to —¢. Denoting
the precession angle in the second half of the trajectory after the 180° flip by
¢/, the total precession angle after the two precession sections will be
o7 = ¢ — ¢ and measures the difference of the two flight times, i.e., the
change of velocity for each neutron—if and only if the two precession sec-
tions in the trajectory before and after the 180° spin reversal are equal with
high precision. In practice, often this precision needs to be as good as
1—10 ppm, and exact calibration is crucial.

The sensitivity of the Larmor precession determination of velocity is very
high: e.g., for typical cold neutrons with 1000 m s~ ' velocity (for 3.956 A
wavelength) traversing 2 m of 50 mT field, ¢ ~ 1,100,000°, while in the
determination of the angular direction of neutron beam polarization 1°—2°
precision can readily be achieved. Concerning precision, the physical cali-
bration of the precession system would be a formidable task with this ab-
solute accuracy. But in neutron scattering, we are in fact interested in velocity
changes in a process, i.e., we have to only determine the directly observable
o1 = ¢’ — @ angle, which is the direct measure of this change. Of course, we
need a system with impressive stability to keep the directly not observable
angles ¢ and ¢’ stable with <1 ppm precision relative to each other for weeks
(e.g., stray magnetic field gradient must stay stable within 0.001 Gauss m™").

The more fundamental aspect concerning precision is, however, that the
individual labeling of neutrons allows us to observe minute changes in the
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velocity of a neutron beam which in other techniques are fully masked by the
scatter in the initial velocities of the neutrons in the beam. There is no chance to
determine the average velocity of a 10% monochromatic beam with 1 ppm pre-
cision, but by individual labeling it is common to measure 1 ppm change of the
velocity of individual neutrons by directly observing the expectation value @7 i.e.,
of the velocity change itself over all neutrons in the beam. The spin precessions in
a beam with neutrons of considerably different velocities start with a common
phase at x after the initial 90° flip, but rapidly get out of phase with distance from
the starting point, since the neutrons with different velocities spend different
times for covering the same distance. On the other hand—without change of
neutron velocity—¢ and ¢’ for all neutrons become equal again at one point of the
trajectory; namely where the second Larmor precession section becomes equiv-
alent to the first one. At this point, all neutrons possess O total precession angle,
i.e., all spins point in the same direction, and we observe an echo in the precessing
beam polarization, as illustrated in Figure 3. Any velocity change of neutrons
results into a value of 7 # 0, leading to a reduced contribution to the echo signal
(proportionally to cos ¢ instead of 1). The evolution of this echo signal as a
function of the sensitivity of the velocity labeling as scanning parameter is a
directly observed quantity in neutron spin-echo (NSE) spectroscopy [7,8], as
discussed in quantitative detail in Section 1.5 below.

In order to study the inelastic scattering by this way, we need to consider a
neutron trajectory that corresponds to the changed direction of the neutron at
the sample, which should be at the position of the 180° spin flip. One logical
reason to apply spin labeling is to allow us to gain intensity by using a much
less monochromatic incoming beam than the energy resolution we want to
achieve, thus the analysis of the scattered neutron spectrum always goes by the
observation of an echo signal. A given energy transfer E of the neutron in the
scattering event (cf. Eqn (7)) will more generally provide an echo signal at a
point in the trajectory if and only if the individual total precession angles of
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FIGURE 3 The principle of spin echo in a polychromatic neutron beam. The incoming beam
polarization is flipped by 90° at point A into the x direction perpendicular to the magnetic field
extending from A to C, and starts Larmor precession around the field. At point B, the angle of the
Larmor precessions is reversed by a 180° flipper and at point C, the initial precessing polarization
is restored by the echo effect with O total resulting precession angle (equal amount of forward and
backward precessions) for all neutrons independently of velocity, all neutron spins point again in
the same x direction, as they started at point A.



18 Neutron Scattering - Magnetic and Quantum Phenomena

neutrons with different incoming velocities become to be in phase, i.e.,
independent of the incoming neutron velocity:

a(pT(viaE) _ i’)’ (del)Z _ (del)l — 0, (9)
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where the subscripts 1 and 2 refer to the field integrals along the first and
second precession sections in the trajectory. Performing the differentiation, the
solution of Eqn (9) reads
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This NSE condition for the energy variable can be practically well fulfilled
by properly choosing the ratio of the magnetic field integrals 1 and 2 for the
given average velocity of the incoming beam. The example of determination of
the lifetime of the roton excitation in superfluid “He (whose energy varies little
over a substantial Q range) illustrates the process [9]. Here E = 0.74 meV, the
incoming neutron velocity was chosen to provide initial neutron energy
%mv% = 4.2 meV on average with 8% precision. The accuracy of the NSE
measurement achieved for the line width of the roton excitation was <1 peV,
i.e., less than 0.02% of the incoming energy and 0.13% of the energy
change—Dby far out of reach of other neutron spectroscopy approaches for the
study of the elementary excitations.

1.4.1 Practical Spin Labeling

In the previous section, we have considered as example the general case of
Larmor labeling for the inelastic/quasi-eleastic scattering along well-defined
neutron trajectories. In a practical experiment of this type we need to deal
with a large number of neighboring trajectories both in terms of beam cross
section (which can be as much as 3 x 3 cm at the sample and 20 x 20 cm at a
position sensitive neutron detector) and angular divergence of the beam. The
neutron path lengths will be different over the ensemble of these trajectories,
which will lead to a blurring of the Larmor precession angles ¢ and ¢'.
Furthermore, the magnetic field will have some inhomogeneities across the
beam cross section, which will lead to the same effect. The largest differences
in path lengths would come from neutrons scattered at different positions in
the sample, which, e.g., results in some 3-cm path difference between the
inside and outside edge of a 3-cm wide sample at scattering angles around 60°.
This amounts to about 1% of a thinkable flight path from sample to detector.
The high-precision potential of Larmor labeling for velocity measurement can
only be taken advantage of by eliminating the effect of such path differences in
and around the sample. The simplest and most common way is to keep the
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magnetic field on the sample small, just enough to ensure adiabatic conditions,
which practically means less than about 1 Gauss. In such a field, 3-cm path
difference for 1000 m s~ fast neutrons amounts to less than +15° difference
in Larmor precession angle, i.e., only a small impact on the amplitude on the
oscillatory echo signal with 360° period (cf. Figure 3). To achieve the trade-
mark high-resolution range, in contrast, the average magnetic field along the
few meter Larmor precession sections need to reach >10 mT, i.e., the field
needs to display a strong gradient along the trajectory, which also implies
some field inhomogeneity across the beam cross section perpendicular to the
propagation direction. By careful magnetic design and the use of a set of
fine correction coils across the beam, solenoid-type magnets can be
tuned to provide in the range of 10 ppm homogeneous field integral ( [ Bdl), —
(/ Bdl), over all possible trajectories within the above-mentioned substantial
beam cross sections and corresponding beam divergences. Common examples
are the so-called Fresnel corrections coils corresponding to a spiral in a plane,
defined in polar coordinates (r, ¢) by the equation r = \/a¢, where a is a
constant (Figure 4) [10,11].

A different approach to perform the spin labeling and control the in-
homogeneities along the trajectories is to use time-dependent spin modulation
and monitor the neutron velocities by the time delay of the arrival of the initial
modulation pattern, instead of the amount of Larmor precessions along the
trajectory. This can be achieved by using a rather high field DC coil (similar in
geometry to the flipper coil in Figure 2) in order to produce the DC operating
field B for a standard NMR type radio frequency (RF) neutron spin flipper
placed inside this high field DC coil. The RF flipper frequency in the range of a

FIGURE 4 Examples of in-beam coils aimed at improving the homogeneity of solenoidal Larmor
precession coils in neutron spin-echo spectroscopy. The left-hand side is a 70-mm diameter Fresnel
spiral coil first tested and in use since 1979 [10]. On the right-hand side the higher performance
“Pythagoras Fresnel” version (two perpendicular structures one after the other) that can handle 20-cm
beam diameter at the detector and can help to tune the precession field integrals approaching 10 ppm
homogeneity over that large detected beam diameter and corresponding beam divergence [11].
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few hundred kilo Hertz corresponds to the Larmor frequency v;B, and the
amplitude of the RF signal will be tuned to 90° spin flip. It is a natural feature
of such RF flippers that the direction of the flipped spin will be perpendicular
to the operating DC field B, with a time-dependent initial direction ¢(r)
rotating around B with the RF frequency wp of the flipper: ¢(t) = ¢ + wpt. If
we keep the magnetic field zero outside the RF flippers, this direction of the
neutron spin will arrive unchanged to a similar flipper at the end of a timing
base of length /| of the first spin labeling just before the sample with a time
delay corresponding to its velocity ¢; = I;/v;. This second 90° flipper operating
synchronously to the first one at the same frequency wg will turn the neutron
spin into different directions between the original before the first flipper and its
opposite, depending of the time delay #; it arrived with. Thus, as above, the
spin direction after this flipper is a label for neutron velocity, but now as a
function of time instead of distance along the trajectory. A similar pair of RF
flippers can be used to analyze the neutron velocity changes by the echo, with
the difference that now the beam propagation happens without Larmor pre-
cessions in zero fields and the label is to be read with respect to a clock time
provided by the RF flipper frequency. This labeling approach is called reso-
nance neutron spin echo (RNSE) or zero field neutron spin echo (ZFNSE)
[12], in contrast to the “classical” NSE with time-independent labeling, as
described above.

Beyond flipper coils (DC or RF, both of which are to be tuned to and used
for a more or less monochromatic neutron beam) there also are other ways to
set the neutron spin into a given direction for labeling purposes. The so called
“current sheet” devices will be discussed in more detail in Section 1.6.2. They
have the particularity that they can operate with practically “white” (non-
monochromatic) beams [37]. For a single beam trajectory, the two approaches
(i.e., NSE with spin labeling as a function of space along the trajectory in a DC
field configuration and RNSE with spin labeling as a function of time in zero
field beam propagation configuration) give by principle identical results.
Indeed, the sensitivity on individual particle velocity in beam experiment
involving spin precessions depends on the difference between the frequency of
the flipper devices used and the average Larmor frequency (w;) over the
trajectory between flippers. If wp = (w.), the Larmor precessions remain
synchronous to the RF field in the flippers over the trajectory, i.e., their
velocity-dependent time-of-flight has no impact on the final spin direction.
This is the basis of many ion beam experiments, e.g., for the fundamental
Ramsey split coil flippers. For spin labeling of velocity, the sensitivity is
proportional to the difference |(w;) — wp|. In NSE, the frequency of the DC
flippers is 0, and the average Larmor frequency is the scanning parameter, in
RNSE, it is the other way round. If we define for a spin labeling unit (which
consists of two flippers operating at a common frequency wr and a beam
propagation section with magnetic field B in between) the effective precession
field as Begf = |B — wplyr|, the two approaches—or they mix—can be
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considered in identical terms. In principle, both B and wf can be non-zero [13],
whose combination can, e.g., be used for extending the dynamic range of the
scanning parameter to values very close to 0 (i.e., no sensitivity to neutron
velocity, which cannot be practically achieved otherwise). For practical
completeness it is to be noted that (1) a flipper can be common to two sub-
sequent spin labeling sections and (2) wr can be different of the RF frequency
driving a complex flipper: the common bootstrap technique of flippers with
two RF coils one after the other can double the effective flipper frequency
compared to that of the RF power used [14].

Although the principles are identical, from practical/experimental point of
view there are subtle differences between the two spin labeling approaches
considered by now. The most fundamental one is the geometrical definition of
labeling inhomogeneities in an ensemble of trajectories with finite beam cross
section and divergence. In the RNSE technique, the base for time-of-flight
velocity encoding is defined by the surfaces of the flipper devices, repre-
sented by the operating field coils. For such a piece operating under consider-
able energy load 0.1 mm effective geometrical precision is already an
engineering feat, which implies about 100 ppm blurring of the velocity labels
between different trajectories for practical section lengths. On the other hand,
by careful p-metal shielding, the homogeneity of the “zero” magnetic field can
be realized with high accuracy as measured by the amount of spurious Larmor
precessions in the intended zero-field domains, whose shape is very well defined
by the flipper device surfaces. In NSE, the magnetic precession field regions
have no sharp, geometrically materialized boundaries, instead the homogeneity
is finally achieved by electromagnetic fine-tuning, as discussed above, to about
10 ppm precision, equivalent to 0.01 mm path length differences.

A key feature in spin labeling work is the need to make the neutron carry
the label through the scattering process and other interactions with the sample.
This is automatically fulfilled for nonmagnetic samples and scattering pro-
cesses in the absence of strong magnetic fields on the sample, since there is no
change of spin direction (although the spin polarization signal is reduced to 1/3
and turned in the opposite direction for nuclear spin incoherent scattering). For
magnetic scattering processes and samples in high magnetic fields, the spin
direction undergoes specific changes in the scattering process and/or on pas-
sage through the sample environment magnet. This calls for special flipper
configurations around the sample for “saving” the labeled information (in
some cases at the price of 50% loss of the spin label signal/background ratio),
which will be discussed in later sections below together with typical experi-
mental examples. Among others, NSE experiments have been successfully
conducted with high magnetic fields up to 7 T on the sample [15].

Sample environment equipment can also detrimentally interfere with the
information carried by the neutron spin (e.g., heating coils in furnaces,
superconducting sample holders or other close structural parts at low tem-
peratures, etc.), but such effects can be avoided by proper design.
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Ferromagnetic samples represent a special case, if they are not magnetized
to saturation by a sizable magnetic field: ferromagnets (and ferrimagnets)
containing a random distribution of magnetic domains depolarize neutron
beams, i.e., all or much of the spin label information gets lost. At the price of
some additional intensity loss, one can convert the spin label information to
intensity modulation by adding a neutron spin analyzer in front of the sample,
which converts the spin label for the neutron velocity into beam intensity
modulation label as a rapidly oscillating function of velocity [16]. For the
analysis, the beam needs to be repolarized after interaction with the sample. An
experimental example will be discussed below with more details. A similar
scheme of transcribing the spin label for velocity into intensity modulation label
in relation with RNSE has been established under the acronym MIEZE [17]. In
this case a more complex, focusing intensity labeling scheme is used which
provides a time-dependent echo at a focus point after the sample, which can be
directly observed by the oscillation of the count rate as a function of time.
Without spin labeling after the scattering, in this method, the neutron path
length differences between different trajectories (up to the point of absorption in
the detector) set the limits of resolution, and they can be in the range of 0.5 mm.

