
The Need for Realism when Simulating Network
Congestion

Kevin Mills

NIST

Gaithersburg, MD 20899

kmills@nist.gov

Chris Dabrowski

NIST

Gaithersburg, MD 20899

cdabrowski@nist.gov

ABSTRACT

Many researchers use abstract models to simulate network

congestion, finding patterns that might foreshadow onset of

congestion collapse. We investigate whether such abstract

models yield congestion behaviors sufficiently similar to

more realistic models. Beginning with an abstract model,

we add elements of realism in various combinations,

culminating with a high-fidelity simulation. By comparing

congestion patterns among combinations, we illustrate

congestion spread in abstract models differs from that in

realistic models. We identify critical elements of realism

needed when simulating congestion. We demonstrate a

means to compare congestion patterns among simulations

covering diverse configurations. We hope our contributions

lead to better understanding of the need for realism when

simulating network congestion.

Author Keywords

Congestion; criticality; networks; percolation; simulation

ACM Classification Keywords

I.6.1 SIMULATION AND MODELING: Model Validation

and Analysis

1. INTRODUCTION

The science of complex networks [1] has matured to the

point where one can study mathematical structure for many

classes of probabilistic graphs (e.g., random, scale-free,

small-world), as well as dynamical processes [2] moving

within such graphs. Typically, abstractions are adopted in

order to model real networks using techniques (e.g., graph

theory and percolation theory) available from network

science. Tension arises when such powerful abstractions are

used to study real networks. How can one be sure that

chosen abstractions adequately embody key properties of a

network under study? This question of model validation

motivates the work reported here.

Many researchers [e.g., 3-12] use simulation to investigate

congestion spread in network topologies, often finding

congestion can be modeled as a percolation process on a

graph, spreading slowly under increasing load until a

critical point, after which congestion spreads quickly

throughout the network. The researchers identify various

signals that arise around the critical point. Such signals

could foreshadow onset of widespread congestion. These

developments appear promising as a theoretical basis for

monitoring methods that could be deployed to warn of

impending congestion collapse. Despite showing promise,

questions surround this research, as the models are quite

abstract, bearing little resemblance to communication

networks deployed based on modern technology. We

explore these questions by examining the influence of

realism on congestion spread in network simulations.

We begin with an abstract network simulation from the

literature. We add realism elements in combinations,

culminating with a high-fidelity simulation, also from the

literature. By comparing patterns of congestion among the

combinations, we explore a number of questions. Does

spreading congestion in abstract network models mirror

spreading congestion in realistic models? How do specific

elements of realism influence congestion spread? What

elements of realism are essential to capture in models of

network congestion? What elements are unnecessary? What

measures of congestion can be compared, and how, across

diverse network models?

We make three main contributions. First, we illustrate

congestion spread in abstract models differs significantly

from spread in realistic models. Second, we identify

elements of realism needed when simulating congestion.

Finally, we demonstrate a method to compare congestion

patterns among diverse network simulations.

The remainder of the paper is organized in five sections.

Section 2 reviews some related work where researchers use

abstract models to investigate congestion spread in network

simulations. Section 3 describes the configurable network

simulator used in our experiment. The simulator can be

configured to mirror an abstract model [12], a realistic

model [13], and various intermediate combinations. Section

4 details our experiment design. We present and discuss

results in Sec. 5. We conclude in Sec. 6.

2. RELATED WORK

Reviewing a decade of congestion studies [3-12] reveals

many similarities, and some variations, among the abstract

models used. Below we summarize the models along four

dimensions: topology, traffic sources/sinks, routers and

SpringSim-CNS 2016 April 3-6 Pasadena, CA, USA

© 2016 Society for Modeling & Simulation International (SCS)

congestion measures. Elsewhere [14] we provide more

details about each of the studies.

Researchers used either deterministic or probabilistic

topologies. The most popular deterministic topology was a

square lattice, either open [6, 11] or folded into a toroid [3-

5, 7, 10]. Rykalova et al. [10] also used a ring. Echenique et

al. [12] used a real topology taken from the Internet

autonomous system map, circa 2001. Arrowsmith et al. [5]

started with a 2D lattice and then generated triangular and

hexagonal depleted lattices by probabilistically removing

links. Other researchers used random processes to generate

topologies: Erdős–Rényi [9], exponential [8], scale-free [8-

9], or small world [9].

