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ABSTRACT 

Many researchers use abstract models to simulate network 

congestion, finding patterns that might foreshadow onset of 

congestion collapse. We investigate whether such abstract 

models yield congestion behaviors sufficiently similar to 

more realistic models. Beginning with an abstract model, 

we add elements of realism in various combinations, 

culminating with a high-fidelity simulation. By comparing 

congestion patterns among combinations, we illustrate 

congestion spread in abstract models differs from that in 

realistic models. We identify critical elements of realism 

needed when simulating congestion. We demonstrate a 

means to compare congestion patterns among simulations 

covering diverse configurations. We hope our contributions 

lead to better understanding of the need for realism when 

simulating network congestion. 
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I.6.1 SIMULATION AND MODELING: Model Validation 

and Analysis 

1. INTRODUCTION 

The science of complex networks [1] has matured to the 

point where one can study mathematical structure for many 

classes of probabilistic graphs (e.g., random, scale-free, 

small-world), as well as dynamical processes [2] moving 

within such graphs. Typically, abstractions are adopted in 

order to model real networks using techniques (e.g., graph 

theory and percolation theory) available from network 

science. Tension arises when such powerful abstractions are 

used to study real networks. How can one be sure that 

chosen abstractions adequately embody key properties of a 

network under study? This question of model validation 

motivates the work reported here. 

Many researchers [e.g., 3-12] use simulation to investigate 

congestion spread in network topologies, often finding 

congestion can be modeled as a percolation process on a 

graph, spreading slowly under increasing load until a 

critical point, after which congestion spreads quickly 

throughout the network. The researchers identify various 

signals that arise around the critical point. Such signals 

could foreshadow onset of widespread congestion. These 

developments appear promising as a theoretical basis for 

monitoring methods that could be deployed to warn of 

impending congestion collapse. Despite showing promise, 

questions surround this research, as the models are quite 

abstract, bearing little resemblance to communication 

networks deployed based on modern technology. We 

explore these questions by examining the influence of 

realism on congestion spread in network simulations. 

We begin with an abstract network simulation from the 

literature. We add realism elements in combinations, 

culminating with a high-fidelity simulation, also from the 

literature. By comparing patterns of congestion among the 

combinations, we explore a number of questions. Does 

spreading congestion in abstract network models mirror 

spreading congestion in realistic models? How do specific 

elements of realism influence congestion spread? What 

elements of realism are essential to capture in models of 

network congestion? What elements are unnecessary? What 

measures of congestion can be compared, and how, across 

diverse network models? 

We make three main contributions. First, we illustrate 

congestion spread in abstract models differs significantly 

from spread in realistic models. Second, we identify 

elements of realism needed when simulating congestion. 

Finally, we demonstrate a method to compare congestion 

patterns among diverse network simulations. 

The remainder of the paper is organized in five sections. 

Section 2 reviews some related work where researchers use 

abstract models to investigate congestion spread in network 

simulations. Section 3 describes the configurable network 

simulator used in our experiment. The simulator can be 

configured to mirror an abstract model [12], a realistic 

model [13], and various intermediate combinations. Section 

4 details our experiment design. We present and discuss 

results in Sec. 5. We conclude in Sec. 6.  

2. RELATED WORK 

Reviewing a decade of congestion studies [3-12] reveals 

many similarities, and some variations, among the abstract 

models used. Below we summarize the models along four 

dimensions: topology, traffic sources/sinks, routers and 
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congestion measures. Elsewhere [14] we provide more 

details about each of the studies. 

Researchers used either deterministic or probabilistic 

topologies. The most popular deterministic topology was a 

square lattice, either open [6, 11] or folded into a toroid [3-

5, 7, 10]. Rykalova et al. [10] also used a ring. Echenique et 

al. [12] used a real topology taken from the Internet 

autonomous system map, circa 2001. Arrowsmith et al. [5] 

started with a 2D lattice and then generated triangular and 

hexagonal depleted lattices by probabilistically removing 

links. Other researchers used random processes to generate 

topologies: Erdős–Rényi [9], exponential [8], scale-free [8-

9], or small world [9]. 

Within a topology, researchers used either deterministic or 

probabilistic processes to place sources, sinks and routers. 

