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In this chapter, we study the orthogonality conditions satisfied by
Al-Salam—Carlitz polynomials U,(la)(:c;q) when the parameters a and
q are not necessarily real nor “classical”’, i.e., the linear functional
u with respect to such a polynomial sequence is quasi-definite and
not positive definite. We establish orthogonality on a simple contour
in the complex plane which depends on the parameters. In all cases
we show that the orthogonality conditions characterize the Al-Salam-—
Carlitz polynomials A (z;q) of degree n up to a constant factor. We
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also obtain a generalization of the unique generating function for these
polynomials.

Keywords: g-orthogonal polynomials; g¢-difference operator;
g-integral representation; discrete measure.

Mathematics Subject Classification 2010: 33C45, 42C05

1. Introduction

The Al-Salam—Carlitz polynomials U,(la)(x; q) were introduced by Al-Salam
and Carlitz in [1] as follows:

U (@) = (—ayq® 3 (q”??;{“ )i gt (L1)

(7!
P
k=0 7q)k a

In fact, these polynomials have a Rodrigues-type formula [2, (3.24.10)]

anq8)(1 - q)"

UL (w;q) =
(:9) q"w(z;a; q)

D1 (w(z;a;q)),
where

w(w;a;q) = (25 Q)00 (q2/a; @)oo,

the g-Pochhammer symbol (g-shifted factorial) is defined as

(a0 =1, (500 i= [[(1- 24",
k=0
k=0

and the g-derivative operator is defined by

flaz) = f(z) .

T2 = JE) e 21 and 2 £ 0,
Dy f(2) = (¢—1)z @7 Land =7

f'(z) ifg=1orz=0.

Remark 1.1. Observe that by the definition of the g-derivative

D1 f(2) = Z4f(qz), and P, .f(z) = @:ﬂl(@qflf(z)), n=23,....
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The expression (1.1) shows us that Ul® (x; q) is an analytic function for any
complex-valued parameters a and ¢, and thus can be considered for general

a,q € C\ {0}.

The classical Al-Salam—Carlitz polynomials correspond to parameters
a < 0 and 0 < ¢ < 1. For these parameters, the Al-Salam—Carlitz
polynomials are orthogonal on [a, 1] with respect to the weight function w.
More specifically, for a < 0 and 0 < ¢ < 1 [2, (14.24.2)],

1
/ U (3 Q) USY (3 0) (g2, 42/ a3 @)oo g = d3 6, m,
where

02 = (~a)" (1 = 9)(¢: (4 @)oo (@ 0)oo (0/a5 4)oog®),
and the ¢-Jackson integral [2, (1.15.7)] is defined as

/ ' Fa)dyr = / ' f)dge | @,

/0 @)y = a(1 - 0) S Flad)a"
n=0

Taking into account the previous orthogonality relation, it is a direct result
that if a and ¢ are classical, i.e., a, ¢ € R, with a # 1, 0 < ¢ < 1, all
the zeros of Ufla)(x;q) are simple and belong to the interval [a,1]. This
is no longer valid for general a and g complex. In this paper, we show

where

that for general a, ¢ complex numbers, but excluding some special cases,
the Al-Salam-Carlitz polynomials UL (x;q) may still be characterized by
orthogonality relations. The case a < 0 and 0 < g < 1 or 0 < aqg < 1
and ¢ > 1 is classical, i.e., the linear functional u with respect to such a
polynomial sequence is orthogonal, which is positive definite and in such a
case there exists a weight function w(z) so that

(u,p) = / p(z)w(z)dz, pe P,

Note that this is the key for the study of many properties of Al-Salam—
Carlitz polynomials I and II. Thus, our goal is to establish orthogonality
conditions for most of the remaining cases for which the linear form u is
quasi-definite, i.e., for all n,m € Ny

<uapnpm> = knén,mv kn 7é 0.
We believe that these new orthogonality conditions can be useful in
the study of the zeros of Al-Salam-Carlitz polynomials. For general
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Fig. 1. Zeros of U§é+i)(:c; % exp(7i/6)).

a,q € C\ {0}, the zeros are not confined to a real interval, but they
distribute themselves in the complex plane as we can see in Fig. 1.

Throughout this paper denote p := ¢~ .

