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ABSTRACT: Numerous mathematical tools intended to adjust rate constants employed in
complex detailed kinetic models to make them consistent with multiple sets of experimental
data have been reported in the literature. Application of such model optimization methods
typically begins with the assignment of uncertainties in the absolute rate constants in a starting
model, followed by variation of the rate constants within these uncertainty bounds to tune rate
parameters to match model outputs to experimental observations. The present work examines
the impact of including information on relative reaction rates in the optimization strategy,
which is not typically done in current implementations. It is shown that where such rate
constant data are available, the available parameter space changes dramatically due to the
correlations inherent in such measurements. Relative rate constants are typically measured
with greater relative accuracy than corresponding absolute rate constant measurements. This
greater accuracy further reduces the available parameter space, which significantly affects
the uncertainty in the model outcomes as a result of kinetic parameter uncertainties. We
demonstrate this effect by considering a simple example case emulating an ignition event and
show that use of relative rate measurements leads to a significantly smaller uncertainty in
the output ignition delay time in comparison with results based on absolute measurements.
This is true even though the same range of absolute rate constants is sampled in each case.
Implications of the results with respect to the maintenance of physically realistic kinetics
in optimized models are discussed, and suggestions are made for the path forward in the
refinement of detailed kinetic models. Published 2016. This article is a U.S. Government work
and is in the public domain in the USA. Int J Chem Kinet 48: 358–366, 2016

INTRODUCTION

The development of detailed chemical kinetic models
has seen tremendous growth in recent years, partic-
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ularly in the field of combustion, where one of the
interests is in predicting and quantifying the effect of a
fuel’s composition on its suitability for a particular en-
gineering application [1,2]. The need for such predic-
tive models is in part related to the new fuel blends that
are emerging as the marketplace assimilates alternative
fuels such as shale oil, synthetic Fischer–Tropsch fuels,
and a variety of existing and proposed biofuels [3–7].
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Large-scale testing of all possible fuel compositions is
a daunting and expensive task, and the development of
reliable predictive kinetic models represents an attrac-
tive alternative.

An important issue is the development of methods
to both quantify uncertainties in the model predictions
and adjust the input parameters of significance to be
consistent with the extant experimental and compu-
tational data. Of these input parameters, reaction rate
constants are key determinants of the flow of mass and
energy through the system and thus strongly influence
the accuracy of a particular model. While the elemen-
tary reactions that comprise the kinetic models have
unique and universally applicable rate constants un-
der defined conditions, the actual values may not be
well established, and there is always an associated un-
certainty. The development of trustworthy simulations
requires the correct treatment of the rate constants and
their uncertainties within the procedures used to vali-
date and improve the kinetic models.

Historically, combustion models were assembled
hierarchically [8–12], beginning with small systems
and subsequently expanding to larger fuel molecules.
In early work, the rate constants found to most impact
the model outcomes were typically evaluated and as-
cribed a “best” value by individual kineticists [8–11] or
panels of experts [13–15] convened for that purpose.
However, large numbers of reactions are required to
realistically describe the chemistry of fuels, and ex-
perimental determinations of rate constants are dwin-
dling. Over the past 20 years, it has become common
to use automated or semiautomated mechanism gen-
erators with rate constants estimated using various
combinations of rate rules and computational chem-
istry [12,16–22]. To compensate for the lack of evalu-
ated measurements, researchers have sought to develop
methods to determine parameter values on the basis
of a wider set of experimental information, includ-
ing global experimental observations such as ignition
delay times, flame speeds, species profiles, and other
observables that can be linked to the detailed chem-
istry. Such procedures, which adjust model parameters
(such as rate constants and transport properties) within
their uncertainty bounds to better fit multiple sets of
data, are often termed model optimizations.

The problem of optimization is in part made diffi-
cult by the complexity of the kinetic models, which for
large fuels can involve hundreds of species and several
thousand reactions [23,24]. Various approaches to this
problem have been suggested over the years. Many of
the general ideas are traceable to the early work of
Frenklach [25], which was further developed as solu-
tion mapping methods [26], and later used in optimiza-
tions of methane combustion chemistry [27–29]. Nu-

merous researchers have since suggested other mathe-
matical techniques to optimize rate constants by com-
parison of available experimental data with model pre-
dictions [30–34]. Such methods commonly employ a
starting chemical reaction set with a preassigned set
of uncertainties in the model rate constants; parameter
values are then adjusted on the basis of mathematical
formalisms that compare experimental and model re-
sults. Current state-of-the-art model development and
optimization techniques have been discussed by Tu-
ranyi and Tomlin [35] in their 2014 book and by Wang
and Sheen [36] in their 2015 review.