The most popular approach was to allow every node to be a 

packet source and sink, as well as router [7-10, 12]. Sarkar 

et al. [11] restricted sources and sinks to the network edge, 

while Mukherjee and Manna [6] placed sources at the top 

edge of a lattice and sinks at the bottom edge. Other 

researchers [3-5] assigned nodes to be a source/sink or 

router with a biased coin flip. All surveyed studies 

generated loads by having sources inject individual packets, 

where each packet is destined for a randomly selected sink. 

The most popular strategy [3-7, 10-11] was for each source 

to generate a packet per time step (p/ts) with a specified 

probability. A few studies [8-9, 12] generated a fixed 

number of packets/ts and randomly assigned the packets to 

sources. One study [8] had a constant density option to 

ensure a fixed number of packets remained in transit. 

In all models surveyed, router nodes queue packets arriving 

from sources and then forward them at an assigned rate to 

the next hop along some path toward the sink. Differences 

appeared with respect to queue discipline, next-hop 

selection and forwarding rate. The most popular [3-7, 9-10, 

12] queue discipline was unbounded first-in, first-out 

(FIFO) queues. One study [8] used bounded last-in, first-out 

(LIFO) queues. One study [11] used bounded FIFO queues, 

where the oldest packet was dropped when a packet arrived 

at a full queue. Most studies [3-6, 10, 11] selected next hop 

based on shortest-path first (SPF) in hops. Ties were broken 

either by shortest queue length [3-4, 11], link use [5] or 

tossing a fair coin [6, 10]. One study [7] selected next hop 

with the choice among three different SPF metrics: hops, 

queue length, or their sum. Two studies [9, 12] used SPF 

based on a weighted sum of hops and queue length. One 

study [8] used guided random walk to select next hops. In 

most studies [3-5, 8, 11-12] each router forwards one p/ts. 

In two studies [7, 10] each router forwards one p/ts for each 

queue. One study [6] has each router forward a batch of 

packets at each time step. One study [9] assigns routers 

variable forwarding rates using any of three options: (1) 

node degree, (2) node betweeness or (3) node betweeness 

divided by number of nodes in the topology. 

The surveyed research used various measures of network 

congestion, and often multiple measures per study. 

Congestion measures included: one-way packet latency [3-

4, 6, 8]; packets delivered (i.e., aggregate throughput) [3-5]; 

queue lengths [4-6, 8]; packets in the network [7, 9-10, 12]; 

and packet drop rate [11]. Various studies analyzed the 

measures as time series, proportions, or variances. 

Beyond the differences we identified above, the studies we 

surveyed shared many similarities. An abstract model is 

developed and then used to explore congestion in various 

topologies. Congestion spread is examined through selected 

measures. A critical load is identified, after which trajectory 

changes distinctly for selected measures. When examined 

by engineers, who deploy and manage networks based on 

Internet technology, the degree of abstraction is sufficiently 

high to call into question the findings. The topologies are 

rarely congruent with real Internet topologies [15], various 

parameter values are not consistent with real engineering 

choices, congestion-control protocols are not modeled and 

the distribution of packet injection is unlike patterns that 

occur with real users. Does this lack of realism matter? If 

so, what realism elements must be present to draw valid 

conclusions about congestion spread? We investigate these 

questions here. 

3. MODELS 

We conducted an experiment (see Sec. 4) with a simulation 

model we named FxNS (Flexible Network Simulator). 

FxNS is based on an abstract model, EGM, developed by 

Echenique, Gomez-Gardenes and Moreno [12]. We added a 

set of seven realism elements, factored from MesoNet [13]. 

While many realistic network simulators exist [16], we 

chose MesoNet because the model is terse (requiring only 

20 parameters) and factors easily, and because the model 

scales (simulating up to ½ million nodes engaged in over 

125×10
3
 simultaneous flows).  

We implemented the realism elements as options within 

FxNS. Since each element can be enabled or disabled, 

FxNS could support (2
7
 =) 128 combinations. However, as 

explained in Sec. 3.3, we respect some dependencies among 

realism elements. As a result, FxNS supports only 34 

combinations. FxNS can be configured to behave as EGM 

(most abstract model), as MesoNet (most realistic model), 

and any of the remaining 32 valid combinations 

intermediate between EGM and MesoNet. With all realism 

elements enabled, we use FxNS to simulate ¼ million 

nodes engaged in over 50×10
3
 simultaneous flows. FxNS 

should scale up further, to the same order as MesoNet. 