2. Orthogonality in the Complex Plane

Theorem 2.1. Leta,q € C, a # 0,1, 0 < |g| < 1. The Al-Salam—Carlitz
polynomials are the unique polynomials (up to a multiplicative constant)
satisfying the property of orthogonality

1
/ U (a; ) US (w; )w(w; a; q)dgw = diy G- (2.1)

Remark 2.2. If 0 < |g| < 1, the lattice {¢" : k € No} U {aq® : k € Ny} is
a set of points which are located inside on a single contour that goes from
1 to 0, and then from 0 to a, through the spirals

Sy z(t) = |q|" exp(itargq), Sz : 2(t) = |al|q|" exp(it argq + i arga),
where 0 < |q| < 1, ¢ € [0,00), which we can see in Fig. 2. Taking into
account (2.1), we need to avoid the a = 1 case. For the a = 0 case, we

cannot apply Favard’s result [3], because in such a case this polynomial
sequence fulfills the recurrence relation (see [2])

U, (1q) = (@ — U (259), U (w59) =1.

n
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y(t)

0.5 1

Fig. 2. The lattice {¢* : k € No} U {(1 +14)¢* : k € No} with ¢ = 4/5 exp(ni/6).

Proof of Theorem 2.1. Let 0 < |¢| < 1, and a € C, a # 0,1. We are
going to express the g-Jackson integral (2.1) as the difference of the two
infinite sums and apply the identity

Zf

D1 f(d")d" (2.2)

M
- 9"

k=0

Let n > m. Then, for one side, since w(qg~!

identities [2, (14.24.7) and (14.24.9)], one has

iUf,é‘)(qk

k=0

;a;q) = 0, and using the

QUL (¢"; 9)w(q"; a; 9)g"
a(

=ag""" lim_ Ur(r‘f )(qM

w(q®; a; U, (¢%; ))UD (6% 9) g
LU (™ w(g™; a; q)

hm
M—>oo

M-—1
+ag" (g™ - > w(dh e UL, (%5 U (6% 9)d".
k=0
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Following an analogous process as before, and since w(ag™!;a;q) = 0, we
have
> U (aq"; UL (ag”; q)w(ag; a; q)ag"
k=0
=ag""! lim U (ag; U, (ag™; q)w(ag™ s a; q)
M—o0
M-1
+ag" (g™~ 1) lim ) w(ag"a; QU (ad"; q)US  (ag®; q)ag".

Therefore, if m < n, and since m is finite, one can first repeat the previous
process m + 1 times obtaining

> U (" U (" a)w(d"; a; 9)d*
k=0

m—+1
= lim Y (—ag")’q "Iy,

M—o0
v=1

x U (@)U, (6™ w(e™; a5 q),

and

> Ui (ag”; UM (ag”; g)w(ag”; a; g)ag”
k=0
m+1
— lim (7aqn)uq7u(u+l)/2(q

—m-+rv—1,
M—o0 ’

Q)v
v=1
x U, 41 (ag™; U, (ag™; )w(ag™; as g).
Hence, since the difference of both limits, term by term, goes to 0 since
lg] <1, then

1
/ U (23 ) UL (5 q) (g, g/ a: @)ooy = 0.

a

For n = m, following the same idea, we have
1
[ U U @ e,

a(g" — 1) «— “
- % > (w(a*s ;) (U (6% 9))%d"
k=0

— aw(ag®; a; ¢)(U, (ag"; 9))%¢")
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= (~a)"(¢: )ng®) 3 (wlg";a:9)¢" — a wlag®; a;9)g")
k=0
[e%S) k
= ()" (@) (@ 0)ow 4 kz::o (" /a;q)o0 a(aq’““;q)oo)(q?q)k,

since it is known that in this case [2, (14.24.2)]

1
[ U @U@ (e,

a

= (—a)"(; @) (% )0 (@3 @)oo (0/a: @)oo (?).

Due to the normality of this polynomial sequence, i.e., deg Ul (r;9) =n
for all n € Ny, the uniqueness is straightforward, thus the result holds. O

From this result, and taking into account that the squared norm for
the Al-Salam-Carlitz polynomials is known, we obtained the following
consequence for which we could not find any reference.

Corollary 2.3. Leta,q € C\ {0}, |¢| < 1. Then

i k
> (6" a:)s — alag" s g)ec) (q,qq)k = (a5 )00 4/ )0
k=0 ’

The following case, which is just the Al-Salam—Carlitz polynomials for
the |g| > 1 case, is commonly called the Al-Salam—Carlitz IT polynomials.