Within a topology, researchers used either deterministic or

probabilistic processes to place sources, sinks and routers.

The most popular approach was to allow every node to be a

packet source and sink, as well as router [7-10, 12]. Sarkar

et al. [11] restricted sources and sinks to the network edge,

while Mukherjee and Manna [6] placed sources at the top

edge of a lattice and sinks at the bottom edge. Other

researchers [3-5] assigned nodes to be a source/sink or

router with a biased coin flip. All surveyed studies

generated loads by having sources inject individual packets,

where each packet is destined for a randomly selected sink.

The most popular strategy [3-7, 10-11] was for each source

to generate a packet per time step (p/ts) with a specified

probability. A few studies [8-9, 12] generated a fixed

number of packets/ts and randomly assigned the packets to

sources. One study [8] had a constant density option to

ensure a fixed number of packets remained in transit.

In all models surveyed, router nodes queue packets arriving

from sources and then forward them at an assigned rate to

the next hop along some path toward the sink. Differences

appeared with respect to queue discipline, next-hop

selection and forwarding rate. The most popular [3-7, 9-10,

12] queue discipline was unbounded first-in, first-out

(FIFO) queues. One study [8] used bounded last-in, first-out

(LIFO) queues. One study [11] used bounded FIFO queues,

where the oldest packet was dropped when a packet arrived

at a full queue. Most studies [3-6, 10, 11] selected next hop

based on shortest-path first (SPF) in hops. Ties were broken

either by shortest queue length [3-4, 11], link use [5] or

tossing a fair coin [6, 10]. One study [7] selected next hop

with the choice among three different SPF metrics: hops,

queue length, or their sum. Two studies [9, 12] used SPF

based on a weighted sum of hops and queue length. One

study [8] used guided random walk to select next hops. In

most studies [3-5, 8, 11-12] each router forwards one p/ts.

In two studies [7, 10] each router forwards one p/ts for each

queue. One study [6] has each router forward a batch of

packets at each time step. One study [9] assigns routers

variable forwarding rates using any of three options: (1)

node degree, (2) node betweeness or (3) node betweeness

divided by number of nodes in the topology.

The surveyed research used various measures of network

congestion, and often multiple measures per study.

Congestion measures included: one-way packet latency [3-

4, 6, 8]; packets delivered (i.e., aggregate throughput) [3-5];

queue lengths [4-6, 8]; packets in the network [7, 9-10, 12];

and packet drop rate [11]. Various studies analyzed the

measures as time series, proportions, or variances.

Beyond the differences we identified above, the studies we

surveyed shared many similarities. An abstract model is

developed and then used to explore congestion in various

topologies. Congestion spread is examined through selected

measures. A critical load is identified, after which trajectory

changes distinctly for selected measures. When examined

by engineers, who deploy and manage networks based on

Internet technology, the degree of abstraction is sufficiently

high to call into question the findings. The topologies are

rarely congruent with real Internet topologies [15], various

parameter values are not consistent with real engineering

choices, congestion-control protocols are not modeled and

the distribution of packet injection is unlike patterns that

occur with real users. Does this lack of realism matter? If

so, what realism elements must be present to draw valid

conclusions about congestion spread? We investigate these

questions here.

3. MODELS

We conducted an experiment (see Sec. 4) with a simulation

model we named FxNS (Flexible Network Simulator).

FxNS is based on an abstract model, EGM, developed by

Echenique, Gomez-Gardenes and Moreno [12]. We added a

set of seven realism elements, factored from MesoNet [13].

While many realistic network simulators exist [16], we

chose MesoNet because the model is terse (requiring only

20 parameters) and factors easily, and because the model

scales (simulating up to ½ million nodes engaged in over

125×10
3
 simultaneous flows).