In Sec. 3.1 we describe EGM, and give simulation results 

demonstrating that FxNS correctly implements EGM. In 

Sec. 3.2 we describe MesoNet, and its 20 parameters spread 

among five categories. We also define our mapping from 

MesoNet parameters to FxNS realism elements. In Sec. 3.3, 

we justify dependencies adopted among realism elements 

and we describe our numbering convention for the FxNS 



combinations used in our experiment. Elsewhere [14] we 

provide additional details on these topics. 

3.1. Abstract Model 

In EGM, p packets are injected at each time step (ts) with 

source and destination nodes for each packet chosen 

randomly (uniform). Injected packets are placed at the end 

of a source’s unbounded FIFO packet queue. After 

injection, each node can forward one packet from its queue 

to a next node. If the next node is the destination, the packet 

is delivered; otherwise the next node is chosen as the 

neighboring node i with minimum δi as defined in eq. 1: 

                                                                                      (1)                                                               

where i is index of a node’s neighbor, di is minimum hops 

to the packet’s destination via i, and ci is queue length of i. 

When h = 1 the routing amounts to SPF hops. When h < 1, 

routing is congestion aware, as packets may follow routes 

longer in hops, but shorter in total queuing delay. The lower 

h the more congestion-aware routing becomes. 

EGM measures congestion as ρ, the ratio of packet outflow 

to inflow as defined in eq. 2: 

                                                                         (2) 

                                                                                                                                                                           

where A is aggregate number of packets queued, t is time, τ 

is measurement interval size, and p is packet-injection rate. 

Using EGM with an 11 174-node topology, Echenique et al. 

[12] explored effects of SPF hops routing vs. congestion-

aware routing as p increases. They found that for routing 

via SPF hops ρ undergoes a 2
nd

 order transition as p passes 

a critical load, while under various degrees of congestion-

aware routing ρ undergoes a 1
st
 order transition as p passes 

critical load. Using our FxNS implementation of EGM, we 

replicated these results, as shown in Fig. 1. 

 

 

 

 

 

 

 

 

Figure 1. FxNS replication of EGM simulation results 

3.2. Realistic Model 

MesoNet provides a realistic TCP (Transmission Control 

Protocol) network model, requiring only 20 parameters 

spread across five categories, as shown in Table 1. Mills et 

al. [16] used MesoNet to compare congestion-control 

algorithms proposed for the Internet. 

Category ID Name  

Specific  

FxNS 

Network 

x1 topology 

18% 

NC 

x2 propagation delay 

14% 

DE 

x3 network speed VS 

x4 buffer provisioning PD 

Sources & 

Sinks 

x5 number sources/sinks 

SR x6 source distribution 

x7 sink distribution 

x8 source/sink speed VS 

Users 

x9 think time p 

x10 patience n/a 

x11 web object file sizes FL 

x12 larger file sizes 

n/a x13 localized congestion 

x14 long-lived flows 

Congestion 

Control 

x15 control algorithm 

TCP x16 initial cwnd 

x17 Initial sst 

Simulation 

Control 

x18 measurement interval fixed 

x19 simulation duration fixed 

x20 startup pattern p 

Table 1. MesoNet Parameters with Mapping to FxNS Elements 

MesoNet allows for three-tier topologies of routers: core, 

point-of-presence (PoP), and access. In our experiment, we 

use an Internet service provider (ISP) topology shown in 

Fig. 2, which provides three types of access routers: D-class 

(red), F-class (green) and N-class. MesoNet defines speed 

relationships among all routers. Changing one parameter 

can scale network speed and higher router tiers can support 

the maximum input traffic expected from lower tiers. 

Sources and sinks can be placed below access routers as a 

fourth tier with ¼ million nodes (not shown in Fig. 2). 

 

 

 

 

 

 

 

 

 

Figure 2. Three-tier 218-router topology – 16 core (A-P), 32 PoP 

(A1-P2) and 170 access (A1a-P2g) 

FxNS maps router typing to realism element NC (node 

classes), which ensures that sources and sinks are placed only 

at the network edge. FxNS maps router speed scaling to 



realism element VS (variable speeds). MesoNet allows 

sources and sinks to connect to the network at two different 

speeds: fast and normal. FxNS also maps these interface 

speeds to realism element VS. In MesoNet links between 

core routers have intrinsic propagation delays matched to 

geographic placement and physics. FxNS maps these to 

realism element DE (propagation delays). These intrinsic 

propagation delays were used to compute SPF routes for the 

network core. MesoNet also includes various buffer 

provisioning algorithms. FxNS uses only one (estimated 

round-trip time multiplied by router forwarding speed) and 

maps this to realism element PD (packet dropping). 