In the above methods, the rate constants and their
uncertainties are often described solely in terms of
their absolute values without regard for correlations
with other model inputs. As kineticists and evalua-
tors of kinetic data, we have some concerns about this
procedure, in particular the possible consequences of
treating relative rate constant information as data from
absolute measurements and the subsequent impact on
the optimized model outputs and their respective un-
certainties.

Recent work on uncertainty quantification in com-
bustion models includes that of Nagy and Turanyi [37],
and Nagy et al. [30], who considered uncertainties re-
lated to the temperature dependence of Arrhenius pa-
rameters. Prager et al. [38] examined the effects of
correlations in rate rules, for which little or no exper-
imental data are available and found improvement in
modeled ignition delay times when correlations were
considered; Cai and Pitsch [39] have considered simi-
lar effects in the optimization of models of n-pentane
combustion. In this work, we examine the impact of
incorporating knowledge of relative rates of reaction
typical of experimental relative rate measurements into
the model optimization strategy. The measurement of
relative rate constants commonly yields lower rela-
tive uncertainties than the independently measured
(k ± σ ) of the base reaction, which can lead to a
derived rate constant that is quite different than if
they were two independent measurements. Using a
simple example model, we look at how such corre-
lations are likely to affect uncertainties in model pre-
dictions. We close with a brief discussion of the im-
plications for the maintenance of physically realistic
kinetic models when applying optimization procedures
and a possible path forward in the refinement of kinetic
models.

APPROACH AND METHODOLOGY

Hundreds of chemical systems have been kinetically
modeled, many of which have multiple proposed
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Table I Reaction Set Used in the Kinetics Model

Reaction
Rate

Constanta Reference and Notes

C4 → 2H + 2C=C 261.7 0.01×2004OEL/DAV [40], adjusted
C4 → 2CH3 + C=C 279.0 0.01×2004OEL/DAV [40], adjusted
2CH3 → C2 6 × 10−11 Pressure dependent, estimated from available data [41] for

modeled conditions
CH3 + H → C 2 × 10−10 1994BAU/COB [14] pressure dependent, estimated for modeled

conditions
H + OH → H2O 2 × 10−10 2008SEL/GEO [42] pressure dependent, estimated for modeled

conditions
H + O2 → HO2 3 × 10−13 1992BAU/COB [13] pressure dependent, estimated for modeled

conditions
H + O2 → OH + O 1.13 × 10−12 2005MIL/PIL [43]
H + C4 → H2 + H + 2C=C 1.30 × 10−11 3.0 × 10−11 total rate; branching ratio = 0.77 [44]
H + C4 → H2 + CH3 + C–C=C 1.70 × 10−11 3.0 × 10−11 total rate; branching ratio = 1.3 [44]
H + C2 → H2 + H + C=C 0.6 × kC4H k for C2 and C4 assumed constant per H
H + C → H2 + CH3 0.4 × kC4H k for C and C4 assumed constant per H
OH + C4 → H2O + H + 2C=C kOH−H See Table II for k
OH + C4 → H2O + CH3 + C–C=C kOH−CH3 See Table II for k
OH + C2 → H2O + H + C=C 0.6 × kOH−H See Table II for k
OH + C → H2O + CH3 0.4 × kOH−H See Table II for k
O + C4 → OH + H + 2C=C kO−H See Table II for k
O + C4 → OH + CH3 + C–C=C kO−CH3 See Table II for k
O + C2 → OH + H + C=C 0.6 × kO−H See Table II for k
O + C → OH + CH3 0.4 × kO−H See Table II for k
O + H2 → OH + H 3.13 × 10−12 1992BAU/COB [13]
OH + H2 → H2O + H 6.79 × 10−12 1992BAU/COB [13]
H + H2O → H2 + OH 1.39 × 10−12 1992BAU/COB [13]
O + H2O → 2OH 2.81 × 10−12 1991LIF/MIC [45]

aAll rate constants are in units of cm3, molecules−1, and s−1 as appropriate.

models that differ in their reaction sets and the pro-
posed rate constants. It is not feasible, nor do we think
it necessary, to individually analyze each system to ex-
amine our thesis. Rather we begin with the proposal
that the qualitative behavior can be made evident sim-
ply by working with a small representative model that
incorporates “typical” features of a combustion system
and results in a prediction of some “typical” global be-
havior of interest.