1.4.2 Choices of Neutron Parameters for Spin Labeling

Up to this point, we have considered the most common case of spin labeling:
encoding the absolute value of neutron velocity around well-defined neutron
trajectories for the purposes of spectroscopy. Two main generalizations have
been established by now: using spin labeling to simultaneously determine
changes in the absolute value of the velocity of the neutrons in scattering
processes over a wide angular range (from O to some 145°) and to track
changes of the direction of the neutron velocity. Both can be achieved by
choosing the shape of effective precession field Beg regions of the labeling
units. A rather straightforward solution for high-resolution spectroscopy in a
wide range of scattering angles is the use of circular precession field config-
uration. This can be achieved in NSE by concentric ring-shaped magnets with
several meters of diameter around the sample area as the spin precession
domain for the scattered neutrons [18]. A similarly straightforward solution for
labeling a component of the neutron velocity (instead of its absolute value) is
offered by parallelogram-shaped effective precession fields. Figure 5 illus-
trates the effective fields we need to implement for these alternatives, viewed
from above for horizontal scattering plane.

Here we assume that the effective precession field B is negligible outside
the considered shapes. The time for the neutrons to cross two parallel sides of
the parallelogram shape (independently from direction and position) is
t=1/vy =1/(vn), where v, is the component of the neutron velocity
perpendicular to the parallelogram sides it crosses, and n is the unit vector
perpendicular to these parallelogram sides.
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(a) (b)

FIGURE 5 Shapes of effective spin labeling Larmor precession fields for different applications
discussed in the text. (a) Cylindrical symmetry centered on the sample position with an axis
perpendicular in the median scattering plane for continuous wide angle detector coverage from 0 to
+145° for neutron energy labeling [18]. (b) Parallelogram with the neutron beam traversing
opposite “tilted” faces compared to the median beam direction for combined neutron energy and
momentum labeling [21].

There are two successful established cases for using spin labeling with
parallelogram-shaped fields, also called “tilted” or “inclined” fields, where the
angle between the front face and the average direction of the neutron beam is
called “tilt angle.” If one assumes, as customary for “elastic” neutron scat-
tering experiments (such as SANS or reflectometry) that the inelastic scat-
tering processes have negligible cross sections, the change of v, in the
scattering process will be the measure of the change of the neutron direction at
constant velocity, i.e., of the neutron momentum transfer Q [19]. Analogously
to the appearance of the neutron spin-echo signal for the case of no neutron
energy transfer, as discussed above, we will observe an echo corresponding to
the case of no momentum transfer (i.e., straight beam propagation) if the tilt
angles of the labeling and analyzing “tilted” field regions, respectively before
and after the scattering sample, are of the same value x. The scanning
parameter that determines the sensitivity of the setup to the change of neutron
propagation angle in the scattering process is proportional to tan 7, as it will be
discussed below in connection with experimental examples. A most recent
development in the design of tilted fields for spin-echo applications was the
introduction and testing of superconducting Wollaston prism-type magnetic
DC coils, which can achieve as high as 85° tilt angles for NSE configurations
[20]. Physically tilting of the RF flipper units in NRSE setups is adequate up to
about 70°.
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FIGURE 6 Magnon energies and linewidths (inverse lifetimes) throughout the Brillouin zone as a
function of temperature in the prototypical antiferromagnet MnF, as determined by resonance
neutron spin-echo spectroscopy installed on triple axis spectrometer for achieving unprecedented
sensitivity in the determination of lifetimes and energy shifts of dispersive (dE/dg # 0) elementary
excitation [22].

The final, most general labeling method to be considered here is to use the
above tilted field approach for inelastic scattering, i.e., without the elastic
scattering assumption we have just discussed. The tilting of the fields makes
the spin label depend by the relation # = //(vn) on a combination of the ab-
solute value and the direction of v. It has been shown that by the proper choice
of the three parameters, the tilt angles of the two field shapes before and after
the sample and the ratio of the effective field integrals f Besrdl of the two field
regions before and after the sample, an echo signal will be created for scat-
tering on an elementary excitation around a given point in the (Q, w) space
with a given local slope of the dispersion relation dE/dQ,, in a given direction
o within the scattering plane (where Q,, is the component of Q in the direction
of ) [21]. Adding spin labeling option to a triple axis spectrometer used to
select the (Q, w) point in the reciprocal space, the high resolution capability of
NSE can be used to determine elementary excitation lifetimes and shifts with
otherwise unachievable resolution [22] (Figure 6).

1.5 NEUTRON SPIN-ECHO SPECTROSCOPY

The Larmor precession of neutron spins have found a revolutionary applica-
tion as invented by F. Mezei [7] in the so-called NSE method. Subtleties of the
method are described at various places [8,23], here we summarize only the
basic idea. Let us consider a polarized neutron beam that traverses a magnetic
field region between point R; and R;, with field direction perpendicular to its
polarization. According to the description we gave above, the neutron spin will
start to precess. The angle of precession for a neutron with velocity v will be
given by:
Ry

d/
o= [ BOIS (an

R,
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as y; = 2916.4 Hz Gauss ™~ '. For example, neutrons with a wavelength of 4 A
in 10 Gauss field will make a full turn in 3.5-cm distance. A finite width in the
velocity distribution will quickly lead to the dephasing of the precession an-
gles of the neutrons in the beam. However, if the neutron beam will traverse
now another magnetic field region (R3, R4) with opposite field direction, the
total angle of precession will read:

T af di T a i
or=vo [ BOIS v [ BT = [ B [ B
R, R; Ry Rs

v

12)

If the two field integrals are equal, the total precession angle will be zero,
independently of the velocity, thus the wavelength, of the neutrons! Placing a
polarization analyzer behind the second precession section, it will transmit the
neutrons with a probability of cos(¢7).

This idea can have several applications. For example, placing a sample
between the two regions of precession, the scattering on the sample can
modify the neutron velocities and the total precession angle might not be zero
for all neutrons. If the probability that a neutron scattered with an energy
exchange of w at the scattering vector of Q is S(Q, w), then in first order in w
the beam polarization in the echo signal is:

Prse(Q, Tnse) = Pofde(Q’ w)cos(wns)

(cOS(07)) 114 13)

JdwS(Q, w)
1(Q, tNsE)
Pnse(Q, tnse) = Po———, (14)
where I(Q’ 0)
h B(r)|d/
ox = L B (15)

I(Q, 1) is the intermediate scattering function, which measures the decay of
correlation inside the sample with time. tnsg can be varied by varying the
precession field strength and/or choosing different neutron velocities. Typi-
cally it is in the range from picosecond to close to microsecond, or the
equivalent hundreds of microelectron volt to nanoelectron volt energy ex-
change. The great advantage of this method is to be able to measure with close
to 107 precision the energy exchange without the need to monochromatize
the incoming beam accordingly.

Here we considered only the w dependence of S(Q, w). We can also shape
the magnetic field region such as to introduce a dependence of ¢7on Q. In this
case, Pnsg will be a transform of the scattered intensity also in Q. We need to
keep in mind; however, that both dependencies might be present. For example
one always uses finite beam size and sample size. The path length difference
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between parallel and 0.5° inclined trajectory di/I is already 3.8 x 107>, thus
too big compared to the precision we are aiming for. Even worse, if the
magnetic fields are generated by the most symmetrical cylindrical geometry
[10] even in the most optimized case [24], the distribution of the magnetic field
integral for different trajectories is not better than 10! Luckily, as was
established by Mezei [10], in-beam correction elements can improve the sit-
uation by about a factor 100, leading to the targeted 10~ precision.

What will be the effect of the remaining inhomogeneity? If for all trajec-
tories ¢7 is not strictly zero then in Eqn (13)

(c08(97) )y < 1.0 (16)

Thus even for a strictly elastic scatterer Pnsg(Q, Tnsg) Will decay as a
function of Fourier time tnsg. The quasi-elastic scattering on the real sample
will just make Pnsg(Q, Tnsg) decay further. We just have to divide the curve
measured on the sample by the one measured on an elastic standard scatterer,
and we are done with the resolution correction. In fact this emerges from the
fact that we are measuring the Fourier transform of S(Q, w). In the w space the
resolution correction is a deconvolution, which in the Fourier transformed,
time-dependent space becomes a simple division.

1.5.1 NSE Spectroscopy for Nuclear Scattering

Let us consider a few simple cases, for example, identical, non interacting
objects largely separated in space compared to their size, like colloidal par-
ticles in a liquid media.

By definition

1(0,1) = <Zbibie*iQ'(R/‘(l)*Rf(0))> (17)
ij

where b; and b; are the scattering lengths of the atoms i and j, respectively at
position R;(#) at time ¢ and R;(0) at time zero. Let us decompose these vectors
to ones which point to the center of the mass and a vector which points into the
object: R{(#) = Rem(?) + rj(2). If the center of the mass motion is independent
from the internal motions of the objects, then we have

10,1) = <€*Q'(RCM(Z)*RCM(0))><Zbibie*iQ'(’j(f)*ri(0>)>
ij

= einDt<zbibie7iQ' (ri()=—ri(0)) >
ij

Here the first factor will describe the center of the mass diffusion and the
second one the internal motions.

When the object is really a rigid body, simple Lorentzians will be
measured, and by fitting ¢~ 2Dl the diffusion constant D can be extracted and it
will be a constant as a function of Q (Figure 7).

(13)
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FIGURE 8 NHerf, a flexible multidomain protein [25]. Red (upper curve, partially deuterated)
and blue (lower curve, nondeuterated) empty symbols are D.g(Q) values as derived from neutron
spin-echo measurements. Full symbols are the diffusion constants for the same samples as
measured by PG-NMR.

On the other hand for a flexible object, which shows internal motion on the
time scale we are measuring, due to the properties of the Fourier trans-
formation, when Q increases and 1/Q becomes comparable to the size of the
object, we might start to see the internal motions, potentially including the
rotational diffusion. An example is shown on Figure 8, for a flexible protein
molecule [25]. At low Q values, we recover the pure center of the mass
diffusion as verified by pulsed field gradient NMR, at high Q we start to see an
addition contribution (which looks like an increase in the effective D(Q)).

In a strict mathematical sense, the I(Q, ) should become a sum of expo-
nentials with Q dependent prefactors. However, experimentally it becomes
visible only if the time scales are well separated and the prefactors are suffi-
ciently large. This is the case on Figure 9, where the form fluctuation of
microemulsion droplets is much faster than the center of the mass diffusion
[26], and due to an interplay of the form factors become particularly visible at
a given Q.

We can consider as a limiting case a long polymer, where practically only
the internal motions are visible. For a very long chain, the center of the mass
diffusion might contribute a negligible decay in the measured time window
(0’Dt < 1) (Figure 10).

Another complication rises with interaction between the objects. As we
deal with coherent scattering, at finite concentration and/or with strong, long
ranged interaction, the objects do not move any more independently and what
we measure is the collective diffusion. In the static small-angle scattering, the
measured intensity becomes:

1(Q) = NS(Q)P(Q) (19)
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FIGURE 9 1(Q, 1) of TDMAO (nonionic surfactant 4 oil in water) microemulsion droplets in
shell contrast at Q = 0.6 nm~'. The logarithmic Y scale reveals a first relatively fast (~ 10 ns)
decay, identified as shape fluctuation, followed by a slower decay corresponding to the center of
the mass diffusion [26].
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FIGURE 10 Left: I(Q, 1) polystyrene (MW = 6.77 x 10°) semidilute solution in dueterated
benzene. The center of the mass diffusion should show negligible decay. Right: Similar curves
measured at two temperatures and two concentrations scaled by Q% showing that the Zimm
prediction is obeyed. Data from Ref. [27].

where P(Q) is the scattered intensity of a single object, N is the number of
objects, and S(Q) carries the information about local order which builds up due
to the interaction. In /(Q, ?) in first approximation this will show up as:

1(0,t) = e_QZS?_QI><Zbibie*iQ'(’.f(t)*r,-(o))> (20)
i,j
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FIGURE 11 Left: I(Q, 1) of Cay4Ko¢(No3)14 glass at different temperatures at Q = 17 nm ™.
Right: The same curves scaled by the macroscopic viscosity. Data from Ref. [28].

The renormalization of the effective diffusion constant from D to D/S(Q) in
comparison to Eqn (18) is the so-called deGennes narrowing. In fact deGennes
derived this expression for simple atomic liquids, but it also holds for a so-
lution of colloids.

Dynamics of relatively simple liquids also becomes more complicated
when they can reach glass transition without crystallization. The glass tran-
sition is characterized by a structure which remains amorphous, but the
macroscopic viscosity diverges at a given temperature. NSE can probe this
slowing down on a microscopic scale. Interestingly, at first glance the atomic
motion seems to slow down with the same rate as the macroscopic viscosity.
Here the capability of NSE to measure /(Q, 7) as a function of time becomes
invaluable. It could be seen immediately that the decay of I(Q, f) is no more a
simple exponential but a stretched exponential. Another aspect is that I(Q, )
does not seem to extrapolate to 1 at r =0 (Figure 11).

This means that somewhere between r = 0 and our experimental shortest
time some other fast process takes place, leading to this drop. This was pre-
dicted theoretically by the mode coupling theory and later found also exper-
imentally [28].

1.5.2 NSE Spectroscopy in Magnetism

We have to examine how the specific interaction of the neutron spins with the
magnetic moments in the sample influences NSE. A ferromagnetic sample has
a magnetic field inside and its return field outside, even worse, most likely will
consist of randomly oriented magnetic domains. This will lead to uncontrolled
precession of the neutron spins, thus a loss of the spin-echo signal. First we
limit our discussion here to the case of paramagnets with some comments on
antiferromagnets. As was pointed out, the neutrons will only “see” the
microscopic magnetic field B(r) inside the sample, which enters the scattering
cross section formulae by the Fourier transform B(Q). It can be shown on the
basis of Maxwell equations that B(Q) = M (Q), where M | is the compo-
nent of magnetic moment density perpendicular to the scattering vector Q.
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If the neutrons propagate in the z direction and the precession plane is in the x,
y plane, we can write the beam polarization as

cos(wt)
P =Py | sin(w?) 2n
0
If Q points in the x direction, then the P, component will be fully spin
flipped, thus P, => —P,, while the y component will be spin flipped with 50%

probability and not spin flipped also with 50% probability if the paramagnet is
isotropic [21]. After scattering, the polarization can be written as

| cos(wt) —cos(wr)
P= EPO sin(wt) | + EPQ sin(w?) (22)
0 0

We should notice that the action of the 180° flipper in the NSE spec-
trometer is to reverse the precession plane around, e.g., the y axis, thus leaving
the y component unchanged and reversing the x component. Scattering from
isotropic paramagnet due to the second term in Eqn (22) will give an echo with
50% reduced amplitude and without use of a 180° flipper. The very nice
feature here is the fact that without 180° flipper the nuclear scattering will not
give any echo, thus there is no need for background correction, and unam-
biguously only the magnetic scattering will contribute to the echo signal.