MesoNet allows the number of sources and sinks to be scaled 

and also allows probabilistic placement of sources and sinks 

under various types of access router. MesoNet ensures there 

are four times as many sinks as sources. FxNS adopts these 

procedures and maps them to realism element SR (sources 

and receivers). 

MesoNet provides a rich array of user parameters, but FxNS 

maps only two. First, MesoNet users have think time 

between initiating data transfers. FxNS replaces think time 

with packet-injection rate, p. Second, MesoNet allows users 

to randomly select the file size for each data transfer. FxNS 

maps this parameter to the FL (flows) realism element, which 

creates sets of packets transferred in a related stream. 

MesoNet allows users to exhibit limited patience when 

waiting for data transfers to complete, but in FxNS all users 

have infinite patience. MesoNet allows probabilistic selection 

of various larger file sizes and spatiotemporal congestion. 

FxNS does not implement these features. 

MesoNet allows probabilistic assignment of congestion-

control algorithm to individual sources/sinks. In FxNS only 

TCP (transmission control protocol) is used. MesoNet also 

allows specification of initial cwnd (congestion window) and 

sst (slow-start threshold). FxNS maps these parameters to 

realism element TCP. 

Finally, MesoNet offers a set of three simulation control 

parameters. FxNS uses measurement interval size and 

duration (in measurement intervals) to bound simulation 

length. MesoNet also allows individual traffic sources to start 

in a specified pattern. FxNS subsumes this under packet-

injection rate. 

To verify FxNS correctly implements MesoNet realism 

elements, we conducted comparative simulations, running 

MesoNet and FxNS (with all realism elements enabled) for 

600 000 ts using identical parameter values. As shown 

elsewhere [14], we compared model output for seven 

essential MesoNet responses [17].   

3.3.  Combination Models 

While FxNS can enable and disable the seven realism 

elements shown in Table 1, some dependencies exist, as 

shown in Fig. 3. Starting with all realism elements disabled 

(EGM), one can easily enable packet dropping (PD) and 

node classes (NC). Variable speeds (VS) require routers to 

be classified by type. Similarly, propagation delays (DE) 

appear on core network links, which can be identified only 

through router types. While sources/sinks (SR) might be 

included as a second tier under a flat topology, i.e., without 

node classes, we decided to restrict them to a fourth tier 

under access routers. We took this decision for 

convenience, allowing us to eliminate 24 combinations that 

would otherwise need to be simulated. We imagined 

influence of sources/sinks could be discerned even with this 

restriction. Enabling flows (FL) means packets are injected 

as a stream between source and sink, thus FL requires SR. 

Finally, TCP regulates packet-transmission rate only on 

flows. 

 

 

 

 

 

 

 

 

Figure 3. Dependencies among FxNS realism elements 

Seq Cmb TCP FL SR DE VS NC PD 

1 c0 0 0 0 0 0 0 0 

2 c1 0 0 0 0 0 0 1 

3 c2 0 0 0 0 0 1 0 

. . . 

32 c123 1 1 1 1 0 1 1 

33 c126 1 1 1 1 1 1 0 

34 c127 1 1 1 1 1 1 1 

Table 2. Elided list of valid FxNS combinations 

We identify FxNS combinations by number, based on 

binary encoding, as shown in Table 2. Each realism element 

is assigned a position in a seven-bit vector, from most (bit 7 

- TCP) to least (bit 1 - PD) significant. When a selected 

factor is enabled its bit position is set to one, and set to zero 

when disabled. The resultant bit vector can be converted to 

a decimal value: the combination (Cmb) number. The most 

abstract combination is c0 and the most realistic is c127. 

Each combination is also assigned a sequence (Seq) number 

(1-34). Both numbers are used in discussing results. 



4. EXPERIMENT DESIGN 

We designed an experiment to explore influence of realism 

on congestion spread in a network simulated with FxNS. 

We identify fixed input parameters used in all simulations. 

We define parameters we vary. We define four responses 

measured for all simulations. 