Kinetics Model

A simple set of reactions emulating an ignition event in
a typical combustion system was constructed as shown
in Table I. As noted above, the reaction set is not in-
tended to represent a fully realistic model but rather a
minimally complicated system that is computationally
convenient and facilitates comparisons between analy-
ses using absolute and relative measurements. Except
in a few cases noted in the table, rate constant values
were taken directly from the literature without adjust-

ment. The given reactions represent a simple chain
reaction initiated by the loss of H-atoms from a model
reactant “fuel,” which is simply designated C4. Chain
branching, e.g., H + O2 → OH + O, ultimately leads
to an “ignition” indicated by a rapid increase in the
concentration of “reactive” H, O, and OH radicals.
In competition with chain branching are terminations
that occur if reactive radicals are converted to CH3,
a species which has much smaller H abstraction rate
constants and is therefore assumed to be unreactive to-
ward the fuel in this simplified system. The remaining
steps represent the reactions of the reactive radicals
with the fuel and the formation of radical–radical re-
combination products (shown as C2 and C). Reactions
of stable closed-shell species such as H2O formed from
abstraction reactions in this system are not included.
The reactive radicals are assumed to react with C4 to
either form H or CH3 together with an alkene species
that is not further modeled. Such a branching is meant
to mimic the abstraction of H from an alkane by a reac-
tive species X• (X • + C4H10 → XH + C4H9

• ) followed
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Table II Rate Constants Varied in Models

ka Rate constant, cm3 molecules−1 s−1 Reference and Notes

kOH−CH3 2.72 × 10−11 1986COH/WES [46], k total = 5.0 × 10−11

kOH−H 2.28 × 10−11 1986COH/WES [46], k total = 5.0 × 10−11

kO−CH3 5.05 × 10−11 Ibid., 1:1 branching, k total = 1.1 × 10−10

kO−H 5.05 × 10−11 Ibid., 1:1 branching, k total = 1.1 × 10−10

aSee Table I for the corresponding chemical equations.

by rapid decomposition of the resulting alkyl radicals:

C4H9
• → C2H4 + C2H5

• → 2C2H4 + H•

→ C3H6 + CH3
•

These two decomposition reactions lead either to
a radical (H) that leads to chain branching or, alterna-
tively, to a species (CH3) that is assumed to be stable in
this system. The differing pathways are determined by
the site where the initial H abstraction occurs. Branch-
ing ratios for such abstraction processes represent one
example of the type of relative rate information that
is available in the literature. For example, in recent
shock tube experiments branching values for the H +
n-butane reaction have been measured with high preci-
sion on the basis of the final alkene product concentra-
tions, which map cleanly to the location of the initial
H abstraction under the conditions of the study [44].
Experimental relative rate data are similarly available
for other attacking radicals and fuels, e.g., reaction of
OH with ethanol [47], 2-propanol [48], and neopentyl
alcohol [49].

In the kinetic model of Table I, the radical con-
centrations in the system as a function of time show
a characteristic rapid increase followed by a rapid de-
crease. We have treated the rapid increase in the radical
concentrations as an “ignition” with a corresponding
ignition delay time that depends sensitively on the rate
constants used in the model. In this way, the system
represents a very simple combustor that is conducive
to statistical sampling techniques with minimal addi-
tional interference from other reactions.

Calculations and Statistical Sampling

Calculations were performed using Cantera 2.1.2 via
the Python interface [50]. The system was modeled as
a simple homogeneous constant volume ideal gas re-
actor at a constant temperature. Average reaction rate
constants were calculated from published Arrhenius
parameters at a temperature of 1500 K, and the sys-
tem pressure was set to 10 bar. For simplicity, all rate
constants were held constant without consideration of

pressure changes as the system evolves. Initial concen-
trations were set to 4.65 × 1018 cm−3 and 7.15 × 1017

cm−3 for O2 and C4, respectively, for a stoichiometric
(assuming C4 = C4H10 for the purpose of determining
the equivalence ratio) fuel–air mixture.

For each model run, concentration profiles of the
radical species at 1600 time points over 4 ms were
calculated, and the ignition delay time was determined
by finding the time at which the one-point discrete
difference in the OH concentration was at a maximum.
The other reactive radicals, H, and O, gave identical
ignition delay times.

The uncertainty in the ignition delay time from this
model was determined by repeatedly running the sim-
ulation while randomly varying the rate constants in
Table II within their assumed uncertainties, and de-
termining the standard deviation of the resulting igni-
tion times. Two sets of calculations were performed.
For the reactions that form H-atom (kO–H and kOH–H,
where the notation separates with a dash the attacking
radical and the resulting radical of interest), the value
of k used in the model was determined by multiply-
ing the average value in the table by a sample from a
log normal distribution with a zero mean and standard
deviation of 0.50, corresponding to an assumed 50%
1-σ uncertainty. The CH3-forming reaction rate con-
stants (kO–CH3 and kOH–CH3) were calculated either by a
similar independent sampling (the “absolute” case) or
using the branching ratio with sampling that represents
the lower uncertainty in the relative rate constants (the
“relative” case).