We still need to solve the problem, how to determine Py. Indeed in a
simple polarization measurement switching a 180° flipper on-off gives spin
up and spin down intensities, and coherent, incoherent, and magnetic scat-
tering will contribute with different signs, and it is not possible to separate Py
for the magnetic scattering. The way out is the xyx polarization analysis. If
instead of measuring up and down while keeping the beam polarization in the
z direction we repeat the up, down measurements in the x, y, and z directions,
the magnetic contribution thus can be separated [29]. Let 'us illustrate the
power of the technique on the Ho,TioO7 compound [30] (called spin ice),
where at low temperature the magnetic structure approaches a frozen state
(Figure 12).

All our description above supposed an isotropic paramagnet. It also ap-
plies for antiferromagnets if the magnetic domains (or single crystal grains)
are randomly oriented. It is not unusual to have antiferromagnetic single
crystals. In this case, special care has to be taken whether it is also a single
magnetic domain or not and what are the orientation of the magnetic mo-
ments relative to Q.

As mentioned, ferromagnetic samples have the problem of depolarizing the
neutron beam. With some specific tricks this problem can be partially cir-
cumvented. One possibility [21] is turning one component along the preces-
sion field before the sample and applying a strong field on the sample, which is
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FIGURE 12 Slowing down of I(Q, t) of Ho,Ti,O; which is a topologically frustrated ferro-
magnet. Data from Ref. [30].
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FIGURE 13 Spin dynamics in Fe at and just below the critical temperature [16]. At T.-3 the
magnon peaks are already sufficiently separated and narrow to observe a damped oscillation

in K(Q, 1).

strong enough to overcome the magnetic field of the randomly oriented do-
mains. This of course might influence the physics to be studied. Another less
intrusive method is the intensity modulated neutron spin echo (IMNSE) [11]
which is more costly in neutron intensity as in addition the beam has to be
polarization analyzed before the sample and repolarized after it with the losses
this implies. IMNSE was first used to measure critical magnon dynamics of Fe
just under the ferromagnetic transition (Figure 13), where applying of an
external strong field would completely change the dynamical behavior.
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1.6 NEUTRON SPIN-ECHO FOR ELASTIC SCATTERING
AT SMALL ANGLES

Small-angle neutron scattering (SANS) experiments can be performed with the
help of the spin-echo labeling techniques. Such approaches are referred to by
different acronyms, SERGIS and SESAME are often used examples [31,32]. In
general, a SANS setup or a reflectometer strongly resembles a standard diffrac-
tometer, however, with a very limited Q range and very accurate angular resolu-
tion. Therefore, such facilities are most suited for the study of mesoscopic
structures, i.e., from nanometer up to the micron range. To reach the good angular
resolution of these setups, the incoming angular beam divergence has to be kept at
aminimum in the apparatus. This requires the use of very narrow slits, which again
causes a considerable decrease in intensity. This fact makes the intrinsic intensity
limited character of neutron sources even more severe. The schematic experi-
mental arrangement of such a conventional setup is shown in Figure 14.

By implementing the spin-echo spin labeling technique we may compensate
for this intensity loss, by encoding the scattering information into the polariza-
tion of the neutron beam. In this setup the neutrons traverse two identical
magnetic field regions, one before and one after the scattering event. The po-
larization of the out-coming neutron beam will decrease as a result of a scattering
process. If these magnetic regions have a particular shape (i.e., flat borders that
are inclined with respect to the symmetry axis of the experiment), the remaining
polarized fraction of the neutron beam can give information about the scattering
distribution. The measured quantity (polarization) is proportional to the one-
dimensional projection of the spatial correlation function of the scattering po-
tential along the transverse in-plane direction. Generally, spin-echo methods
directly provide the Fourier transform of the scattering function of the sample
and are therefore referred to as Fourier methods.

Monochromator

FIGURE 14 Schematic setup of conventional neutron grazing incidence diffraction. With tight
horizontal slits the required in-plane resolution can be achieved. As shown in the figure, three types
of beams coming off the sample can be distinguished: the specularly reflected beam (S), the off-
specularly scattered beam (D), and the transmitted (T) beam. This figure is taken from Ref. [33].
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FIGURE 15 Schematic principle of the neutron spin-echo technique for small-angle elastic
scattering, taken from Ref. [33]. Two precession regions, which are realized by identical magnetic
field regions with inclined borders and opposite field orientation, are situated before and after the
sample. For simplicity, the spin polarizer and analyzer are not shown. Top: The polarization state
of the neutron spin, represented by the small arrows, is restored after passing through the entire
setup if it did not change direction by scattering on the sample. This is independent of the position
or direction of the neutron trajectory and the speed of the neutron. Bottom: Scattering of the
neutrons by the sample results in a difference in polarization state of the neutrons compared to
their incoming polarization. By this the beam polarization is reduced.

The basic principle of the experiment is shown in Figure 15 [33]. The main
components of the experiment are the two identical precession regions on
either side of the scattering sample, with opposite direction of precession. The
neutron beam is polarized before entering the setup and the depolarization of
the beam is measured in a detector after a spin analyzer. If the neutron velocity
did not change (in magnitude and direction) in the sample region, the path
lengths inside the two regions are equal. Thus the total precession angle is zero
for all neutron trajectories and the initial neutron beam polarization is restored
after the second precession region. This is not the case, if the neutron direction
has changed at the sample.

1.6.1 Neutron Beam Polarizers and Analyzers

In order to produce a polarized neutron beam, we need an interaction with a
polarized target, e.g., with a magnetized ferromagnet as, for example, Fe,
which will efficiently absorb the neutrons with the “wrong” polarization
directly from the source (e.g., the research reactor) [34]. The determination of
the polarized fraction of the scattered beam can be done in a similar way. The
usual spin filters, that are used for the analysis of the scattered neutron beam
work only in a relatively narrow angular range since they are able to select the
polarized and nonpolarized component near the critical angle of the surface of
the filter (+/— a few degrees). One way to overcome this limitation is to scan
with the filter orientation, which results in a strong increase in required
experimental time. Alternatively, the usage of a ferromagnetic multilayer
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structure, in which the layers are nearly parallel to each other [35] could
eliminate this problem. The advantage of such a unit over a single thin layer
polarizer is that its orientation within the experimental setup can be shifted
without changing its performance. In part of the experiments, the spin analysis
was performed by a magnetized ferromagnetic multilayer, where the local
magnetic field was several kGauss. Such a strong magnetic field has to be
shielded at the border of the magnetic box, which was done by using a 4-mm
thick steel plate with appropriate openings for the neutron beams (total
weight ~ 150 kg).

Another way to analyze neutron beam polarization is to use a spin-
dependent nuclear physical process. In this case, there are no angular limita-
tions during the experiments. The only difficulty when using this method is,
however, how to polarize, e.g., the usually used *He gas and to conserve the
polarization after polarizing for the time of the experiments [36].

1.6.2 Transport of Polarized Neutron Beams and Spin-Injection
Devices

The experiment can be performed by letting the originally linearly polarized
neutrons pass through a homogeneous guide field that possesses inclined
borders as shown in Figure 15. The neutron beam enters the NSE-range
through a current sheet device [37], as shown in Figure 16. These elements
allow for a good field transmission between the magnetic spin polarizer and
magnetic spin analyzer, both with relatively strong local fields. They can inject
(or extract) neutron spins with well defined direction to the approximately zero
field NSE region. The blue arrows in Figure 16 show the neutron trajectory
leaving the NSE region towards the polarization analyzer before the detector.
The red arrow in the plane of the current sheet formed by DC current carrying
wires shows the direction of the neutron spin component extracted by this
device, which will be guided into the direction of the magnetizing field on the
polarization analyzer, defining the direction of its polarization sensitivity.

FIGURE 16 Picture of a Forte asymmetric coupling coil. Using this coil, the polarized neutron
beam can be implanted into the neutron spin-echo setup with the correct polarization. Such a coil is
also used to extract the neutron beam after scattering before the spin analyzer. The thick blue arrow
shows the propagation direction of the neutrons in the latter case. The thin red arrow is parallel to
the direction of the coil magnetic field close to the beam trajectory. For more details see Ref. [33].
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The quadratic region of parallel wires at the left end of the coil forms the
so-called current sheet. This is a plain sheet of metallic surface with a constant
current density. The induced magnetic field of such a geometry is independent
of the distance from the sheet. Since during the Larmor precession the mag-
netic energy is a constant of motion, i.e., the angle of the spin axis to the
rotation axis (direction of the local magnetic field) is constant, and since we
can say that the current sheet is so thin that the neutrons will traverse it within
a very short time, i.e., with practically zero precession angle, the spin of the
neutron will not change in the time it takes to travel through the current sheet.
The situation is quite different, if the current density is not large enough in the
sheet. In such a case, the Larmor precession can be so slow that inevitable
nonparallel components of the magnetic field arise. If now the motion of the
neutron is fast—similarly to the case of motional narrowing—the polarization
is conserved, except if the local magnetic field decreases below the empirical
value of 5 Gauss. In a magnetic field above 5 Gauss only a few percentage of
the polarization is lost, assuming that the current sheet is ideal or close to
being ideal.

Inside the coil, the magnetic field is the sum of the field of the connecting
magnetic element (e.g., polarizer) and that of the coil itself, the main
component of which is perpendicular to the direction of the current (wires) in
the plane of the sheet, as shown by the red arrow in Figure 16 current sheet.
Outside the coil, the perpendicular magnetic field component remains, there-
fore, no depolarization is expected, especially if the neutrons are fast enough.
In order to realize this, the coil field needs to be carefully measured and tuned.
Magnetic fields B < 5 Gauss can be achieved easily, practically with all types
of magnetic sources. Usually, the condition that the magnetic field B is
perpendicular to the current sheet is automatically fulfilled (Maxwell’s
equations). Details of how to produce such a current sheet coil device are given
in Ref. [33].

1.6.3 Precession Region and Magnetic Shielding

In order to generate the required magnetic field regions before and after the
scattering region for the spin-echo technique, a similar arrangement is used as in
RNSE spectroscopy [12]. The experimental arrangement is shown in Figure 17.

In RNSE, the magnetic field is produced by a set of two coils instead of a
single coil, between which the magnetic field value is zero. These coils are thin
and their edges form current sheets in order to define the borders of the
magnetic field very precisely. In order to achieve the best possible shielding of
stray magnetic fields outside the coil assembly, the so-called bootstrap
configuration [12] was applied. Here, each single resonance coil is made up of
a set of two coils with opposite field directions, as indicated in Figure 17. The
realization of this setup is very similar to that of the current sheet coil.
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FIGURE 17 Top view of the coil arrangement and corresponding magnetic fields in the reso-
nance neutron spin-echo setup. The bootstrap configuration is realized by two DC-RF coils. Top:
Setup, where the field borders are not inclined, corresponding to a spin-echo length of zero.
Bottom: Inclined coils result in a nonzero spin-echo length. More details are given in Ref. [33].

(cf. Figure 16). First, a fence-like construction is built from brass parts, which
is then covered by uniform isolated Cu wire parallel to the base plate. The
shorting of the field lines is performed by thin pi-metal foils. In the experiment,
first it is verified that with zero guide field (B = 0), the neutrons keep their
polarization state from the start throughout the whole setup. Then, by changing
the guide field (B > 0) by an extra coil (Figures 17) the polarization will be
reduced.

In such a setup, the scattering angle of the neutrons is labeled the same way
the neutron energy change was labeled in NSE, cf. Eqns (11—14). The echo
polarization thus becomes the Fourier transform of the scattering function
S(Q), i.e., a function of a spin-echo length Y [38], defined analogously to the
spin-echo time in Eqn (15).

Y = —2m'YL/TC/’l'BQL7\2 tany, (23)

where L denotes the mean distance of the central plates of the RNSE coil
assemblies for each of the two precession devices, By is the magnitude of the
DC magnetic field and x is the inclination angle of the coils to the neutron
direction, as indicated in Figure 17.

In addition to the improved magnetic shielding, the bootstrap configuration
also provides double the spin-echo length as compared to a setup using single
coils, which is advantageous in the study of large-scale structures. More details
about the precession devices are given in Ref. [33].
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1.6.4 Experimental Results

In the following, we will summarize examples for experimental investigations
that have been conducted with this technique to date. The experiments are
partly performed in transmission geometry (i.e., spin-echo resolved small-
angle neutron scattering) and partly in reflection geometry (spin-echo
resolved neutron reflectometry). The experiments described here have all been
performed at one of the following machines: the dedicated add-on NSE setup
at the EVA reflectometer facility of the Max-Planck-Institut fiir Metal-
Iforschung at the Institut Laue-Langevin in Grenoble (France) [39], which was
transferred to the reflectometer N-REX+ at the neutron source For-
schungsneutronenquelle “Heinz Maier-Leibnitz” FRM II in Garching
(Germany) [40], or at the Second Target Station at the ISIS source of the
Rutherford Appleton Laboratory (Oxforshire, UK) [41]. In addition to these
machines, a spin-echo resolved SANS setup is in operation at the Delft Uni-
versity of Technology (Delft, Netherlands) [42].

1.6.4.1 Spin-Echo Small-Angle Scattering

The NSE spin labeling method in the transmission geometry was tested on a
suspension of spherical polystyrene particles in mostly heavy water, in order to
increase the neutron scattering contrast between the solvent and the poly-
styrene spheres [33]. In this experiment, the scattered fraction of the neutrons
on the polystyrene spheres was determined and showed a clear dependence on
the sphere size (in the sub-pum range). The known sphere sizes could be very
well reproduced by fitting the data to a model describing the scattering on
spherical particles in a suspension [43], thereby verifying the power of this
method to yield information on the structure of the samples on large length
scales up to 450 nm. (Equivalent to Q resolution in the 6 x 10~* A™') The
results are shown in Figure 18.

In a second example, a comparison between the conventional SANS and
the spin-echo resolved technique was carried out on a nanoporous aluminum
oxide foil. The periodicity of the order of 100 nm was resolved in both
measurements; however, the spin-echo data yielded a much higher intensity
and information on the relevant length scale directly in real space, as shown in
Figure 19. More details can be found in Ref. [33].