Theorem 2.4. Let a,q € C, a # 0,1, |g| > 1. Then, the Al-Salam-
Carlitz polynomials are unique (up to a multiplicative constant) satisfying
the property of orthogonality given by

1
/Ué“)(x;q’l)Uﬁf)(x;q’l)(q’lx;q”)m(q’lx/a;qil)oodqfla:
= (—a)"(1—q¢ g g nla e oo

n

T Uy T s N OF (2.3)

Proof. Let us denote ¢=* by p; then 0 < |p| < 1. For a € C, a # 0,1.
Then, by using the identity (2.2) replacing g — p, and taking into account
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that w(ag; a;p) = w(g;a;p) = 0 and [2, (14.24.9)], for m < n one has

> aw(ap®; a; p)USY (aps p)UL (ap”; p)p”

—ap"" lim U@ (ap™; p)U”, (ap™; p)w(ap™; a; p)

M— o0
M—
Jrapnfl(l —p™) lim ap a;p) U(li)l(apk;p)UéfZl(apk;p)pk.

M~>oo

Following the same idea from the previous result, we have
w(p; a;p)USY (05 p) UL (0 p)p"
k=0
=ap"™" lim U (M p) UL, (0™ pw(p™ s aip)
—00
M-1
+ap" (1—p™) lim > w(hap)UL 08U 08 )"
k=0
Therefore, the property of orthogonality holds for m < n. Next, if n =m
we have
1
[ U iU syt aip) dy

a

a(p™ — 1)~ a
= %Z(aw(apk;a;p)(l]fl)1(ap’“;p))2p’“
k=0

—w(p*;a;p) (U, (0" p))%0")

= (~a)"(p; p)up® (Zaw ap®; a; p)p* — w(p" ap)p)

k=0

P asp)oe — (PF1 /a5 p) o)
(p; D)k

oo

. q*(
= ()" (0 D p)ep® Y
k=0

— (=a)™ (¢4 ) (D3 D)oo (@3 D)oo (/a5 ) e ().

Using the same argument as in Theorem 2.1, the uniqueness holds, so the
claim follows. O

Remark 2.5. Observe that in the previous theorems if a = ¢, with m €
Z, a # 0, after some logical cancellations, the set of points where we need
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to calculate the g-integral is easy to compute. For example, if 0 < ag < 1
and 0 < ¢ < 1, one obtains the sum [2, (14.25.2), p. 537].

Remark 2.6. The a = 1 case is special because it is not considered in
the literature. In fact, the linear form associated with the Al-Salam—Carlitz
polynomials u is quasi-definite and fulfills the Pearson-type distributional
equations

@q[(x71)2u]::f—72u and  Dy[q ') = u.

Moreover, the Al-Salam—Carlitz polynomials fulfill the three-term recur-
rence relation [2, (14.24.3)]

2US (w1q) = UL, (23.0) + (a + 1)g" UL (23 9) — ag" (1 — ¢")U?, (1),
(2.4)

where n = 0,1,..., with initial conditions Uéa)(x;q) =1, Ul(a)(x;q) =
r—a—1.

Therefore, we believe that it will be interesting to study such a case for
its peculiarity because the coefficient ¢" (1 — ¢™) # 0 for all n, so one can
apply Favard’s result.

2.1. The |q| = 1 case

In this section, we only consider the case where ¢ is a root of unity. Let N
be a positive integer such that ¢ = 1; then, due to the recurrence relation
(2.4) and following the same idea that the authors did in [4, Section 4.2],
we apply the following process:

(1) The sequence ( ) (2;9)))=;" is orthogonal with respect to the Gaus-

n=

sian quadrature
@ @ pE)
<V7p> ::Zyla "'7]\?-1(1757
= (U ()2

where {21, 22,...,2zy} are the zeros of U](\?) (x; q) for such value of gq.

(2) Since (v, Ul® (:C;q)Ufla) (x;9)) = 0, we need to modify such a linear
form. Next, we can prove that the sequence (Uf(la) (2;9))2N!
orthogonal with respect to the bilinear form

(p,r)2 = (v,pg) + (v, D, p2}'r),

since 2,U5" (1) = (¢" — 1)/ (¢ — VU, (x5 9).

is
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(3) Since <U2(}l\2 (z;q), UQ(?V) (z;9))2 = 0, and taking into account the above
results, we consider the linear form

(p,1)s = (v,pa) + (v, ZNpINr) + (v, 2N pP2N ).