We implemented the realism elements as options within

FxNS. Since each element can be enabled or disabled,

FxNS could support (2
7
 =) 128 combinations. However, as

explained in Sec. 3.3, we respect some dependencies among

realism elements. As a result, FxNS supports only 34

combinations. FxNS can be configured to behave as EGM

(most abstract model), as MesoNet (most realistic model),

and any of the remaining 32 valid combinations

intermediate between EGM and MesoNet. With all realism

elements enabled, we use FxNS to simulate ¼ million

nodes engaged in over 50×10
3
 simultaneous flows. FxNS

should scale up further, to the same order as MesoNet.

In Sec. 3.1 we describe EGM, and give simulation results

demonstrating that FxNS correctly implements EGM. In

Sec. 3.2 we describe MesoNet, and its 20 parameters spread

among five categories. We also define our mapping from

MesoNet parameters to FxNS realism elements. In Sec. 3.3,

we justify dependencies adopted among realism elements

and we describe our numbering convention for the FxNS

combinations used in our experiment. Elsewhere [14] we

provide additional details on these topics.

3.1. Abstract Model

In EGM, p packets are injected at each time step (ts) with

source and destination nodes for each packet chosen

randomly (uniform). Injected packets are placed at the end

of a source’s unbounded FIFO packet queue. After

injection, each node can forward one packet from its queue

to a next node. If the next node is the destination, the packet

is delivered; otherwise the next node is chosen as the

neighboring node i with minimum δi as defined in eq. 1:

 (1)

where i is index of a node’s neighbor, di is minimum hops

to the packet’s destination via i, and ci is queue length of i.

When h = 1 the routing amounts to SPF hops. When h < 1,

routing is congestion aware, as packets may follow routes

longer in hops, but shorter in total queuing delay. The lower

h the more congestion-aware routing becomes.

EGM measures congestion as ρ, the ratio of packet outflow

to inflow as defined in eq. 2:

 (2)

where A is aggregate number of packets queued, t is time, τ

is measurement interval size, and p is packet-injection rate.

Using EGM with an 11 174-node topology, Echenique et al.

[12] explored effects of SPF hops routing vs. congestion-

aware routing as p increases. They found that for routing

via SPF hops ρ undergoes a 2
nd

 order transition as p passes

a critical load, while under various degrees of congestion-

aware routing ρ undergoes a 1
st
 order transition as p passes

critical load. Using our FxNS implementation of EGM, we

replicated these results, as shown in Fig. 1.

Figure 1. FxNS replication of EGM simulation results

3.2. Realistic Model

MesoNet provides a realistic TCP (Transmission Control

Protocol) network model, requiring only 20 parameters

spread across five categories, as shown in Table 1. Mills et

al. [16] used MesoNet to compare congestion-control

algorithms proposed for the Internet.

Category ID Name

Specific

FxNS

Network

x1 topology

18%

NC

x2 propagation delay

14%

DE

x3 network speed VS

x4 buffer provisioning PD

Sources &

Sinks

x5 number sources/sinks

SR x6 source distribution

x7 sink distribution

x8 source/sink speed VS

Users

x9 think time p

x10 patience n/a

x11 web object file sizes FL

x12 larger file sizes

n/a x13 localized congestion

x14 long-lived flows

Congestion

Control

x15 control algorithm

TCP x16 initial cwnd

x17 Initial sst

Simulation

Control

x18 measurement interval fixed

x19 simulation duration fixed

x20 startup pattern p

Table 1. MesoNet Parameters with Mapping to FxNS Elements

MesoNet allows for three-tier topologies of routers: core,

point-of-presence (PoP), and access. In our experiment, we

use an Internet service provider (ISP) topology shown in

Fig. 2, which provides three types of access routers: D-class

(red), F-class (green) and N-class. MesoNet defines speed

relationships among all routers. Changing one parameter

can scale network speed and higher router tiers can support

the maximum input traffic expected from lower tiers.

Sources and sinks can be placed below access routers as a

fourth tier with ¼ million nodes (not shown in Fig. 2).