1.6.4.2 Spin-Echo Reflectometry

The NSE technique in reflection geometry was verified using an optical
diffraction grating [33]. Here the spatial period of 278 nm of the grating
structure (nominal value of 3600 lines mm ') is directly and reliably repro-
duced in the NSE data, cf. Figure 20. Again, detailed analysis of this result is
presented in Ref. [33].
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FIGURE 18 Neutron spin-echo small-angle neutron scattering (SANS) experiment on a sus-
pension of polystyrene spheres in heavy water and water in transmission (SANS) geometry. The
normalized spin-echo polarization as a function of spin-echo length is clearly correlated with the
size of the particles. The experimental values are shown by symbols, the solid lines correspond to
the fitted model functions for monodispersed spheres in a dilute solution. More experimental detail
is given in Ref. [33].

300 T
169 101 & ]
®
94.9 o
L]

09] ]
534
®
30.0 _08] 1
169 X e
949 &~ ®
- 07] o & ]
534 e o,
® e ®© 9&9 % e®® ,
3.00 0.6 ° o’ L) eee”  ,® ]
® ®
1.69
l0.949 0.5 ]
50 0 50 100 150 200 250 300 350 400 450

02 01 00 01 02 ¥ [nm]
gy [nni']
FIGURE 19 Left: Small-angle scattering distribution of an alumina foil with a periodic structure.

Right: Data in transmission geometry of the same sample. From the neutron spin-echo data, the
real-space periodicity of the pores in the sample can be extracted directly.

Further examples include the study of a self-organized organic layer on a
silicon surface. Here a Fi4CuP (copper hexadecafluorophthalocyanine) layer
was covered with a layer of di-indenoperylene (DIP) [44,45]. The investigation
of the specular and off-specular reflections of this surface revealed a plateau-
like island morphology that the organic layer adopts on the sample [33].
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FIGURE 20 Reflection geometry neutron spin-echo data measured on an optical grating
(3600 lines/mm). The spatial periodicity (grating constant) can be directly obtained from the spin-
echo signal (polarization) as a function of the spin-echo length.

The spin-echo resolved reflectometry technique has also been applied to infer a
more complex surface morphology of ultrathin polymer films dewetted from a
silicon surface [46]. More recently, the material system P3HT:PCBM
(P3HT = poly(3-hexylthiophene-2,5-diyl); PCBM = [6,6]-phenyl-C61-butyric
acid methyl ester) has been investigated by this technique in the reflection
geometry [47]. This material system is scientifically relevant due to its appli-
cation in photovoltaic devices. The spin labeling resolved reflectometry data on
this system imply that the investigation of buried structures in such thin films
can be accessed by this technique, which could be of significant scientific and
technological relevance.
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2.1 INTRODUCTION

The distinguishing characteristic of a phase transition is the sudden change in
one or more physical properties. Studies of quantum magnetism consider
systems in which the effects of quantum fluctuations, as well as thermal
fluctuations, must be considered. Our most familiar conception of a phase
transitions is that driven by fluctuations caused by tuning the temperature close
to some critical value T, known as a classical phase transition (CPT). As the
sample temperature is raised above T, thermal fluctuations, whose scale is
controlled by kg7 where kg is the Boltzmann constant, destroy the order and
drive the system across the phase transition. Conversely, thermal fluctuations
decrease as the temperature is dropped and eventually freeze out as T — 0.
Quantum fluctuations, on the other hand, continue to live on at zero temper-
ature and thus, under certain conditions, trigger the system to encounter a phase
transition between different quantum phases at 7= 0. This transition at zero
temperature is known as a quantum phase transition (QPT), where the un-
derlying quantum fluctuations are determined by Heisenberg’s uncertainty
principle. The amplitude of these quantum fluctuations can be tuned by varying
an external parameter in the Hamiltonian governing the system, such as applied
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magnetic field, pressure, or doping level of chemical, which eventually results
in development of a new preferable lower-energy ground state.

2.1.1 Classical Phase Transitions

The degree of ordering in a system is the outcome of competition between
interactions that enforce ordering to minimize internal energy and thermal
fluctuations that increase disorder to maximize entropy. For many systems this
results in the formation of different macroscopic phases. The transformation of
a system from one of its phases into another is referred to as a CPT. A CPT
happens when the free energy of the system or one of its derivatives is
discontinuous. The transitions between solid, liquid, and gaseous phases of
water, or the transition between the ferromagnetic and paramagnetic (PM)
phases of magnetic materials at the Curie point, are familiar examples of such
transitions. For detailed discussions on phase transitions, see Refs [1,2].

According to the modern classification, phase transitions are divided into
two broad categories: first-order or discontinuous transitions and second-order
or continuous transitions.

If there is a finite discontinuity in one or more of the first derivatives of the
appropriate thermodynamic potential, the transition is first-order or discon-
tinuous. For example, this can be a discontinuity in the magnetization in a
magnetic system. Figure 1 illustrates neutron diffraction data collected at the
1/2 (0,1,3) Bragg reflection of KMnF3, exhibiting temperature dependence
typical of a first-order phase transition. An additional characteristic of first-
order phase transitions is the existence of latent heat. This means that
during such a transition the system either absorbs or releases a fixed amount of
energy and, since energy cannot be instantaneously transferred between the
system and its environment, first-order transitions are associated with “mixed-
phase regimes” in which some parts of the system have completed the
transition and others have not. A good example is freezing of water during
which the temperature remains constant as the heat is transferred into the
environment and the system remains in a mixed phase of fluid and solid until
the entire structure has transitioned.

The second class of phase transitions is second-order or continuous phase
transitions. These are the transitions in which the first derivatives of thermo-
dynamic potentials are continuous but the second derivatives are discontinuous
or infinite. Figure 2 shows the temperature-dependent behavior of neutron
diffraction measurements of NbO, collected at the superlattice reflection
(5/4,5/4,3/2), demonstrating neither discontinuity nor any hysteresis in the in-
tensity, thus signifying the second-order nature of the semiconducting-to-metallic
phase transition. The key feature of second-order or continuous phase transitions
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FIGURE 1 The temperature dependence of neutron intensity of the 1/2 (0,1,3) Bragg reflection,
displaying a first-order phase transition in KMnF;. Reprinted with permission from Ref. [3].

is the existence of fluctuating microregions of both phases near the critical
point. The characteristic length of these fluctuating regions diverges at the
critical point. For further discussions on neutron scattering techniques used to
study the critical phenomena, see Ref. [5].

2.1.2 Continuous Phase Transitions and Critical Behavior

A continuous phase transition can be characterized by an order parameter, a
thermodynamic quantity that is zero in one phase (disordered) but has a finite
value in another phase (ordered). For instance, in a ferromagnetic phase
transition, the total magnetization is an order parameter.

Although the thermodynamic average of an order parameter is zero in the
disordered phase, its fluctuations are nonzero. The spatial correlations of the
order parameter fluctuations become long-ranged, as the system approaches
the critical point at which it goes through the phase transition; eventually the
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FIGURE 2 Neutron diffraction intensity collected at the superlattice reflection (5/4,5/4,3/2)
shows a continuous second-order transition in NbO; as it passes from a semiconducting to metallic
conductivity phase. Reprinted with permission from Ref. [4].

typical length scale of the order parameter fluctuations, known as the corre-
lation length &, diverges as:

o™ )]

where ¢ is some dimensionless measure of the distance from the critical point
(in the case where the transition occurs at a nonzero temperature 7, ¢ equals
|T — T.|/T.) and v is the correlation length critical exponent [6].

Since the correlation length is the only relevant length scale near the
critical point, if one rescales all lengths in the system by an arbitrary factor b
while simultaneously adjusting the external tuning parameter x such that the
correlation length maintains its initial value, the physical properties of a
system should remain unchanged. This is known as the homogenous form of
the free-energy density f near the critical point:

f(t.x) = bIf (tb%,xbyx) )
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TABLE 1 Commonly Used Ciritical Exponents [13]

Thermodynamic Critical

Quantity Exponent Relation
Specific heat a c o |t]*
Order parameter g m o (=
Susceptibility ¥ x < |t
Critical isotherm ) m o x'/°
Correlation length v £ [t|
Correlation time z £, o E7

where d is the space dimensionality, y, is critical exponent associated with the
external tuning parameter x, which, for example, could be external magnetic
field or pressure (for in-depth discussions, see Refs [7—10]).

Other thermodynamic quantities can also be extracted by differentiating
the free energy, giving rise to various critical exponents. Common critical
exponents used in magnetism are shown in Table 1.

However, not all exponents are independent from each other [11,12].
The scaling relations shown in Eqn (3) link the four thermodynamic exponents
«, B, v, 0.

2—a=28+y=0(6+1) 3)
2—a=dv “)
y=02-np (5)

Equations (4) and (5) are referred to as hyperscaling relations. Equation (4),
which is also known as Josephson’s identity, is only valid for system dimension
d<4. In continuous QPTs, critical exponents are the same for all
classes of phase transitions which may occur in various physical systems
based on their system dimension. This remarkable feature is known as
universality [9,13].

2.1.3 Quantum Critical Scaling

Continuous phase transitions at 7= 0 are called QPTs, where thermal fluc-
tuations have vanished and quantum fluctuations demanded by Heisenberg’s
uncertainty dominate. In continuous phase transitions, depending on the values
of the external tuning parameters, the order parameter either is zero or has a
finite value and a variation of external parameters can switch the order
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parameter on or off in the ground state of the system. At finite temperature a
phase transition is driven by thermal fluctuations, whereas in QPT at T=0
some other nonthermal external parameters such as pressure, magnetic field, or
chemical doping tune the quantum fluctuations of the system and thus drive it
into the phase transition. In this case the corresponding density operator e %7
resembles a time evolution operator e *"’{, where 1 = —i@ and 8 = 1/kgT, and
accordingly shows a fundamental difference between CPT and QPT: in QPT
not only the correlation length in the spatial dimension d diverges when 7' — 0
but also the correlation along the direction of imaginary time it = 1/kgT
extends to infinity as the temperature goes to zero [14]. Thus at zero
temperature the imaginary time acts as an additional dimension, and the
homogeneity law for the free-energy density can be rewritten as:

Fle,x) = b= (10 ) ©6)

where z is referred to as the dynamic critical exponent. In general, z may be
different from 1 since the length scales in space can be different from the
length scale in the imaginary time direction. Comparing Eqn (6) to the
homogeneity law obtained for CPT, it is concluded that all the scaling forms
are very similar, considering that a QPT in spatial dimension d is equivalent to
a CPT in spatial dimension d + z. As a result, the hyperscaling relation for
QPT is modified as:

2—a=(d+z)v (7

As system temperature approaches 7' = 0, thermal fluctuations reduce, and
consequently quantum fluctuations become more dominant. Although it is not
possible to observe a system at 7 = 0, it is conceivable to reach low enough
temperatures where quantum fluctuations are more prominent than thermal
fluctuations. Similar to Eqn (1), the correlation length along the imaginary
time dimension is given as:

£ ff| (®)

and thus as T approaches zero and the correlation length along spatial
dimensions diverges, so does the correlation length along the imaginary time
dimension.

2.1.4 Quantum Critical Point

The quantum critical point (QCP) is the point where the system goes through
the QPT at zero temperature. Although the QPT occurs at T =0, its effects
can be observable in the vicinity of the QCP. The system behavior near QCP
is the result of competing thermal fluctuations, as a function of thermal
energy scale kg7, and quantum fluctuations, as a function of quantum energy
scale w. The crossover between classical and quantum behavior occurs
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when the correlation time reaches 1/kgT. Since the correlation time, the
shortest time allowed by the quantum mechanics for the system to return to
equilibrium after an external arbitrary perturbation, is finite, the crossover
temperature is nonzero. This allows for the experimental observation of
nonthermally induced QPT behavior at a small but nonzero temperature
below the crossover temperature [15].

2.1.5 Quantum Critical Region

In the vicinity of QCP at x = x., where x. represents the critical value of the
tuning parameter at QPT, at lengths smaller than &, the ground state wave
function has an entangled critical form, whereas it has a noncritical form
at longer lengths. Furthermore, at finite temperatures, the system has an
additional characteristic length #w/kpT, the so-called de Broglie wavelength
of excitations at x.. For £ < hw/kgT the ground state wave function has a
noncritical form where thermal fluctuations are suppressed. In this case the
ground state is thermally excited as temperature rises. For & > hw/kpT,
however, the wave function is in quantum critical region, and thermal
fluctuations act directly on the quantum entangled ground state.

There are two types of phase diagrams: with or without a long-range
ordered phase at finite temperatures. These phase diagrams are shown in
Figure 3 as function of temperature versus tuning parameter x. Upon rising
temperature the thermal fluctuations destroy the ordering as the system crosses
the phase boundary. As x increases, the quantum fluctuations become more
important, and the system will be in a quantum disordered state. If a long-
range ordered phase at finite temperature exists (as shown in the left panel
of Figure 3), the system will become ordered at low enough temperatures
depending on the magnitude of tuning parameter x. At higher temperature the
long-range order will be destroyed by thermal fluctuations. By varying the
tuning parameters x (magnetic field, pressure, or chemical doping) at low

T T
Quantum
Critical Region
Quantum Th!rlﬁﬂl\f Quantum
Disordered Disordered Disordered
Ordered
ok : > 0 . =
x, X X, x

FIGURE 3 Phase diagram for systems with (left) and without (right) a long-range ordered state at
finite temperatures. Adapted from Ref. [12].
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enough temperature, one can observe a crossover from the classical region into
the quantum critical region in the quantum disordered phase. If no long-range
ordered phase exists in the system at finite temperature as shown in the right
panel of Figure 3, one will not see an actual phase transition in the experiment,
but instead a sharp crossover as the system passes the quantum critical region,
turning more prominent as the temperature approaches zero, and the system
gets closer to the QCP.

The fan shape region in the middle of the phase diagrams shows the
quantum critical region, where the thermal and quantum fluctuations are of the
same order of magnitude and are both important. The region has a charac-
teristic fan shape corresponding to the fact that £ diverges as x — x.. Thus
surprisingly with increasing temperature, the influence of the quantum criti-
cality (QC) also increases and even expands beyond the QCP at 7= 0.
Describing the dynamics of the complex critical state and developing a theory
that explains QC has been the subject of intensive theoretical and experimental
research. For a comprehensive discussion on QPT, see Ref. [14].

2.2 EXPERIMENTAL TECHNIQUES

Systems exhibiting QPTs are expected to show unusual dynamics controlled
by external parameters such as applied magnetic fields, pressure, and
chemical doping that tune the quantum fluctuations. The exotic characteristic
of these systems can be probed with neutron scattering techniques under
extreme environmental conditions. In this section, we briefly review the key
aspects of neutron scattering methods typically used to investigate quantum
magnetic systems. In the following section, we summarize the major
advancements in extreme sample environmental techniques developed for
neutron scattering experiments and mainly used to study QPTs. These
discussions are intended to assist readers to better navigate through the more
involved topics discussed in subsequent sections. An in-depth discussion on
the fundamentals of neutron scattering is available in Ref. [16], and those
readers who are interested in learning more about the important features of
neutron scattering experimental techniques typically used in the field may
consult Ref. [17].