4.1. Fixed Input Parameters 

We used the same 218-router topology (recall Fig. 2) in all 

simulations. We used Dijkstra’s SPF algorithm to compute 

next hops for core routers based on propagation delays. 

Routing to/from core nodes consists of single paths with 

obvious next hops. Note that propagation delays are used to 

compute SPF next hops in the core regardless of whether 

DE is enabled or disabled. 

We execute each simulation for a target of 200 000 ts. 

Individual simulations can self-adapt to execute fewer ts in 

order to limit memory usage when PD is disabled. No 

simulation executed fewer than 41 400 ts. 

4.2. Variable Input Parameters 

We varied only two parameters: (1) combination and (2) 

packet-injection rate p. For each combination, FxNS 

simulates a set of enabled/disabled realism elements (recall 

Table 2). Table 3 gives parameter values assigned to each 

element when enabled and disabled. 

For each combination simulated, we varied p up to 2500. 

When extreme congestion appears at successive values of p, 

simulation of a combination could self-terminate. This 

saves computation time because once a combination 

demonstrates extreme congestion for several increasing 

values of p then the combination will continue to exhibit 

congestion as p increases. In no case did a simulation 

terminate a combination before p passed 790. 

4.3. Responses 

We chose responses that could be usefully compared across 

all simulated combinations: most abstract to realistic. We 

determined that all combinations shared two measurable 

concepts: graphs and packets. Using these we measure: 

congestion spread (χ), network connectivity (α) and 

effectiveness (π) and efficiency (δ) of packet delivery. All 

responses fall in the interval [0...1]. We measure each 

response for each combination at each packet-injection rate. 

We define these responses precisely elsewhere [14]. Here 

we give intuitive definitions. 

Each of our simulated topologies is a graph of nodes 

connected by links, where the entire graph GN contains |GN| 

nodes. We label a node congested whenever queued packets 

exceed 70 % of 250×router forwarding speed. When fewer 

packets are queued, we label a node uncongested. We label 

any uncongested node as cutoff when it links only to 

congested neighbors. After labeling, we compute connected 

subgraphs of nodes that are either congested or cutoff. We 

label the largest such subgraph Gχ. We use χ=|Gχ|/|GN| as a 

measure of congestion spread. We also compute connected 

subgraphs of nodes that are uncongested. We label the 

largest such subgraph Gα. We use α=|Gα|/|GN| as a measure 

of network connectivity. 

 Enabled Disabled 

PD buffers = 250×router speed buffers = ∞ 

NC 

3-tier 218-node topology 

as in Fig. 2 with routers 

labeled as core, PoP, D-

class, F-class or N-class 

flat 218-node 

topology as in 

Fig. 2 but with 

routers unlabeled 

VS 

core 80 p/ts; PoP 10 p/ts; 

D-class 10 p/ts; F-class 2 

p/ts; N-class 1 p/ts; fast 

source/sink 2 p/ts; normal 

source/sink 0.2 p/ts   

all routers and 

sources/sinks 9 

p/ts 

DE 
core links have 

propagation delays  

no propagation 

delays 

SR 

51 588 sources & 206 352 

sinks deployed uniformly 

below access routers 

no sources or 

sinks deployed 

FL 

transfers are packet 

streams: sized randomly 

from Pareto distribution 

(mean 350, shape 1.5) - 

streams set up with TCP 

connection procedures 

transfers are 

individual packets 

TCP 

packet transmission 

regulated by TCP 

congestion-control 

including slow-start (initial 

cwnd = 2 sst = 2
30

/2) and 

congestion avoidance 

packet 

transmissions not 

regulated by 

congestion-

control 

Table 3. Parameter values for each FxNS realism element 

Packets injected into the network can be queued, dropped or 

delivered. We define effectiveness of packet delivery (π) as 

the ratio of delivered packets to injected packets. For each 

delivered packet we record the latency between injection 

and delivery times. We average these latencies over all 

delivered packets, and then normalize the average to fall 

between 0 (minimum delay) and 1 (maximum delay), 

yielding efficiency (δ) of packet delivery. 