Figure 2. Three-tier 218-router topology – 16 core (A-P), 32 PoP

(A1-P2) and 170 access (A1a-P2g)

FxNS maps router typing to realism element NC (node

classes), which ensures that sources and sinks are placed only

at the network edge. FxNS maps router speed scaling to

realism element VS (variable speeds). MesoNet allows

sources and sinks to connect to the network at two different

speeds: fast and normal. FxNS also maps these interface

speeds to realism element VS. In MesoNet links between

core routers have intrinsic propagation delays matched to

geographic placement and physics. FxNS maps these to

realism element DE (propagation delays). These intrinsic

propagation delays were used to compute SPF routes for the

network core. MesoNet also includes various buffer

provisioning algorithms. FxNS uses only one (estimated

round-trip time multiplied by router forwarding speed) and

maps this to realism element PD (packet dropping).

MesoNet allows the number of sources and sinks to be scaled

and also allows probabilistic placement of sources and sinks

under various types of access router. MesoNet ensures there

are four times as many sinks as sources. FxNS adopts these

procedures and maps them to realism element SR (sources

and receivers).

MesoNet provides a rich array of user parameters, but FxNS

maps only two. First, MesoNet users have think time

between initiating data transfers. FxNS replaces think time

with packet-injection rate, p. Second, MesoNet allows users

to randomly select the file size for each data transfer. FxNS

maps this parameter to the FL (flows) realism element, which

creates sets of packets transferred in a related stream.

MesoNet allows users to exhibit limited patience when

waiting for data transfers to complete, but in FxNS all users

have infinite patience. MesoNet allows probabilistic selection

of various larger file sizes and spatiotemporal congestion.

FxNS does not implement these features.

MesoNet allows probabilistic assignment of congestion-

control algorithm to individual sources/sinks. In FxNS only

TCP (transmission control protocol) is used. MesoNet also

allows specification of initial cwnd (congestion window) and

sst (slow-start threshold). FxNS maps these parameters to

realism element TCP.

Finally, MesoNet offers a set of three simulation control

parameters. FxNS uses measurement interval size and

duration (in measurement intervals) to bound simulation

length. MesoNet also allows individual traffic sources to start

in a specified pattern. FxNS subsumes this under packet-

injection rate.

To verify FxNS correctly implements MesoNet realism

elements, we conducted comparative simulations, running

MesoNet and FxNS (with all realism elements enabled) for

600 000 ts using identical parameter values. As shown

elsewhere [14], we compared model output for seven

essential MesoNet responses [17].

3.3. Combination Models

While FxNS can enable and disable the seven realism

elements shown in Table 1, some dependencies exist, as

shown in Fig. 3. Starting with all realism elements disabled

(EGM), one can easily enable packet dropping (PD) and

node classes (NC). Variable speeds (VS) require routers to

be classified by type. Similarly, propagation delays (DE)

appear on core network links, which can be identified only

through router types. While sources/sinks (SR) might be

included as a second tier under a flat topology, i.e., without

node classes, we decided to restrict them to a fourth tier

under access routers. We took this decision for

convenience, allowing us to eliminate 24 combinations that

would otherwise need to be simulated. We imagined

influence of sources/sinks could be discerned even with this

restriction. Enabling flows (FL) means packets are injected

as a stream between source and sink, thus FL requires SR.

Finally, TCP regulates packet-transmission rate only on

flows.

Figure 3. Dependencies among FxNS realism elements

Seq Cmb TCP FL SR DE VS NC PD

1 c0 0 0 0 0 0 0 0

2 c1 0 0 0 0 0 0 1

3 c2 0 0 0 0 0 1 0

. . .

32 c123 1 1 1 1 0 1 1

33 c126 1 1 1 1 1 1 0

34 c127 1 1 1 1 1 1 1

Table 2. Elided list of valid FxNS combinations

We identify FxNS combinations by number, based on

binary encoding, as shown in Table 2. Each realism element

is assigned a position in a seven-bit vector, from most (bit 7

- TCP) to least (bit 1 - PD) significant. When a selected

factor is enabled its bit position is set to one, and set to zero

when disabled. The resultant bit vector can be converted to

a decimal value: the combination (Cmb) number. The most

abstract combination is c0 and the most realistic is c127.

Each combination is also assigned a sequence (Seq) number

(1-34). Both numbers are used in discussing results.