2.2.1 General Principles of Neutron Scattering

Neutron scattering is a powerful tool to probe dynamic and static properties of
condensed matter at microscopic levels. The energies of cold and thermal
neutrons are of the order of microscopic excitations in condensed matter, and
the wavelengths of cold and thermal neutrons are comparable to the inter-
molecular distances. Since neutrons have no electrical charge, there is no
Coulomb interaction between them and the nuclei of the sample, and therefore
they can easily and deeply penetrate the material.
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Neutron scattering events are described by means of energy and mo-
mentum transfer. A neutron with incident momentum p; and incident wave
vector k; has incident energy of:

ot WK

" 2m 2m

After interactions with the sample, the neutron scatters to the direction 26,

with a momentum py, a wave vector k;, and energy Ep As with any particle

scattering technique, energy and the momentum conservation are the two basic

principles of neutron scattering. Based on energy conservation the energy
transfer of the incident and scattered neutrons is defined as follows:

©))

h2
ho = By — = (k — 12) 10
W f om 'f i ( )
Eventually, momentum conservation makes it possible to define the scat-

tering vector Q:
nQ = p; — p; = hky — 7ik; (11)

The magnitude of the scattering vector Q is related to the incident and
scattered neutron energies and to the scattering angle 26 as follows:

Q> :iL_T(Ei+Ef—2\/E,-Ef00320) (12)

Both the sign and the magnitude of the energy transfer are used to classify
the neutron scattering event.

Neutron scattering is considered elastic when Ahw = Ef— E; = 0, i.e., the
neutrons do not change their energy in the scattering process. If neutrons either
gain (Ahw > 0) or lose (Ahw < 0) energy in the scattering process, the
scattering is called inelastic.

2.2.2 Neutron Scattering Cross Sections

The quantity measured in a neutron scattering experiment is the double dif-
ferential cross section, dza/deEf, which gives the proportion of neutrons with
an incident energy E; scattered into a solid angle element dQ with an energy
between Erand Ef+ dEy. The geometry of the scattering experiment is shown
in Figure 4.

An incident neutron with a wave vector K; is scattered into a state with wave
vector k¢. Before and after the interaction with the neutron, the sample can be
described by the quantum states A; and Ay respectively. The probability that
the combined state of the neutron and the sample makes the transition from
the initial state |k;A;) to the final state |k¢As) is given by Fermi’s golden rule:

2
D Wigi—kesy = gﬂkf|<kfﬁf|Vlkih>\2 (13)
K¢ in dQ
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Scattered Beam

Incoming Beam

FIGURE 4 The schematic of neutron scattering geometry.

where py, is the density of the final states of the neutron described by kg in dQ
and V is the interaction potential between the nuclei in the sample and the
neutron. Using the Born approximation for the cross section, the double
differential cross section is given by:

¢k
=L palkedy | VIkidi) *6(hoo + E; — Ey) (14)
i A

dQdE; Kk £

where the o-function is included to ensure the energy conservation with the
neutron energy transfer fw and the initial and final sample energies E; and Ef,
respectively. In this equation, p;, is the probability that the initial state of the
sample is A;. This probability is given by Boltzmann distribution:

e Ei/keT
Py = 7
and
Z=>Y el (15)
Ai

kg is the Boltzmann constant, Z is the partition function of the sample, and T is
the sample temperature. After further manipulations, the double differential
scattering cross section can be written as:

d? 1 k _ A A .
g __]Tijbi/<e—zQ-Ri(O)e—lQ'Rj(Z)>e—1Ef/hdt (16)

where b; and b; are the scattering lengths of the jth and ith nuclei, respec-
tively, R;(0) is the position operator of the ith nucleus at time zero, Rj(7) is the
position operator of the jth nucleus at time ¢, and () denotes a thermal
average.
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The average b b; for cases j=1i and j # i is given as b b; = b2 and
bib; = b respectlvely Accordingly, Eqn (16) can be written as a sum of two
components for cases j =i and j # i, as described below:

d’e 1k 7 iQ-R; (0) .—iQ-R;(1) \ .—iEt/h
—1 —l j —1l ldt
deEf 27h ki Z/ >

1 kf 2 ﬂQR e—iQ: Ri(7) \ n—iEt/h
Yo & Z / > dr

This leads to the introduction of coherent and incoherent scattering, related
to the terms of the sum in Eqn (17), respectively. The coherent scattering arises
from interference effects and would be the scattering if all the nuclei of any
element had the same scattering length b. The incoherent scattering, on the
other hand, does not arise from interference effects and is related to the dis-
tribution or deviation of scatterlng length from the mean value 5 and therefore
is proportional to b2 —b°. The coherent and the incoherent scattering cross
section into all directions can be defined as follows:

(7)

0. = 471'52
o = 4 (b2~ ') (18)
Subsequently, the double differential cross section can be rewritten as:
d20. / 71Q R;(0 1Q R;(z > 7!Et/hdt
dQdE 87r2h k

—iQ-Ry( lQ R(1) \ .—iEt/h
2h . O'Z/ >e & (19)

_ d’o n d*g
- \dQdE/,  \dQdE/,

The coherent scattering contains information about the correlation between
the positions of different nuclei and the collective excitations in a sample. The
incoherent scattering component can provide information about the individual
nuclei and single-particle excitations in the sample. More detailed discussions
are given in Refs [16—19].

2.2.3 Correlation and Scattering Functions
The space—time correlation function describes the position of nuclei in space
and time [20] and is given for N nuclei as:

N

G(r,1) :zlv Z(a{r+Ri(o) -Rj(1)}) (20)

iy
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The space Fourier transformation of the space—time correlation function
G(r,t) is called the intermediate scattering function:

ij

1Q,1) = / G(r,t)e"Q'rdr=%Z<e*iQ'Ri<°>e*"Q'RJ<’>> Q1)

The time Fourier transform of the intermediate scattering function leads
to the scattering function (also called as the dynamic structure factor), which
provides information on the sample states as a function of energy and
momentum:

1

- I —iEt/h 22

S(Q.E)

=)

Both 1(Q,?) and S(Q,E) can be divided into a coherent and an incoherent
part. The relationship between the coherent and incoherent scattering functions
and the double differential scattering cross section can be written as:

e IENSC(Q, E) (23)

d2(7' g kf
<L NS:(Q,E
(Q.E)+ 4mh k;

dQdE ~ 4xh k;

2.2.4 Magnetic Cross Section

The interaction between the magnetic moment of a neutron u, and the elec-
trons inside the scattering system originates from the Zeeman interaction of
the neutron with the magnetic field distribution inside the sample arising from
the spin and orbital angular momenta of unpaired electrons. The magnetic
moment of a neutron is given by u, = —yuno,, where y = 1.913 is the gy-
romagnetic ratio of the neutron and uy = 5.051 x 10727 JT~! is the nuclear
magneton. If p denotes the electron momentum operator and R the distance
vector measured from this electron, then by introducing the unit vector
R = R/|R| the total Zeeman interaction with the field produced by this
electron can be derived from electromagnetic theory:

I sx R 1px R
Vinag () = 707:“’N:“Ban' V x ( > + 24

2w R? ) 7 [RP

where g, = 2s, is the Pauli spin operator and s is the operator for the electron
spin.

The first term originates from the field created by the magnetic moment
associated with the electronic spin angular momentum while second term
comes from the orbital angular momentum of electronic charges. The motion
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of these charges may be viewed as current elements and hence contributes to
the field distributions as described by the law of Biot and Savart.

Substituting this electromagnetic potential into double partial differential
cross section, one derives with the equation for the magnetic scattering
differential cross section [20].

(o) = () @ ™ (s - .8)%@p

(25)
The scattering function S**(Q,E) is then given by:

o0

s*(Q.E Ze_’Q (R-R') / e—iEf/ﬁ<S§(0)sﬁ,(t)>dt (26)

RR’

— 00

A useful property of S(Q,E) is that it is connected to the imaginary part of
the generalized magnetic susceptibility x(Q,E) = x'(Q,E) + ix"(Q,E) through
the fluctuation-dissipation theorem:

SIQ.E) = ) + 1'(Q.E) = LB @

in which the exponential term is called the Bose factor. The probability that a
neutron gains an energy E is different from the probability that a neutron loses
an energy E in the scattering process. This is due to the fact that it is e E/keT
times less probable for the system to be in a higher initial state. Hence, the
scattering function has to be corrected for this factor when calculating the
susceptibility at different temperatures and energy transfers, and this is exactly
what the Bose factor does in Eqn (27).

The imaginary part of the susceptibility x”(Q,E) is a very important
property of the system and describes how the system responds to external
forces. For instance, the magnetic susceptibility of a system characterizes the
magnetic response of that system to the magnetic field:

M(Q,E) = x"(Q.E)H(Q,E) (28)

A more detailed discussion on magnetic neutron scattering is given in
Ref. [21]. An in-depth discussion on neutron magnetic scattering is available
in Chapter 1.

2.2.5 Instruments

In this section we briefly introduce the two main methods used in condensed
matter physics and particularly to investigate magnetic systems: triple-axis and
time-of-flight spectrometers. More detailed discussion on various neutron
scattering instrumentations is given in Ref. [17].
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2.2.5.1 Triple-Axis Spectrometers

A triple-axis spectrometer is an extremely simple machine. It is based only on
Bragg’s law and simple geometry in reciprocal space. In a triple-axis exper-
iment a beam of neutrons traverses a path through the instrument determined
by the settings of three angles 6y, fs, and 4. Figure 5 shows a simple
schematic of triple-axis spectrometer with a monochromator crystal, located in
the beam path from source to sample position, and an analyzer crystal, located
in the path from sample to detector. Monochromators and analyzers are either
perfect crystals or crystals that have been deformed in a controlled manner to
obtain certain characteristic properties. Typical monochromator and analyzer
materials are pyrolytic graphite, silicon, and germanium.

At the monochromator and analyzer positions, neutrons are reflected
according to Bragg’s law:

ni = 2d sin 0; (29)

where 7 is an integer and i = M, A for monochromator and analyzer, respec-
tively. The setting of the angle 6; causes a family of crystal planes, charac-
terized by their distance d, to diffract exactly those neutrons with wavelengths
A =2m/k determined by Eqn (29). Hence, a monochromator transforms a
polychromatic beam of neutrons to a beam of neutrons with wave numbers k,
2k, etc. When this beam hits the sample, the scattered neutrons leave the
sample along a distribution of directions and with a distribution of energies
and spin directions that are determined by the spin-dependent partial differ-
ential scattering cross sections.

Monochromator

Neutron Beam AXIS3 7
Analyzer

Detector

FIGURE 5 Schematic layout of triple-axis spectrometer.
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By varying the scattering angle g between k; and kg, the angular distri-
bution can be explored. At the same time, the energy distribution in each given
direction can be studied by varying the analyzer angle 64. Additional infor-
mation may be collected by considering not only the change in momentum and
energy of the neutron in the scattering process, but also possible changes in its
spin state.

2.2.5.2 Time-of-Flight Spectrometers

The time-of-flight method complements the triple-axis spectrometer tech-
nique. The triple-axis spectrometer is ideally suited to the study of excitations
in oriented samples at specific points in (Q,E) phase space. Time-of-flight
instruments, on the other hand, may be used to explore rather large regions
of phase space since many detectors simultaneously collect neutrons over a
wide range of values of the scattered energy.

Figure 6 illustrates a simple time-of-flight spectrometer. A neutron beam
from the reactor is reflected from a monochromator crystal. The mono-
chromatic beam, characterized by its energy E; and wave vector kK;, is then
pulsed by a chopper placed at a known distance Lcs from the sample. An array
of detectors is arranged at a known fixed distance Lgp from the sample, and
scattered neutrons arrive at the detectors at times determined by their scattered
energies Ey. The time of flight of a neutron from the chopper is given by:

fcp = tes + tsp = ToLcs + tLsp (30)

where fcs and fgp are the times of flight of the neutron from chopper to sample
and from sample to detector, respectively; fy and ¢ are the reciprocal velocities
of the neutron before and after scattering, respectively. If the initial energy E;
is known, then using 7cp and the final energy Ej, the energy transfer (i.e.,
hw = E; — Ep) may be determined. Given the angle between the incident and
scattered neutron wave vectors, the wave vector transfer (i.e., Q = k; — K¢) can
also be calculated.

Monochromater

Neutron Beam

Detector

FIGURE 6 Schematic layout of a simple time-of-flight spectrometer.
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2.3 EXTREME ENVIRONMENTAL CONDITIONS

Systems exhibiting QPTs are expected to show unusual dynamics controlled
by external parameters, such as applied magnetic fields, pressure, and chem-
ical doping, which tune the quantum fluctuations and can be probed with
neutron scattering techniques under extreme environmental conditions. The
three most common neutron scattering extreme environmental conditions
employed to study magnetic systems are cryogenic temperatures, high mag-
netic fields, and pressure. As discussed in earlier sections, low temperature is
an essential requirement to study QPTs, therefore, experiments investigating
such phenomena require cryogenic temperatures in combination with high
magnetic fields or high pressure to tune the amplitude of quantum fluctuations.
A useful review of sample environments is given in Ref. [22].

2.3.1 Cryogenics

As explained earlier a QPT can be investigated near a QCP at low enough
temperatures. There are a few different cryogenic systems commonly used
to reach such temperatures. Here we present a brief introduction of the
low temperature techniques used in neutron scattering experiments; a more
in-depth review of low temperature physics is given in Ref. [23].

2.3.1.1 Helium Closed-Cycle Refrigerator

Typical closed-cycle refrigerator (CCR) cryostats (see Figure 7) are either
direct cooling or indirect cooling. In direct cooling CCR cryostats, the sample
is attached directly to the cold head, which results a very short sample cooling
time. On the other hand, in indirect cooling CCR cryostats, commonly known
as cryogen-free cryostats, the sample is held in a helium exchange gas
chamber. It takes longer time for the sample to cool down in indirect cooling
cryostats, but it is much faster to change the sample whereas the direct cooling
cryostats require the entire unit to be removed from the vacuum chamber. This
also increases the probability of moisture condensation on the cold head or the
sample. Recent advancement in the designs, material, and manufacturing of
CCR systems has improved the achievable temperature from ~ 10K to less
than 4 K. Extended temperature range CCR systems can achieve base tem-
peratures below 2 K [24].