5. RESULTS AND DISCUSSION 

For each combination simulated, we plotted each response 

(y-axis) vs. packet-injection rate (x-axis). Here we give 

plots for only the most abstract (c0) and realistic (c127) 

combinations, as discussed in Sec. 5.1. For each response, 

we also treat each of the 34 plots, one for each combination, 

as a 250-element vector and then cluster vectors to assess 

influence of each realism element on each response. We 

discuss the clusters in Secs. 5.2 to 5.5, drawing on insights 



from the related x-y plots and multidimensional interactive 

visualization of FxNS simulation data [18]. All x-y and 

cluster plots are also available in an enlarged format [19]. 

5.1. Most Abstract vs. Most Realistic 

Figure 4 contains four subplots comparing congestion 

behavior between the most abstract (c0) and realistic (c127) 

combinations. For combination c0, congestion spreads 

quickly with increasing packet-injection rate, encompassing 

all nodes by the time p reaches 500. For c127, congestion 

spread remains low over the entire range of packet-injection 

rates, even out to p = 2500 (not shown). This difference has 

two main causes. First, all nodes in c0 operate at the same 

speed. Core nodes become overwhelmed with congestion, 

which then spreads to the network edge. In c127, routers are 

engineered with varying, hierarchical speeds, so higher tiers 

can handle packet inflow rate from lower tiers. Second, c0 

does not monitor and adapt to congestion, while c127 

implements TCP, which measures congestion and adapts 

packet inflow-rate accordingly. 

Figure 4. Comparing c0 vs. c127 for each response 

Network connectivity breaks down quickly for both c0 and 

c127, reaching a low level as p passes 500. There are two 

main differences: c127 decays more slowly than c0 and 

c127 asymptotes with higher network connectivity. For c0 

connectivity drops to zero after p passes 500. Combination 

c127 decays more slowly because TCP adapts packet 

injection based on measured congestion and c127 

asymptotes with higher connectivity because variable router 

speeds restrict congestion to the network edge. The network 

core remains uncongested and intact. Connectivity breaks 

down completely for c0 because the core becomes 

congested and then congestion spreads to the edge, 

consuming all nodes. 

For c0 proportion of packets delivered drops steeply, 

reaching nearly zero as p passes 1000. For c127 proportion 

of packets delivered drops modestly with increasing p, 

stabilizing near 80 %. This large difference arises from a 

combination of two factors: packet dropping and TCP. 

Combination c0 does not discard packets and does not 

adapt packet injection based on measured congestion. With 

increasing p, this causes a growing backlog of packets in all 

routers. Combination c127 discards packets when router 

buffers fill and adapts packet injection based on measured 

congestion. So undelivered packets for c127 encompass 

only discards, and rate adaptation limits their number. 

For c127 latency of delivered packets remains low even as 

p increases beyond 2000. This occurs because packet 

dropping limits router queue sizes, so delivered packets are 

not long delayed. Without packet dropping, packet latency 

for c0 climbs steeply with increasing p, reaching an apex 

before decaying gradually. Delays climb because packet 

queues become jammed. Delays decay gradually because 

latencies are recorded only for delivered packets. At high p, 

c0 delivers relatively few packets, and those packets 

necessarily transit routes where queues are not jammed. 

Even with this decay, packet latency for c0 remains 

significantly above delay for c127. 

5.2. Congestion Spread 

Figure 5 shows hierarchical clustering for χ among all 34 

combinations. Combination sequence numbers appear on 

the x-axis. The y-axis reports squared Euclidean distance. 

The plot indicates two main groups, separated by a large 

distance. The left-hand group contains combinations with 

VS or TCP or both enabled. These combinations show little 

congestion spread. Combinations in the right-hand group 

have VS and TCP disabled. These combinations show 

congestion spreading throughout the network. 

 

Figure 5. Clustering of congestion spread (χ) 

5.3. Connectivity Breakdown 

Figure 6 shows clustering for α. Note that distances among 

clusters in Fig. 6 are smaller than those in Fig. 5. This 

means connectivity breakdown is more similar among the 

combinations than is congestion spread. Breakdown in 

connectivity occurs when subgraphs of the topology are 

disconnected (due to congestion). As load increases 

connectivity breaks down even when congestion does not 

necessarily spread widely. Among combinations with VS 

disabled, the leftmost subgroup (sequence numbers 12, 15, 



11, 3, 7, 8 and 16) in Fig. 6 has NC enabled. Our x-y plots 

show [19] these combinations reach complete breakdown 

sooner than others with VS disabled. With NC enabled, 

packet injection occurs at the network edge, thus packets 

flow in concentrated fashion to and through the network 

core. This differs from combinations c0 and c1 (sequence 

numbers 1 and 2), where packet injection can occur at any 

node, thus packet flow is more diffuse. Most configurations 

with VS disabled lost connectivity quickly and completely. 