(4) Therefore one can obtain a sequence of bilinear forms such
that the Al-Salam—Carlitz polynomials are orthogonal with respect
to them.

3. A Generalized Generating Function for Al-Salam—Carlitz
Polynomials

For this section, we are going to assume |g| > 1, or 0 < |[p| < 1. Indeed,
by starting with the generating functions for Al-Salam-Carlitz polynomials
[2, (14.25.11) and (14.25.12)], we derive generalizations using the connection
relation for these polynomials.

Theorem 3.1. Let a,b,p € C\ {0}, |p| <1, a,b# 1. Then

n

. — D%k az ) p(5)
Ué")(w;p)=(—1)"(p;p)np_<2)z( 1)( (b/a;p)n—kp U (z;p).

P 5 P)n—k (D3 D)k

(3.1)

Proof. If we consider the generating function for Al-Salam—Carlitz poly-
nomials [2, (14.25.11)]

(@tp)ee = (—1)7pl3)
(t,at; p)oo =27

U™ (a3 p)t™,
= ipn (i)

and multiply both sides by (bt; p)eo/(bt; P) oo, We obtain

i - U(“)(w p)t" Jes Z p U(b)(w pit". (32)
OO n=0

n=0

If we now apply the g-binomial theorem [2, (1.11.1)]

(az;p)oe _ i (@psp)n_n

Z' 0 0<|pl <1, |z2]<1,
(z:p)oe = (DiP)n I i
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0 (3.2), and then collect powers of ¢, we obtain

i * i s ak- m(b/a'p)k—mp(vg) UT(:) (z;p)

par il (95 P)k—m (3 P)m
Z U™ (a; p)t"
Taking into account this expression, the result follows. O

Theorem 3.2. Leta,b,p € C\{0}, [p| < 1,a,b#1,t€C, |at| < 1. Then

> k(k—1) b
x p /a k) (b) k
at; p)oo ip,t) = i, at z;p)tt,
(at; p) 1¢1(at p ) g:o TP 1¢>1( o SPratp Uy (z;p)

(3.3)

Z (a1;p)r(ag;p) -~ (arsp)i 2" (_1)(1+s—r)kp(1+s—r)(§)’
b1, k(023 )k -+ (bs; Pk (D3 Pk

1s the unilateral basic hypergeometric series.

Proof. We start with a generating function for Al-Salam—Carlitz polyno-
mials [2, (14.25.12)]

n(n—

T q u
(at; @) 101 (at;%t) Z VD (; g)t"
k=0

7

and (3.1) to obtain

(at;p)oo 1011 <5t;p,t)

n nk(

:itn< Z b/a;p)n— wplz)

-0 )n k(p7p)

U (3 ).
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We reverse the order of summations, shift the n variable by a factor of k,
and use the basic properties of the g-Pochhammer symbol, and [2, (1.10.1)].
Observe that we can reverse the order of summation since our sum is of
the form

Z Gn, Z Cn,kU]ga) (xap)v
n=0 k=0
where

(—1)ka"*(b/a; p)n—ip(?)
(D3 P)n—k(Pi D)k '

— 4n —
an*ta Cn,k =

In this case, one has
lan| < [t]", |enkl < K(1+n)7[a]",
and U,(la) x; < (1 +n)%2, where K1, o1, and o9 are positive constants
p P
independent of n. Therefore, if |at| < 1, then

o0 n

S an Y U (w5p)| < oo,
k

n=0 =0

and this completes the proof. O

As we saw in Section 2, the orthogonality relation for Al-Salam—Carlitz
polynomials for |¢| > 1, |p| < 1, and a # 0,1 is

/ U™ (2 p)USY (w5 p)w(w; a; p)dp = diybnm.
r
Taking this result in mind, the following result follows.

Theorem 3.3. Leta,b,p € C\{0},t € C, |at|] < 1, |p| <1, m € Ng. Then

1 u
/ 191 <qt ;q,t) UD (¢ p) (g o0 oo (g7 /a5 ¢ ) oodg ™

a

= (= 0t)" ) (55 D)oo (/b5 D)oo 161 (b/a;q,atqm)

0

Proof. From (3.3), we have z +— p® and multiply both sides by
Uﬁ?)(m;p)w(w;a;p), and by using the orthogonality relation (2.3), the
desired result holds. O
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Note that the applications of connection relations to the rest of
the known generating functions for Al-Salam—Carlitz polynomials
[2, (14.24.11) and (14.25.12)] leave these generating functions invariant.
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