2.3.1.2 Liquid Helium Bath Cryostats

The liquid helium bath cryostat designed at ILL in 1974 [26], commonly
known as orange cryostat (see Figure 8), has been the basis for most cryostats
used for neutron scattering experiments globally. Orange cryostats get their
popular name from their external color of orange, which has been their exterior
paint color since their earliest designs. In this type of cryostat, the sample is
attached to the end of a sample stick and is suspended in low-pressure helium
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FIGURE 7 Special closed-cycle refrigerator model SHI-4 for neutron scattering by Janis
Research Co. used at the NIST Center for Neutron Research for the 4—325 K temperature range.
Reprinted with permission from Ref. [25].

exchange gas inside the inner vacuum chamber. The sample temperature is
controlled by adjusting the heater current and the flow of helium through the
helium cold valve. Liquid helium bath cryostats can operate in temperature
range between 1.5 and 300 K.

2.3.1.3 Cryogen-Free Systems

The increase in demand for liquid helium along with problems in global
supply has raised significant concerns about the availability and affordability
of low-temperature experiments with high liquid helium consumption
in conventional cryostats mentioned earlier, which work on the basis of
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FIGURE 8 Schematic of Orange Cryostat used for neutron scattering experiments. Courtesy of
Oak Ridge National Laboratory, U.S. Department of Energy [27].

evaporating liquid helium. Currently, there are two options to reduce the
consumption of liquid helium. One option is utilizing recondensing systems to
recondense the evaporating liquid helium and return it to the cryostat in a
closed-cycle; the other option is “dry systems,” also known as cryogen-free
systems, which do not contain any liquid helium and operate by utilizing
the cooling power of the cold head.

The most successful example of cryogen-free systems is the pulse
tube refrigerator (PTR). The PTR works on the basis of compression and
expansion of helium gas by utilizing oscillating pressure inside the pulse
tube (see Figure 9). Figure 10 illustrates schematic of the PTR top-loading
system used at ISIS manufactured by AS Scientific Products Ltd [29]. The
system consists of (1) the outer vacuum chamber, (2) the top-loading insert,
(3) the PTR, (4) the infrared shield, (5) the thermal link between PTR and
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FIGURE 9 Schematic of double-inlet pulse tube refrigerator. Reprinted with permission from
Ref. [28].

FIGURE 10 Schematic of top-loading pulse tube refrigerator used for neutron scattering.
Reprinted with permission from Ref. [29].

the insert base flange, and (6) the sample stick. The design provides lower
maintenance cost and reduced vibration.

2.3.1.4 Helium-3 Sorption System

Helium-3 sorption systems work on the principle of adsorption, a physical
phenomenon in which a gas is trapped on a material surface and retained for a
finite period. There are two types of adsorption: chemisorption and phys-
isorption. The former refers to mechanism in which chemical bonds are



Quantum Phase Transitions Chapter |2 63

As

&y y
A ‘?t_ﬁ n / AFS0 FLANGE. ADAPTOR (F REQURE)

J B
= CENTRE

DETAL B
SCALFR 1

SONETIC VEW
SCALE T

FIGURE 11 Heliox Helium-3 insert by Oxford Instruments used at Oak Ridge National
Laboratory. Courtesy of Oak Ridge National Laboratory, U.S. Department of Energy [30].

formed by electron transfer; the latter relies on van der Waals® forces.
Adsorption is used as the last stage of a cooling system—after a precooling
stage such as in a liquid bath cryostat—by creating an evaporating pump and
therefore reducing the temperature. He-3 sorption systems can be used for
cooling down from 3 K to 300 mK temperatures. Figure 11 shows a helium-3
insert used for neutron scattering experiments at Oak Ridge National
Laboratory.

2.3.1.5 Helium-3/Helium-4 Dilution Refrigerators

The helium-3/helium-4 dilution refrigerator insert is the only means of
reaching stable base temperatures below 300 mK. *He-*He dilution re-
frigerators work on a mixture of *He-*He based on the idea published by Heinz
London in 1951 [31]. However, it was not until 10 years later in 1962 that
a dilatation refrigerator system was proposed [32]. In 1965, the first ever
refrigerator based on London’s idea was built and reached a temperature of
220 mK [33]. Modern dilution refrigerators can cool down to temperatures of
about 5 mK with the lowest temperature obtained at ~2 mK [34]. In neutron
scattering, however, the minimum temperature attainable are about a few tens
of millikelvin due to the limitations in use of certain materials for sample cells.

The dilution refrigerator works on the principle of evaporation of liquids.
At temperatures below the triple point, the mixture of *He-*He will separate
into two liquid phases separated by a phase boundary as shown in Figure 12
[35]. Inside the dilution refrigerator, a mixture of *He and *He is separated into
two phases inside the mixing chamber. The mixture condensates into two
distinct phases: one only *He and the other “He with a small fraction of *He.
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FIGURE 12 T—X phase diagram of *He-*He at 19.1 atm reported by Tedrow and Lee [35]. L;
and L, represent the “He-rich and *He-rich liquid phases, respectively, X denotes the concentration
of *He. Reprinted with permission from Ref. [35].

By pumping He out of the *He-rich phase, *He atoms are forced into the
“He-rich phase through an endothermal process, thus cooling down the system.
The atoms lost in the *He phase are replenished by pumping them back in
a closed circulation. Figure 13 presents a drawing of a typical Oxford
Instruments dilution refrigerator insert used for neutron scattering experiments
at Oak Ridge National Laboratory.

2.3.2 High Magnetic Field

A high magnetic field applied to the sample cooled down to extremely low
temperature is an essential tuning parameter in studying QPTs. There are three
types of high magnetic fields used in neutron scattering facilities: (1) continuous
or steady high magnetic fields, (2) pulsed high magnetic fields, and (3) hybrid
high magnetic fields.
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FIGURE 13 Dilution fridge insert designed by Oxford Instruments for Orange Cryostat used in
neutron scattering experiments and capable to reach base temperature <50 mK. Courtesy of Oak
Ridge National Laboratory, U.S. Department of Energy [30].

The most challenging obstacle to overcome is combining the restricted
geometries of high magnets and extremely low temperature environments.
This is accomplished in superconducting cryomagnets. Since the high mag-
netic fields of cryomagnet can interact with the magnetic components of the
instrument, it is important for the neutron instrument to be made of
nonmagnetic material components.

In the conventional design, the high magnetic field is supplied by two
superconducting coils placed with a common axis close to each other and
with a small gap to allow for the incoming and scattered neutron beams.
The magnetic field in this configuration is perpendicular to the incoming
neutron beam and is known as vertical field configuration. Figure 14
illustrates a schematic view of a vertical cryomagnetic system designed for
neutron scattering experiments. The force generated between the two
superconducting coils in this type of cryomagnets will be in the range of
tens of tons, and therefore in this design the maximum magnetic field
achievable is technically limited [36]. The world record for maximum
steady vertical magnetic field for neutron scattering experiments is 17.5 T
achieved by Helmholtz Centre Berlin (HZB, formerly Hahn-Meitner
Institute) [37,38].

For higher magnetic fields, a one-solenoid configuration is used with its
axis in the horizontal direction along the incoming neutron beam. This
arrangement is known as horizontal configuration. This configuration signifi-
cantly limits the range of neutron scattering angles accessible. Tapering the
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FIGURE 14 Schematic view of a vertical cryomagnetic system designed for neutron scattering
experiments with operating temperature range of 50 mK—300 K and maximum continuous mag-
netic field intensity of 10 T. Reprinted with permission from Ref. [36].

openings on both sides of the solenoid axis can achieve scattering angles of
about 30° for forward and backward scattered beams. In order to overcome
this reduced angular access, a very broad band of neutron wavelengths is used.
By using series-connected hybrid magnets, the horizontal configuration allows
for steady magnetic fields of above 30 T [39]. Currently, High Magnetic Field
Facility at HZB in collaboration with National High Magnetic Field Labora-
tory in Florida is building a new hybrid magnet for neutron scattering [40].
The series-connected hybrid magnet combines resistive insert coils with an
exterior superconducting solenoid enabling it to reach magnetic fields between
26 and 32T, providing the strongest steady magnetic fields available for
neutron scattering experiments worldwide. Figure 15 displays schematic cross
section of the hybrid magnet, illustrating the superconducting coil and
resistive coil.



Quantum Phase Transitions Chapter |2 67

/ ‘-‘-‘_"""\-\,-\
- i

FIGURE 15 Schematic cross section of a series-connected hybrid magnet built by NHMFL for
HZB specified for neutron scattering experiments under extreme conditions. Reprinted with
permission from Ref. [40].

Pulsed resistive magnets can produce higher magnetic fields but only for a
fraction of a second. The solenoid-type pulsed magnets consist of a stack of
Bitter disks (alternating conductor and insulator disks with a large number of
small holes for cooling water, designed by F. Bitter in 1936 [41]) [42]. The
neutrons strike the sample parallel to the magnetic field, and the scattered
neutrons can be measured in a small angle. The split-type pulsed magnets
consist of two coils with a small gap between them. In the split-type pulsed
magnets, neutrons enter, perpendicular to the magnetic field, and the scattered
neutrons are detected at a single point in the same plane [43]. In comparison
with a continuous magnetic field, which allows for all incoming neutrons to be
used in the experiment, the pulsed magnets, although capable of reaching
higher magnetic fields, allow only for use of a small fraction of the neutrons,
which limits their application in inelastic neutron scattering experiments.
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2.3.3 High Pressure

Pressure can alter distances between atoms and molecules, which results in a
change of atomic and molecular interactions and can therefore be used as a
tuning parameter; however, this is very difficult to achieve considering the
magnitude of interaction forces between atoms and molecules. Even a very
small change in atomic and molecular distances will require application of
pressures of up to several gigapascals (GPa). This can be achieved in pressure
cells. There are ongoing efforts to make pressure cells capable of reaching
higher pressures for neutron scattering.

In low-temperature magnetic neutron scattering experiments, only cells
made from limited number of materials can be used that are nonmagnetic,
have adequate strength and ductility in extremely low temperatures, and are
relatively “transparent” to neutrons (Table 2) [45]. Cells made of materials
with lower strength will be larger for the same maximum pressure compared to
a stronger material which means they cannot cool down as much and operate
at the same extremely low temperatures as the smaller cell. On the other hand,
if the cell is made from strong material with low neutron transparency, the
scattered neutrons will have a higher noise ratio in comparison with more
transparent materials. Similarly, cells made with larger volume, which can
hold larger size of sample material, have higher thermal load and are limited in
how low they can be cooled down (Table 3).

Currently, the type of high-pressure cells that can be used in neutron scat-
tering experiments at extremely low temperatures are not capable of reaching the
same high pressures accessible in X-ray scattering experiments, so considering
that X-ray and neutron scattering measurements complement one another, there
is a degree of deficiency in high-pressure studies using X-ray scattering
techniques. In this section, an introduction to some commonly used techniques
in high-pressure neutron scattering experiments is provided. More in-depth
review of high-pressure neutron scattering techniques can be found in Ref. [46].

TABLE 2 Mechanical Properties and Neutron Transparency
of Materials for Tensile Stress Components
at Room Temperature [44]

Tensile Neutron
Material Strength (GPa) Transparency (%)
A7075-T6 0.505 68
Ti-5Al-2.5Sn ELI 0.628 66

Be-Cu 1.18 7
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TABLE 3 Mechanical Properties of Materials for Compressive
Stress Components at Room Temperature [44]

Bending Young Compressive
Material Strength (GPa) Modulus (GPa) Strength (GPa)
Al,O3 0.735 380—400 2.75
ZrO, 1.57 200 1.85
SizNg 1.08 310 3.5
Diamond = 910—1250 8.2—16.5

High-pressure cells used in neutron scattering experiments can be divided
into the following categories.

2.3.3.1 Hydrostatic Cells (Piston—Cylinder Devices)

Hydrostatic cells work on the basis of pressure from a piston inside a cylinder.
Hydrostatic cells made from beryllium copper (Be-Cu) alloy typically have a
maximum pressure of less than 1.5 GPa for single-wall cells and 3.0 GPa for
double-wall cells. Figure 16 shows a piston—cylinder device.

These high-pressure cells typically utilize compressed helium gas as the
pressure medium inside thick cylinders made of neutron-friendly materials
such as aluminum alloys or Ti-Zr alloys. Considering He P—T phase diagram,
pressure is applied at a temperature in which helium is in gas state and then the
temperature of the cell, and the sample is reduced to freeze the helium at the
applied pressure. This means every time the pressure needs to be adjusted
the cell and the sample must be warmed up to the temperatures above helium-
freezing temperature before the helium pressure medium can be repressurized
at the new pressure and cooled down again.

2.3.3.2 Large-Volume (Clamped) Cells

Large-volume cells include multianvil cells and toroidal anvil presses. These
cells have a large sample volume and therefore can improve signal-to-noise
ratio, but because of their sizes they also have a larger thermal load and
thus cannot be used in experiments requiring extremely low temperatures.

Clamped cells typically have a barrel-shaped alumina (Al,O3) cylindrical
core in which there is a small aluminum sample capsule located. The
pressure inside the sample capsule is produced by applying external pressure
on a pair of tungsten carbide (W-C) pistons inside the cylindrical core (see
Figure 17).
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FIGURE 16 Piston—Cylinder Device with schematic cross-section view. (a) Be-Cu locknut;
(b) W-C pressure-transmitting pad; (c) W-C piston; (d) W-C short piston; (e) Be-Cu sealing ring;
(f) Teflon capsule; (g) Be-Cu sealing ring; (h) Be-Cu flange with electrical feedthrough; (i) W-C
pressure retention pad; (j) Be-Cu locknut; (k) Ni-Cr-Al inner cylinder; and (1) Be-Cu outer shell.
Reprinted with permission from Ref. [47].

2.3.3.3 Opposed Anvil Cells

Opposed anvil cells include diamond anvil cells, sapphire anvil cells, and
Paris—Edinburgh presses. In diamond anvil cells, pressure is controlled by a
membrane. These cells are compact and therefore have small thermal load,
making them suitable for low-temperature experiments. Their small size allows
their use in cryostat or dilution refrigerator; however the small size of the cell
also means small sample volume which results in weaker signal-to-noise ratio.
Figure 18 shows a schematic view of a diamond anvil cell.

Sample sizes required for neutron scattering experiments are significantly
larger than those required for X-ray experiments. As a result, large volume
cells such as Paris—Edinburgh presses are more commonly used in neutron
experiments. These cells can reach pressures approximately 8§—10 GPa at
temperatures of about 4 K. At higher temperatures, higher pressures—as high
as 30 GPa—can be achieved (Table 4).