Combinations with VS enabled and TCP disabled may 

experience complete connectivity breakdown, but the 

process requires higher packet-injection rates because more 

pressure must be applied from the edge before the core can 

congest. With both TCP and VS enabled, congestion stays 

at the edge. 

 

Figure 6. Clustering of breakdown in connectivity (α) 

5.4. Packets Delivered 

Figure 7 shows clustering for π. The plot indicates two 

main groups, separated by a large distance. The leftmost 

group contains combinations with TCP disabled, while the 

rightmost contains combinations with TCP enabled. The 

rate adaptation of TCP improves significantly the likelihood 

that an injected packet will reach the intended destination. 

Disabling TCP increases likelihood that an injected packet 

will be queued or discarded. 

With TCP enabled, PD has a secondary influence on packet 

delivery. Disabling PD ensures that injected packets will be 

delivered eventually. But buildup of queues delays delivery, 

leading to timeouts and lower throughputs, as TCP reduces 

packet-injection rate. Enabling PD means some packets will 

be discarded, but TCP does not need to reduce injection rate 

as much. So throughputs remain higher, but likelihood of 

packet delivery decreases. 

With TCP disabled, VS has secondary influence on packet 

delivery. Absence of VS allows queues to build widely 

among routers throughout a network. So, packets are more 

likely to be queued or discarded (depending on PD), and 

packet delivery approaches zero. With VS enabled packet 

queues build at the network edge. This reduces the number 

of routers where packets will be dropped or queued. In such 

cases, packet delivery approaches zero at a slower rate. 

 

Figure 7. Clustering of packet delivery effectiveness (π) 

5.5. Packet Latency 

Figure 8 shows clustering for δ. We label the plot to show 

common factors in various groups and subgroups. With PD 

enabled, delivered packets experience little queuing delay, 

thus one-way latency is low. With PD disabled, packet 

queues become large with load, thus average one-way 

latency increases. With PD disabled, enabling TCP allows 

rate adaptation, thus buildup of large queues is less likely. 

This reduces delays for delivered packets. Enabling VS 

restricts large queues to routers at the network edge, which 

means that delivered packets have fewer large queues to 

transit. Disabling VS allows packet queues to form at any 

network router, which means delivered packets will have to 

transit through more large queues.  

 

Figure 8. Clustering of packet delivery efficiency (δ) 

5.6. Overall Findings 

Realistic and abstract network models exhibit very different 

congestion behaviors. VS among router tiers, engineered to 

ensure adequate throughput, are very important to model. 

TCP, which detects congestion and adapts packet-injection 



rate, is very important to model. PD from finite FIFO 

buffers is important to model for accurate measures of 

packet latency. Propagation delay (DE) is not important to 

model in networks spanning the continental US, but would 

be important in networks (e.g., interplanetary) where 

propagation delays may exceed queuing delays. A decade 

of studies [e.g., 3-12] used models too abstract to simulate 

realistic congestion in networks based on Internet 

technology. The validity of findings from such studies 

appears suspect.  

6. CONCLUSION 

We began with an abstract network simulation from the 

literature. We added realism elements in combinations, 

culminating with a high-fidelity simulation, also from the 

literature. By comparing patterns of congestion among the 

combinations, we showed that congestion spread in abstract 

models differs from congestion spread in realistic models. 

We described the influence of specific realism elements on 

congestion spread. We found that variable router speeds, 

the transmission-control protocol, and finite first-in, first-

out buffers are important to model. We also found that 

propagation delay appears unimportant to model, when a 

simulated topology spans only the US. Finally, we 

demonstrated use of cluster analyses among response 

vectors to compare congestion spread, breakdown in 

connectivity and effectiveness and efficiency of packet 

delivery among a diverse set of network models. 

We envision two directions for future work. First, we need 

to verify our findings for a variety of topologies, including 

interconnected networks. Second, we should explore 

whether random failures in the core, coupled with alternate 

routing, could cause cascading congestion. If so, we can 

seek precursor signals arising around the critical point. 

Such signals, if found, might provide warning of failure-

induced congestion collapse. 
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