4. EXPERIMENT DESIGN

We designed an experiment to explore influence of realism

on congestion spread in a network simulated with FxNS.

We identify fixed input parameters used in all simulations.

We define parameters we vary. We define four responses

measured for all simulations.

4.1. Fixed Input Parameters

We used the same 218-router topology (recall Fig. 2) in all

simulations. We used Dijkstra’s SPF algorithm to compute

next hops for core routers based on propagation delays.

Routing to/from core nodes consists of single paths with

obvious next hops. Note that propagation delays are used to

compute SPF next hops in the core regardless of whether

DE is enabled or disabled.

We execute each simulation for a target of 200 000 ts.

Individual simulations can self-adapt to execute fewer ts in

order to limit memory usage when PD is disabled. No

simulation executed fewer than 41 400 ts.

4.2. Variable Input Parameters

We varied only two parameters: (1) combination and (2)

packet-injection rate p. For each combination, FxNS

simulates a set of enabled/disabled realism elements (recall

Table 2). Table 3 gives parameter values assigned to each

element when enabled and disabled.

For each combination simulated, we varied p up to 2500.

When extreme congestion appears at successive values of p,

simulation of a combination could self-terminate. This

saves computation time because once a combination

demonstrates extreme congestion for several increasing

values of p then the combination will continue to exhibit

congestion as p increases. In no case did a simulation

terminate a combination before p passed 790.

4.3. Responses

We chose responses that could be usefully compared across

all simulated combinations: most abstract to realistic. We

determined that all combinations shared two measurable

concepts: graphs and packets. Using these we measure:

congestion spread (χ), network connectivity (α) and

effectiveness (π) and efficiency (δ) of packet delivery. All

responses fall in the interval [0...1]. We measure each

response for each combination at each packet-injection rate.

We define these responses precisely elsewhere [14]. Here

we give intuitive definitions.

Each of our simulated topologies is a graph of nodes

connected by links, where the entire graph GN contains |GN|

nodes. We label a node congested whenever queued packets

exceed 70 % of 250×router forwarding speed. When fewer

packets are queued, we label a node uncongested. We label

any uncongested node as cutoff when it links only to

congested neighbors. After labeling, we compute connected

subgraphs of nodes that are either congested or cutoff. We

label the largest such subgraph Gχ. We use χ=|Gχ|/|GN| as a

measure of congestion spread. We also compute connected

subgraphs of nodes that are uncongested. We label the

largest such subgraph Gα. We use α=|Gα|/|GN| as a measure

of network connectivity.

 Enabled Disabled

PD buffers = 250×router speed buffers = ∞

NC

3-tier 218-node topology

as in Fig. 2 with routers

labeled as core, PoP, D-

class, F-class or N-class

flat 218-node

topology as in

Fig. 2 but with

routers unlabeled

VS

core 80 p/ts; PoP 10 p/ts;

D-class 10 p/ts; F-class 2

p/ts; N-class 1 p/ts; fast

source/sink 2 p/ts; normal

source/sink 0.2 p/ts

all routers and

sources/sinks 9

p/ts

DE
core links have

propagation delays

no propagation

delays

SR

51 588 sources & 206 352

sinks deployed uniformly

below access routers

no sources or

sinks deployed

FL

transfers are packet

streams: sized randomly

from Pareto distribution

(mean 350, shape 1.5) -

streams set up with TCP

connection procedures

transfers are

individual packets

TCP

packet transmission

regulated by TCP

congestion-control

including slow-start (initial

cwnd = 2 sst = 2
30

/2) and

congestion avoidance

packet

transmissions not

regulated by

congestion-

control

Table 3. Parameter values for each FxNS realism element

Packets injected into the network can be queued, dropped or

delivered. We define effectiveness of packet delivery (π) as

the ratio of delivered packets to injected packets. For each

delivered packet we record the latency between injection

and delivery times. We average these latencies over all

delivered packets, and then normalize the average to fall

between 0 (minimum delay) and 1 (maximum delay),

yielding efficiency (δ) of packet delivery.