ISIS is planning a new neutron time-of-flight diffractometer optimized for
extreme environment studies of materials, called exceed. It will be providing
access to high pressures of above 50 GPa using diamond anvil cells in
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FIGURE 17 Schematic of the 2.5 GPa McWhan Clamped cell. Reprinted with permission from
Ref. [22].

combination with extremely low temperatures in millikelvin and high
pressures in high magnetic fields of up to 10 T [52].

2.4 QUANTUM PHASE TRANSITIONS IN SPIN DIMER
SYSTEMS

2.4.1 Spin Dimer Systems

Along with mass and charge, spin is one of the fundamental properties of
elementary particles. Interactions between particle spins and the interplay
between spin and charge give rise to a rich variety of collective phenomena,
making spin materials a fruitful laboratory for studying the onset of ordering,
dimensional crossovers, and other questions related to QPTs. Novel collective
quantum phenomena were recently observed in magnetic spin dimer systems.
Magnetism in these systems consists of spin-1/2 ions where strong antiferro-
magnetic exchange interactions between pairs of S = 1/2 spins lead to a
ground state that is a product of singlets with excited triplet states. The
comprehensive microscopic characterization of the triplet excitations is used
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FIGURE 18 Schematic view of the opposed diamond anvil assembly in a Diamond Anvil Cell.
Sample is inside the pressure medium encapsulated in a thin metal gasket and is squeezed between
the two anvils.

TABLE 4 Maximum Pressure and Sample Volume and the Corresponding
Minimum Temperature Achievable at Some User Facilities Globally

Maximum Corresponding Sample
Pressure Minimum Chamber
Type (GPa) Temperature (K) Volume (mm?)
Hydrostatic 1 1.5 1500
(NIST) [48]
Diamond anvil cell 20 300 45
(ISIS) [49]
McWhan clamped 2.5 1.5 35
(ILL) [50]
Paris—Edinburgh 10 85 87

(ORNL) [51]
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as a probe to determine the underlying magnetic interactions and the mech-
anism behind the unconventional properties and QPTs in dimer systems.
Among dynamical experimental techniques, neutron scattering and in partic-
ular inelastic neutron scattering offers momentum resolved information on the
singlet and triplet states through the transition matrix elements of the spin
operator, offering a quantitative privileged testing ground for theoretical pre-
dictions. A simple, yet compelling featured article on this subject can be found
in Ref. [53]. This section focuses on providing a more detailed insight into
model spin dimer system TICuCls;. However, there are several other similar
quantum magnetic systems such as SrCuy(BOs3); [54—58], Cu(NO3),-5/2H,0
[59,60], PHCC [61,62], Ba3Cr,Og [63,64] that have inspired extensive theo-
retical and experimental investigations which may be of interest to readers.

2.4.2 TICuCl;

Novel collective quantum phenomena in spin dimer systems were recently
realized in magnetic isolators ACuCl; (A =TI, K), which are based on a
crystalline network of dimers formed by two-coupled S = 1/2 Cu®>" ions. The
spins are described by the Hamiltonian shown in Eqn (31) [57].

H=> J;S:8 @30
i<j
where S; is the spin-1/2 operator for site i and J;; > 0 is the antiferromagnetic
Heisenberg exchange, characterizing the spin coupling between the Cu®"
spins. The dimer ground state is a singlet with total spin § = 0, separated by an
energy gap from the excited triplet state with total spin S = 1.

TICuCl; exemplifies QPTs in dimer antiferromagnets. Monoclinic TICuClj
crystallizes in the space group P2;/c, containing planer dimers of Cu,Clg in
which Cu?* ions carry spin-1/2 and are stacked on top of one another to form
infinite double chains parallel to the crystallographic axis a and located at the
corners and center of the unit cell in the b—c. The Cu-Cu dimers are separated
by Ti" ions [65,66]. Figure 19 demonstrates the crystal structure of TICuCls.
Neutron scattering experiments performed on TICuCls verified that the QPT in
the dimer systems could be induced by applied magnetic field and hydrostatic
pressure. Below we review neutron scattering experiments performed on
TICuCls, confirming the field- and pressure-induced QPTs in this system.

2.4.3 Field-Induced QPT in TICuCl;

In § = 1/2 spin dimer system, TICuCl3 has a nonmagnetic singlet ground state
with excitation gap A/kg ~ 7.5 K [65]. The dynamical spin properties of
TICuCl; were extensively studied by inelastic neutron scattering [67], showing
well-defined triplet waves and confirming the dimer origin of spin excitations
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FIGURE 19 Schematic view of TICuCl; crystal structure. Dashed ellipsis marks the Cu-Cu
dimers.

in this system. The underlying spin-coupling exchange interactions were
identified from the observed scattered neutron energy dispersion, which is
reported to be dispersive in all directions of the reciprocal space, ratifying the
three-dimensional (3D) nature of the correlations. Figure 20 illustrates the
typical results of the inelastic neutron profiles of TICuCls at zero magnetic
field and as function of temperature. The observed wave vector dependence
(upper panel) and the temperature renormalization (middle and lower panels)
dependence confirm the singlet—triplet nature of the magnetic excitations. The
energy dispersion of the excitations along the main directions of the reciprocal
lattice was extracted from the inelastic neutron scattering and is summarized
in Figure 21.

We now turn to magnetic properties of spin dimer systems in an applied
magnetic field. At zero external magnetic field, pairs of spin-1/2 ions are
antiferromagnetically coupled, and the ground state of these materials is
simply a product of singlets with excited S =1 (S, = 41, 0, —1) triplets and
separated by a finite energy gap A. Application of a magnetic field does not
alter the nonmagnetic singlet state but causes the Zeeman splitting of the three
exited triplet states, which results in linear reduction of the gap energy to the
lowest S, = +1 branch. The gap ultimately vanishes at the critical magnetic
field H. = A/(gug) where g is the effective gyromagnetic factor of the
electron spin and up is the Bohr magneton (see Figure 22). At the critical field
H_, each dimer unit is preferably in a renormalized triplet state S, = +1 with a
finite net magnetic moment. For QPTs exhibiting 3D nature, the interdimer
magnetic exchange interactions provide the 3D coupling, and thus at fields
above H. magnetic long-range ordering is expected. This QPT is characterized
by Bose—Einstein condensation (BEC) of the triplet excitations into the singlet
ground state by mapping triplet states to a dilute Bose gas [68—70].
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FIGURE 20 Inelastic neutron scattering profiles of TICuCl; measured at (i) (1.35,0,0) and
(i) (0,0,3.15), as functions of temperature. Reprinted with permission from Ref. [67].

Similarly in TICuClj3 application of magnetic field results in the Zeeman
splitting of the triplet modes which reduces the gap energy. At H, ~ 6 T the
lowest triplet branch S, = +1 energetically falls below the value of the
nonmagnetic singlet ground state, resulting in long-range ordering of triplets at
H_. The intrinsic parameters of TICuCls make it possible to access the critical
region microscopically, and dynamic probes like neutron scattering provide
valuable tools to study the QPTs in this system. Neutron scattering measure-
ments performed on TICuCls confirmed the field-induced QPT and the 3D
magnetic ordering at H > H., consistent with BEC of the triplet states
[71-74].

Figure 23 demonstrates the summary of inelastic neutron scattering (INS)
data collected for TICuCls (squares) at well-resolved reciprocal lattice points and
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FIGURE 21 Reported energy dispersion of the magnetic excitation modes in TICuCl; at
T=1.5K. The results were extracted from inelastic neutron scattering data collected at the
relevant directions of reciprocal space and arranged in a reduced scheme representation. Lines are
fits to the three-dimensional dimer network corresponding to a Heisenberg model in the strong
coupling limit. Reprinted with permission from Ref. [67].
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FIGURE 22 Energy spectrum of a spin dimer system, composed of pairs of S = 1/2 magnetic
ions in an external magnetic field. In zero magnetic field, a finite energy gap A separates singlet
and the excited triplet states S, = 41, 0, —1. Application of external magnetic field separates the
three triplet states due to Zeeman effect such that S, = +1 band crosses the nonmagnetic singlet
ground state at H. = A/(gug), closing the excitation gap and prompting the formation of magnetic
long-range ordering. This quantum phase transition is described by Bose—Einstein condensation of
the triplet excitations.

at H < H. up to 5.5 T [71]. The results verify that external magnetic field does
not affect the energy of S, = 0 mode whereas the energy of the S, = =1 modes
follows the Zeeman term.

As the triplets undergo BEC at ordering wave vector Qo, the transverse
spin components also form long-range order at the same wave vector. The



Quantum Phase Transitions Chapter |2 77

o
o

o
(=}

energy (E,, - E,.)/ (gugH,)

00 02 04 06 08 1.0
external field (H/ H )

FIGURE 23 Summary of the progressive Zeeman splitting of the triplet modes reported for
KCuCl; (circles) and TICuCl; (squares) at 7= 1.5K and up to 14 and 5.5 T, respectively.
Reprinted with permission from Ref. [71].

transverse magnetization per site, m,, is expressed by m = gug+/nc/2
where n. is the condensate density, and therefore the magnetic Bragg peak
intensity at Qq is proportional to the triplet condensate density n.. Elastic
neutron scattering experiments performed on TICuCls confirmed the appear-
ance of magnetic Bragg reflections corresponding to the transverse spin
ordered state, in agreement with the long-range ordering of the triplets in the
BEC state [72]. Figure 24 shows magnetic Bragg reflections observed at
H > H_at 12 T and at 1.9 K. The spin structure shown in Figure 25 is extracted
from the nuclear and magnetic Bragg peaks collected at multiple reflections at
a field above H,; the shaded area represents the chemical unit cell. The results
are consistent with the long-range field-induced transverse Néel ordering. The
phase transition temperature Tn(H) and field Hn(7) are summarized in
Figure 26, where the phase boundary can be expressed by the power law as
predicted by the BEC theory in quantum magnets, underlying the 3D nature of
the observed QPT.

The BEC of triplet excitations is also used to describe the dynamic prop-
erties of the magnetic excitations at H > H.. A gapless linear mode, corre-
sponding to the Goldstone mode of the ordered phase, is expected to emerge
above the quantum critical phase. The spin dynamics of TICuCl; at fields
above H. was investigated using INS. Three samples of the neutron energy
scan data measured at H > H. phase are presented in Figure 27 [73]. Two
sharp transitions are observed in the inelastic neutron profiles up to H = 12 T,
above which an additional low-lying signal emerges from the edge of the
elastic channel (marked by arrow).
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FIGURE 24 6—20 scans for Q = (1,0,—3) magnetic Bragg peak, equivalent to those for the
lowest magnetic excitation at zero field, measured at H =0 and 12 T at 1.9 K. Reprinted with
permission from Ref. [72].

FIGURE 25 Spin structure in the magnetic field-induced ordered phase of TICuCl;. The external
field is applied along the b-axis. The double chains located at the corner and the center of the
chemical unit cell in the b—c plane are represented by solid and dashed lines, respectively. The
shaded area is the chemical unit cell in the a—c plane. Reprinted with permission from Ref. [72].
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FIGURE 26 The phase boundary in TICuCl; determined from the results of temperature (closed
rectangles) and field (closed circles) scans of the magnetic Bragg peak intensity. Open circles and
rectangles denote the transition points determined from the previous magnetization measurements.
The dashed line is a guide for the eyes. The solid line denotes power-law fit as predicted by the
magnon Bose—Einstein condensation theory. Reprinted with permission from Ref. [72].

Figure 28 presents a summary of the evolution of the magnetic excitations
for the Zeeman (H < H.) and the high field (H > H,) regimes extracted from
convoluted resolution-limited fits to the collected INS data shown in Figure 27.
At H > H. the excitation spectrum exhibits a dramatic change in nature:
S, = +1 Zeeman is absent at finite energies as it remains gapless, while the
S, =0 and S, = —1 Zeeman modes are characteristically renormalized. The
magnetic neutron spectra measured under the same experimental conditions at
H =0 (spin singlet state) and H =14 T (field-induced ordered state) are
compared in Figure 29. The coexistence of the lower- and higher-lying exci-
tations is detected at the field-induced ordered state, illustrating a Goldstone
mode with soundlike dispersion. The results are explained within the frame-
work of the BEC of triplet excitations and in agreement with a system with a
spontaneously broken XY symmetry in a plane perpendicular to the applied
field, verifying the anticipated field-driven QPT.

2.4.4 Pressure-Induced QPT in TICuCl;

The application of pressure is another method of controlling the quantum
magnetism in spin dimer systems. In this section we review the spin dynamics
of TICuCl3 across the pressure-induced QPT, investigated by means of elastic
and inelastic neutron scattering. First, we only consider the changes in the
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FIGURE 27 Observed spectra in TICuCl; collected at 7= 1.5K and at Q = (0,4,0). Arrow
marks a weak signal that emerges at H= 12T at the edge of the elastic line. Reprinted with
permission from Ref. [73].

ground states of the electrons at zero temperature, and later we briefly discuss
the thermal excitations, QC, and the 7 > 0 phase diagram.

The relative strength of the exchange interactions defines the nature of the
ground state. A key feature of TICuCls is that it has a dominant antiferro-
magnetic (AF) exchange coupling (J > 0), which connects the two Cu®"
S = 1/2 moments. As a result the spins pair into dimers and form singlet bonds
(1 1) = 1 1))v/2, giving rise to a nonmagnetic quantum paramagnet ground
state. Figure 30 represents a simple model of a dimer AF across the phase
diagram as function of tuning parameter x. The ellipses shown in Figure 30
represent the singlet dimers at ambient pressure; the solid and dashed lines
denote the intradimer (J) and the weaker interdimer (J') exchange interactions,
respectively, where J' = J/x with x > 1. The ground state of TICuCl; at
ambient pressure can be recognized in terms of dimer AF at x = % regime,
where the ground state of each dimer is a rotationally invariant singlet, and the
ground state of the full system is a product over such singlet valence bonds. At
x =1, the ground state has AF Néel ordering with the spins polarized in a
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FIGURE 28 Magnetic field dependence of the excitation energies measured in TICuCl; at the
Bragg point Q =(0,4,0), and fixed T=1.5K (red (gray in print versions) symbols) and
T =50 mK (blue (black in print versions) symbols). The data points are extracted from the
least-squares fits to the neutron scattering spectra (inset), curves reflect a Zeeman model. The
quantum critical field H = H, is denoted by the dashed boundary. Reprinted with permission
from Ref. [74].

staggered spatial pattern, as illustrated in Figure 30. In this case, individual
spins have definite orientations, and thus the symmetry of the spin rotations
has been broken. The spin-rotation symmetry is restored at x = x,.

The exchange pathways defined by the interatomic bond lengths and angles
determine the magnetic interactions between the spin moments. On the other
hand, the ground state of a spin system strongly depends on the relative sign
and strength of these exchange interactions. For TICuCls applied pressure
alters these interatomic pathways and thus inversely tunes x, with a continuous
QPT to AF Néel ordering anticipated at x.. Magnetization as well as neutron
diffraction measurements confirmed the pressure-induced long-range AF
ordering in TICuClj [75,76]. Figure 31 shows neutron diffraction §—26 scans
for P = 1.48 GPa collected at various temperatures in TICuCls, which clearly
illustrate the increase in magnetic Bragg reflection intensity with decreasing
temperature. The magnetic Bragg reflections were observed at reciprocal
points equivalent to those with lowest magnetic excitation energy at ambient
pressure—i.e., at Q = (h,0,]) with integer & and odd [. Since the relative ratio
of J and J' governs the singlet—triplet excitation gap, it can be deduced that
application of pressure enhances J' relative to J, which leads to reduction of
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FIGURE 29 Contour plot of the magnetic inelastic neutron scattering intensity measured in
TICuCl;. Goldstone mode with linear dispersion around K, (corresponding to g, = 0) is detected.
Reprinted with permission from Ref. [74].
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FIGURE 30 Schematic representation of the phase diagram of a simple AF spin dimer system.
TICuCl; demonstrates similar quantum phase transition with pressure acting as inverse tuning
parameter. Adapted from Ref. [53].
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FIGURE 31 6—26 scans for the Q = (1,0,—3) reflection measured as function temperature at
P = 1.48 GPa in TICuCls. Reprinted with permission from Ref. [76].

the spin gap corresponding to the lowest excitation energy and eventually to its
complete collapse, which then enables the long-range magnetic ordering.

Applied pressure eventually closes the singlet—triplet excitation gap, and
at P = P, the triplet (S = 1) components S, = +1, 0, —1 can condense into
the singlet (S =0) ground state, whereas in the field-induced QPT (see
Section 2.4.3) the degeneracy of the triplet state is lifted at H = H,, and only
the lowest energy branch of the triplet states (S, = +1) closes its distinct spin
gap and condenses into the singlet state. Considering that the ground state of
the pressure-induced Néel phase is the staggered spin configuration (see
Figure 30), it is anticipated to detect two classes of excitations: two low-
lying transverse (7) spin-wave excitation modes of a conventional well-
ordered magnet, resulted from the slow rotation of spin orientations in
space (Goldstone), as well as one longitudinal (L) fluctuation mode of the
weakly ordered moments (Higgs boson). Furthermore, application of pres-
sure tunes the strength of the interdimer coupling (J) which facilitates the
delocalization of triplets, enabling them to hop to a neighboring dimer site,
which then leads to dispersion of these excitations.

The excitations of TICuCl3 have been characterized in detail by elastic and
inelastic neutron scattering experiments with continuous pressure control
through the QPT. Elastic neutron diffraction measurements were performed to
observe the long-range magnetic ordering at P > P., and the pressure
dependence of Néel temperature was extracted from the representative tem-
perature dependence of the identified magnetic Bragg peaks. The pressure
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FIGURE 32 Summary of INS results for the gaps of all three triplet excitations as functions of
pressure at 7= 1.85 K. The blue (gray in print versions) region represents the spin singlet phase
(Quantum Disordered, QD), while the red (light gray in print versions) region represents the
pressure-induced long-range ordered phase (Renormalized Classical Spin Wave AF, RC-AFM).
Modes L and T are degenerate within experimental resolution at P < P.. Red (dark gray in print
versions) symbols show the longitudinal mode L at P > P.. Solid and dashed lines are theoretical
power-law fits. Data for Ty (P) are reprinted from Ref. [77]. QCP, quantum critical point.
Reprinted with permission from Ref. [78].

dependence of the singlet—triplet gap energy A(P) has been measured using
INS. Figure 32 shows a summary of neutron scattering results measured across
the QPT as function of pressure at 7= 1.85 K [78]. Green symbols denote
Tn(P) extracted from neutron diffraction data [77], while L and T modes are
extracted from INS results collected at Q = (0,0,1) and (0,4,0), in order to
give access to all three spatial direction and thus cover both modes for P > P,
Néel ordered phase [78]. A combined power-law fit of the elastic and
inelastic results to Ty « (P — P.)? and A o« (P, — P)*, respectively, yields
P. ~ 1.07 kbar [77]. Figure 33 shows the typical pressure dependence of
INS spectra for the spin excitations in TICuCls; the two resolved excitations
L and T, are marked, indicating that the spin-wave excitations of the ordered
phase are accompanied by a pressure-dependent longitudinal mode which
shows no sign of divergent decay at QPT, while the gap scales with the Néel
temperature and the ordered moment.

We now turn to the experimental implications of QCP at P = P.. As it was
discussed in Section 2.1.5, despite the fact that QPT occurs at zero tempera-
ture, the transition leaves a clear fingerprint at nonzero temperatures in the
vicinity of the QCP. Therefore, here we need to consider the influence of finite



Quantum Phase Transitions Chapter |2 85

300
— (a) 0.060 kbar (c) 1.750 kbar
= T
E 200 > O (040 t: (g:?}
P (0o 1)
c
= 100 +70
E
0
e b 0.900 kbal 2.250 kbal
€ (b) 7 ‘ { s c; 040r
€ 200 wen
2
[ =
<100
=
0
0.5 1 1.5 0.5 1 1.5
Energy transfer [meV] Energy transfer [meV]

FIGURE 33 INS spectra showing the triplet excitations at 7= 1.85 K and Q = (0,4,0) for 0.06
(a), 0.9 (b), 1.75 (c) and 2.25 kbar (d) across the QPT. Complementary data taken at Q = (0,0,1)
are shown in (c). Reprinted with permission from Ref. [78].

temperatures on the ground state as it goes through the QPT. Figure 34
demonstrates the schematic x—7 phase diagram of TICuCl;. At finite tem-
peratures and for x < x. spin-wave excitations are induced by thermal fluc-
tuations, distorting the Néel AF ordering, whereas for x >> x., spin singlet

J
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Critical
Region
Classical Dilute
Spin Waves Triplon Gas

Temperature

ansif=esil

Neel Order X

FIGURE 34 Schematic x—7 phase diagram of TICuCl;. Quantum critical region extends to
nonzero temperature. Adapted from Ref. [53].
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dimers are thermally excited to triplons. QC emerges in the intermediate state
in the vicinity of x., where thermal fluctuations compete with quantum
fluctuations, and the ground state wave function has entangled critical form.

As it was noted earlier, applied pressure serves as the inverse of the
tuning parameter x and thus at finite temperatures it can be used to directly
and continuously control the thermal and quantum fluctuations, yielding
comprehensive thermodynamic and mesoscopic information necessary to
untie the effects of classical and quantum phenomena close to QCP. High-
resolution INS measurements have been successful in achieving such a
control, by measuring the magnetic excitation spectrum across the entire
quantum critical phase diagram as a function of pressure and temperature.
Figure 35 presents INS results mapping the evolution of the spin dynamics
of TICuCls; throughout the quantum critical phase diagram as a function
of pressure and temperature. The results indicate that although thermal
and quantum fluctuations operate independently close to QCP, surprisingly
they have similar effect on the magnetically ordered phase, accounting for
the opening of the excitation gaps and melting the magnetically ordered
phase.
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FIGURE 35 Complete experimental phase diagram, showing quantum disordered (QD), quan-
tum critical (QC), classical critical (CC), and renormalized classical (RC-AFM) phases. The
dashed lines denote energy scales marking crossovers in behavior. Reprinted with permission from
Ref. [79].
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2.5 QUANTUM PHASE TRANSITIONS IN Jois = 1/2
PYROCHLORE MAGNETS

2.5.1 XY Pyrochlore Magnets

Pyrochlore magnets have been a playground for the physics of geometrical
frustration as the A-site of cubic pyrochlores of the form A,B,07; form a
network of corner-sharing tetrahedra, shown in Figure 36 [80]. The family of
rare earth titanates, R;B,07, has been of particular interest, as a range of R3"
ions can occupy the A-site, and the B-site of the pyrochlore structure is
occupied by nonmagnetic Ti*" [81].

As rare earth ions reside at the bottom of the periodic table, where
spin—orbit coupling is very strong, the magnetism associated with the R*"
ions is described by a total angular momentum J, calculated using Hund’s rules
for a rare earth ion in isolation. The R*>" ion is imbedded in the crystalline
lattice, and crystalline electric field (CEF) effects will split the (2J + 1)-fold
degeneracy of the rare earth ion and produce a ground state magnetic moment
characteristic of the CEF eigenfunctions that make up the ground state. The
anisotropy of the rare earth magnetic moments and the J.¢ nature of these
moments are then determined by the nature of the eigenfunctions that make up
the ground state.

Cubic rare earth titanate pyrochlores often display local Ising anisotropy,
with magnetic moments constrained to point directly into or out of the tetra-
hedra on which they reside. This occurs in rare earth pyrochlores related to
classical spin ice physics [82], such as Ho,TipO7 [83,84] and Dy,Ti,O7 [85].
However, in Er;Ti;O7 and Yb,TiyO7, the CEF effects pick out ground state

FIGURE 36 The cubic pyrochlore lattice, a network of corner-sharing tetrahedra formed by the
rare earth sites in Er,Ti;O7 and Yb,Ti,O;. The left panel shows the spin configurations taken up by
Er’* moments in the Y, and 3 ground states. Er,Ti;O; displays the ¥, ground state below
T~ = 1.2 K. Reprinted with permission from Ref. [80].
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doublets with eigenfunctions made up primarily of mj;= +1/2. This gives
local anisotropy to the magnetic moments which is XY or planar, rather than
Ising-like, and an effective J = 1/2 quantum spin description [86].

A classical description of XY magnetic moments decorating the pyrochlore
lattice is shown in the bottom panels of Figure 36. Here we show “spins” that
can lie in any direction within the local XY plane. This local XY plane is the
plane perpendicular to the local Ising direction, which itself points directly
into or out of the tetrahedra. The particular spin configurations illustrated in
Figure 36 are those appropriate to the so-called ¥, and y/3 noncollinear ground
states of the XY antiferromagnet on a pyrochlore lattice [87]. In fact the
ground state is known to be the ordered structure that describes Er,Ti,O7 at
low temperatures [88].

2.5.2 EI‘2Ti207

Er,TiyO7 is described as an antiferromagnetically coupled XY antiferromagnet
on a cubic pyrochlore lattice [89]. Its Curie—Weiss constant which charac-
terizes the sign and strength of its average interactions is ~22 K, indicating
antiferromagnetic interactions. The low-temperature phase diagram for
Er,TiyO7 in the presence of a (1,1,0) magnetic field is shown in the top panel
Figure 37. This phase diagram is derived from heat capacity measurements
that are shown in the bottom panel of Figure 37. Clearly, the low temperature
heat capacity in zero or small fields shows a strong C,, anomaly, indicating a
phase transition to an ordered state at 7y ~ 1.2 K in zero field. However, we
also see that this ordered phase can be destroyed at the lowest temperatures by
application of a relatively modest magnetic field applied along the 110
direction—hence a magnetic field induced QPT at H, ~ 1.7 T.
Low-temperature neutron scattering measurements, using both time-
of-flight techniques with the disk chopper spectrometer (DCS) instrument at
NIST, as well as triple axis measurements, using FLEX at the Helmholz
Zentrum Berlin, were used to study the low field magnetic structure and the
nature of the QPT at 1.7 T [90]. A map of the elastic scattering within the
(H,H,L) scattering plane of Er,Ti;O7 is shown in the left panel of Figure 38.
The noncollinear ¥3 magnetic structure that Er,TiO7 displays at low temper-
ature is a Q = 0 antiferromagnetic structure, meaning that the spin configura-
tion of each tetrahedron is the same, as illustrated in the right panel of
Figure 36. The magnetic Bragg peaks are also allowed nuclear peaks. Of these,
the (2,2,0) Bragg peak has the largest ratio of magnetic to nuclear scattering at
low temperatures, and variation of this (2,2,0) Bragg intensity at 7= 0.03 K as
a function of (1,1,0) magnetic field is shown in the right panel of Figure 38.
The resulting elastic scattering order parameter for the QPT shows an
interesting ~25% growth at the lowest magnetic fields, followed by a
continuous fall off of the order parameter as one pushes through the QPT near
H, ~ 1.7 T. The initial growth in the (2,2,0) magnetic Bragg scattering is
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FIGURE 37 The top panel shows the magnetic field, in the (1,1,0) direction, versus temperature
phase diagram of Er,Ti,O, showing the (1,1,0) field-induced quantum phase transition at ~1.7 T.
The bottom panel shows the C, data from which the phase diagram was determined. Reprinted
with permission from Ref. [90].
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FIGURE 38 The left panel shows a map of the elastic scattering in the (H,H,L) plane of
reciprocal space for Er,Ti;O; at 7= 0.05 K. The right panel shows low-temperature magnetic
Bragg intensities at the (2,2,0) position which shows the low field increase, and quantum phase
transition at ~H =17 T.
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associated with the fact that the 3 ordered state displays six domains, two of
which are chosen by application of a weak (1,1,0) field, and this results in the
increase of this order parameter at low (1,1,0) fields.

2.5.3 Spin Excitations in Er,Ti,O7

Time-of-flight neutron scattering, such as that carried out using DCS at NIST,
simultaneously measures the elastic and inelastic neutron scattering spectrum,
at wave vectors that are selected by the precise orientation of the single crystal
to the incident neutron beam and the detector coverage. By rotating the single
crystal about a vertical axis, a large range of wave vectors can be surveyed,
along with a dynamic range in energy that is selected by the energy of the
monochromatic incident neutrons. In this way, broad surveys of elastic scat-
tering in reciprocal space, as shown in the left panel of Figure 38, and surveys
of the inelastic scattering along different high-symmetry directions can be
simultaneously probed.

Figure 39 shows one such energy versus direction in reciprocal space slice
for Er,TipO7, mostly at low temperatures, 7= 0.03 K, and as a function of
(1,1,0) magnetic field. The direction of reciprocal space chosen for this plot is
the (2,2,L) direction, which is illustrative of the spin waves going into the
strong (2,2,0) magnetic Bragg peak, and how they are affected as we push
through the QPT as a function of field.

Figure 39(a) and (b) shows this inelastic spectrum in zero field above
(T'=2K) and we