5. RESULTS AND DISCUSSION

For each combination simulated, we plotted each response

(y-axis) vs. packet-injection rate (x-axis). Here we give

plots for only the most abstract (c0) and realistic (c127)

combinations, as discussed in Sec. 5.1. For each response,

we also treat each of the 34 plots, one for each combination,

as a 250-element vector and then cluster vectors to assess

influence of each realism element on each response. We

discuss the clusters in Secs. 5.2 to 5.5, drawing on insights

from the related x-y plots and multidimensional interactive

visualization of FxNS simulation data [18]. All x-y and

cluster plots are also available in an enlarged format [19].

5.1. Most Abstract vs. Most Realistic

Figure 4 contains four subplots comparing congestion

behavior between the most abstract (c0) and realistic (c127)

combinations. For combination c0, congestion spreads

quickly with increasing packet-injection rate, encompassing

all nodes by the time p reaches 500. For c127, congestion

spread remains low over the entire range of packet-injection

rates, even out to p = 2500 (not shown). This difference has

two main causes. First, all nodes in c0 operate at the same

speed. Core nodes become overwhelmed with congestion,

which then spreads to the network edge. In c127, routers are

engineered with varying, hierarchical speeds, so higher tiers

can handle packet inflow rate from lower tiers. Second, c0

does not monitor and adapt to congestion, while c127

implements TCP, which measures congestion and adapts

packet inflow-rate accordingly.

Figure 4. Comparing c0 vs. c127 for each response

Network connectivity breaks down quickly for both c0 and

c127, reaching a low level as p passes 500. There are two

main differences: c127 decays more slowly than c0 and

c127 asymptotes with higher network connectivity. For c0

connectivity drops to zero after p passes 500. Combination

c127 decays more slowly because TCP adapts packet

injection based on measured congestion and c127

asymptotes with higher connectivity because variable router

speeds restrict congestion to the network edge. The network

core remains uncongested and intact. Connectivity breaks

down completely for c0 because the core becomes

congested and then congestion spreads to the edge,

consuming all nodes.

For c0 proportion of packets delivered drops steeply,

reaching nearly zero as p passes 1000. For c127 proportion

of packets delivered drops modestly with increasing p,

stabilizing near 80 %. This large difference arises from a

combination of two factors: packet dropping and TCP.

Combination c0 does not discard packets and does not

adapt packet injection based on measured congestion. With

increasing p, this causes a growing backlog of packets in all

routers. Combination c127 discards packets when router

buffers fill and adapts packet injection based on measured

congestion. So undelivered packets for c127 encompass

only discards, and rate adaptation limits their number.

For c127 latency of delivered packets remains low even as

p increases beyond 2000. This occurs because packet

dropping limits router queue sizes, so delivered packets are

not long delayed. Without packet dropping, packet latency

for c0 climbs steeply with increasing p, reaching an apex

before decaying gradually. Delays climb because packet

queues become jammed. Delays decay gradually because

latencies are recorded only for delivered packets. At high p,

c0 delivers relatively few packets, and those packets

necessarily transit routes where queues are not jammed.

Even with this decay, packet latency for c0 remains

significantly above delay for c127.

5.2. Congestion Spread

Figure 5 shows hierarchical clustering for χ among all 34

combinations. Combination sequence numbers appear on

the x-axis. The y-axis reports squared Euclidean distance.

The plot indicates two main groups, separated by a large

distance. The left-hand group contains combinations with

VS or TCP or both enabled. These combinations show little

congestion spread. Combinations in the right-hand group

have VS and TCP disabled. These combinations show

congestion spreading throughout the network.

Figure 5. Clustering of congestion spread (χ)

5.3. Connectivity Breakdown

Figure 6 shows clustering for α. Note that distances among

clusters in Fig. 6 are smaller than those in Fig. 5. This

means connectivity breakdown is more similar among the

combinations than is congestion spread. Breakdown in

connectivity occurs when subgraphs of the topology are

disconnected (due to congestion). As load increases

connectivity breaks down even when congestion does not

necessarily spread widely. Among combinations with VS

disabled, the leftmost subgroup (sequence numbers 12, 15,

11, 3, 7, 8 and 16) in Fig. 6 has NC enabled. Our x-y plots

show [19] these combinations reach complete breakdown

sooner than others with VS disabled. With NC enabled,

packet injection occurs at the network edge, thus packets

flow in concentrated fashion to and through the network

core. This differs from combinations c0 and c1 (sequence

numbers 1 and 2), where packet injection can occur at any

node, thus packet flow is more diffuse. Most configurations

with VS disabled lost connectivity quickly and completely.

Combinations with VS enabled and TCP disabled may

experience complete connectivity breakdown, but the

process requires higher packet-injection rates because more

pressure must be applied from the edge before the core can

congest. With both TCP and VS enabled, congestion stays

at the edge.

Figure 6. Clustering of breakdown in connectivity (α)

5.4. Packets Delivered

Figure 7 shows clustering for π. The plot indicates two

main groups, separated by a large distance. The leftmost

group contains combinations with TCP disabled, while the

rightmost contains combinations with TCP enabled. The

rate adaptation of TCP improves significantly the likelihood

that an injected packet will reach the intended destination.

Disabling TCP increases likelihood that an injected packet

will be queued or discarded.

With TCP enabled, PD has a secondary influence on packet

delivery. Disabling PD ensures that injected packets will be

delivered eventually. But buildup of queues delays delivery,

leading to timeouts and lower throughputs, as TCP reduces

packet-injection rate. Enabling PD means some packets will

be discarded, but TCP does not need to reduce injection rate

as much. So throughputs remain higher, but likelihood of

packet delivery decreases.

With TCP disabled, VS has secondary influence on packet

delivery. Absence of VS allows queues to build widely

among routers throughout a network. So, packets are more

likely to be queued or discarded (depending on PD), and

packet delivery approaches zero. With VS enabled packet

queues build at the network edge. This reduces the number

of routers where packets will be dropped or queued. In such

cases, packet delivery approaches zero at a slower rate.

Figure 7. Clustering of packet delivery effectiveness (π)

5.5. Packet Latency

Figure 8 shows clustering for δ. We label the plot to show

common factors in various groups and subgroups. With PD

enabled, delivered packets experience little queuing delay,

thus one-way latency is low. With PD disabled, packet

queues become large with load, thus average one-way

latency increases. With PD disabled, enabling TCP allows

rate adaptation, thus buildup of large queues is less likely.

This reduces delays for delivered packets. Enabling VS

restricts large queues to routers at the network edge, which

means that delivered packets have fewer large queues to

transit. Disabling VS allows packet queues to form at any

network router, which means delivered packets will have to

transit through more large queues.

Figure 8. Clustering of packet delivery efficiency (δ)

5.6. Overall Findings

Realistic and abstract network models exhibit very different

congestion behaviors. VS among router tiers, engineered to

ensure adequate throughput, are very important to model.

TCP, which detects congestion and adapts packet-injection

rate, is very important to model. PD from finite FIFO

buffers is important to model for accurate measures of

packet latency. Propagation delay (DE) is not important to

model in networks spanning the continental US, but would

be important in networks (e.g., interplanetary) where

propagation delays may exceed queuing delays. A decade

of studies [e.g., 3-12] used models too abstract to simulate

realistic congestion in networks based on Internet

technology. The validity of findings from such studies

appears suspect.

6. CONCLUSION

We began with an abstract network simulation from the

literature. We added realism elements in combinations,

culminating with a high-fidelity simulation, also from the

literature. By comparing patterns of congestion among the

combinations, we showed that congestion spread in abstract

models differs from congestion spread in realistic models.

We described the influence of specific realism elements on

congestion spread. We found that variable router speeds,

the transmission-control protocol, and finite first-in, first-

out buffers are important to model. We also found that

propagation delay appears unimportant to model, when a

simulated topology spans only the US. Finally, we

demonstrated use of cluster analyses among response

vectors to compare congestion spread, breakdown in

connectivity and effectiveness and efficiency of packet

delivery among a diverse set of network models.

We envision two directions for future work. First, we need

to verify our findings for a variety of topologies, including

interconnected networks. Second, we should explore

whether random failures in the core, coupled with alternate

routing, could cause cascading congestion. If so, we can

seek precursor signals arising around the critical point.

Such signals, if found, might provide warning of failure-

induced congestion collapse.

ACKNOWLEDGMENTS

We appreciate financial support and encouragement by our

laboratory management. We benefited from the review of

our colleagues Guo Yang, Phil Gough, and Sandy Ressler,

and also from anonymous, external reviewers.

REFERENCES

1. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. and

Hwang, D.-U. Complex networks: structure and

dynamics, Physics Reports, 424 (2006), 175-308.

2. Stauffer, D. and Aharony, A. Introduction to percolation

theory: revised second edition. Taylor & Francis, 1994.

3. Solé, R. and Valverde, S. Information transfer and phase

transitions in a model of internet traffic, Physica A, 289

(2001), 595-605.

4. Woolf, M., Arrowsmith, D., Mondragon, R. and Pitts, J.

Optimization and phase transitions in a chaotic model of

data traffic, Phys Rev E, 66 (2002), 046106.

5. Arrowsmith, D., Mondragon, R., Pitts, J. and Woolf, M.

Phase transitions in packet traffic on regular networks,

ISSN 1103-467X, Institut Mittag-Leffler, 2004.

6. Mukherjee, G. and Manna, S. Phase transition in a

directed traffic flow network, Phys Rev E, 71, 6 (2005),

066108.

7. Lawniczak, A., Lio, P., Xie, S. and Xu, J. Study of

packet traffic fluctuations near phase transition point

from free flow to congestion in data network model, in

Canadian Conference on Electrical and Computer

Engineering, (2007), 360-363.

8. Tadic, B., Rodgers, G. and Thurner, S. Transport on

complex networks: flow, jamming and optimization,

International Journal of Bifurcation and Chaos, 17, 7,

(2007), 2363-2385.

9. Wang, D., Cai, N., Jing, Y. and Zhang, S. Phase

transition in complex networks, American Control

Conference, (2009), 3310-3313.

10. Rykalova, Y., Levitin, L. and Brower, R. Critical

phenomena in discrete-time interconnection networks,

Physica A, 389 (2010), 5259-5278.

11. Sarkar, S., Mukherjee, K., Ray, A., Srivastav, A. and

Wettergren, T. Statistical mechanics-inspired modeling

of heterogeneous packet transmission in communication

networks, IEEE Trans on Syst, Man, and Cybernetics—

Part B: Cybernetics, 42, 4 (2012), 1083-1094.

12. Echenique, P., Gomez-Gardenes, J. and Moreno, Y.

Dynamics of jamming transitions in complex networks,

Europhys Lett, 71, 2 (2005), 325.

13. Mills, K., Schwartz, E. and Yuan, J. How to model a

TCP/IP network using only 20 parameters, Winter

Simulation Conference, (2010), 849-860.

14. Dabrowski, C. and Mills, K. The Influence of Realism

on Congestion in Network Simulations, NIST Technical

Note 1905, January 2016, 62 pages.

doi:10.6028/NIST.TN.1905. As of 5 Feb 2016.

15. Doyle, J., Alderson, D., Li, L., Low, S., Rougan, M.,

Shalunov, S., Tanaka, R. and Willinger, W. The “robust

yet fragile” nature of the internet, National Academy of

Sciences, 102, 41 (2005), 14497-14502.

16. Mills, K., Filliben, J., Cho, D., Schwartz, E. and Genin,

D. Study of proposed internet congestion control

algorithms, NIST SP 500-282, 2010.

17. Mills, K. and Filliben, J. Comparison of two dimension-

reduction methods for network simulation models,

Journal of Research of the National Institute of

Standards and Technology, 116, 5 (2011), 771-783.

18. Gough, P., Multidimensional Interactive Visualization

of FxNS Simulation Data.

http://tinyurl.com/payglq6. As of 22 Oct 2015.

19. Dabrowski, C. and Mills, K. FxNS graphs enlarged.

http://tinyurl.com/poylful. As of 15 Oct 2015.

http://tinyurl.com/payglq6