For the “relative” case, the rate constants for the
reactions that form CH3 (kO–CH3 and kOH–CH3) were de-
termined by multiplying the sampled H atom rate con-
stant by the average branching ratio (i.e., kx–H/kx–CH3)
and a sample from a log normal distribution with zero
mean and standard deviation of 0.05, corresponding
to a 10% 2σ uncertainty in the branching ratio. In
the “absolute” calculations, the values of kO–CH3 and
kOH–CH3 were calculated from the average rate constant
and a zero-mean log normal distribution with standard
deviation of 0.5025, corresponding to the combined
relative uncertainties of the H-atom rate constants and
the assumed branching ratio uncertainty.

International Journal of Chemical Kinetics DOI 10.1002/kin.20996
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For both sets of calculations, 10,000 individual runs
were performed, and the individual standard deviations
in the resulting ignition delay times were calculated.

RESULTS AND DISCUSSION

Shown in Fig. 1 are the results for ignition delay times
under the absolute and relative rate constant sampling
conditions. Figure 1 demonstrates for the simple sys-
tem shown in Table I that the incorporation of relative
rate information into the model leads to a small shift
in the modeled ignition delay time compared with the
absolute case. Most striking, however, is the reduction
of the standard uncertainty in the model prediction by
almost a factor of four. This is true despite the fact
(Fig. 2) that the histograms of the individual rate con-
stants are essentially identical in both mean and stan-
dard deviation for both cases.

Plotting the joint histograms, kOH–H versus kOH–CH3

and kO–H versus kO–CH3 (Fig. 3) reveals, in the relative
case, the highly correlated parameter spaces for the var-
ied rate constants. The solid lines in the figure indicate
the encompassed areas at the respective 95% confi-
dence intervals and display the vastly reduced space
that is consistent with the assumed knowledge of the
rate constants in the relative analysis. This highlights
that the use of any model optimization procedure that
ignores relative rate information will lead to a much
less constrained result. Equally problematic, optimiza-
tion procedures that treat the rate constants that were
measured as relative rates as if they were independently

determined are allowing rate constant pairs that are not
physically realistic. In complex systems, particularly
when values are optimized on global experiments that
are less directly connected to the detailed chemistry,
one would anticipate that many of the resulting rate
constant pairs will fall outside of the parameter space
allowed by the relative rate information. This has sig-
nificant implications for the fidelity of the derived mod-
els.

The above results are illustrative only. The exact
degree to which the inclusion of relative rate informa-
tion will change the uncertainty of a particular model
prediction will naturally vary with the chemical sys-
tem, the sensitivity of the result to the involved rate
constants, and the available information on the relative
and absolute rates. Nonetheless, it is critical to include
all of this information in constraining any optimization
to ensure that the input and output rate constants are
fully consistent with the available experimental obser-
vations.

The present analysis assumes that relative rates and
branching ratios can be experimentally measured with
much higher accuracy than one can determine the ab-
solute rate constants. While measurements must be
assessed on a case-by-case basis, this is the usual situ-
ation for experiments that establish direct competitions
and follow distinct products with an accurate analytical
technique: In work from this laboratory, for example,
uncertainties of around 10% (2σ ) in relative values are
common [44,51–56], and such results are not dissimi-
lar to measurements reported elsewhere in the literature
[41,57]. In contrast. it is difficult to measure absolute

Figure 1 Histograms of ignition delay times calculated using absolute (left) and relative (right) rate constants.
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Figure 2 Histograms of sampled rate constants in simulations for absolute (top row) and relative cases (bottom row).

rate constants with accuracies close to this level, par-
ticularly at the high temperatures most pertinent to
combustion processes. Even if one assumes equal un-
certainties in the relative and absolute measurements,
the correlation between values ensures that the joint
parameter space is reduced for relative measurements.

As noted in the Introduction, current optimization
methods generally treat reaction rates as independent
of each other and draw conclusions based on this as-
sumption. For instance, in their recent review of uncer-
tainty quantification in combustion models, Wang and
Sheen [36] ask to what extent one can rely on first-
principles approaches to combustion modeling and
suggest that current levels of measurement accuracy
may be insufficient to achieve truly predictive models.
While the question remains valid, their arguments are
based on the assumption of independent rate constant
measurements, whereas the present analysis suggests
that significantly better predictions might be expected
if information on relative rates is incorporated.

Modifications of Parameter Space Based
on Available Data

In this work, we have simulated two different cases
to accentuate the need to consider data that are mea-
sured purely independently (absolute rate constants)
separately from data derived from relative rate mea-
surements (relative rate constants). These two cases,

now called absolute/absolute and absolute/relative in
this discussion to emphasize how each rate constant
was measured or determined, sample dramatically dif-
ferent parameter spaces, as shown in the upper and
lower panels of Fig. 3, respectively. However, in actual
practice, the available rate information may not always
correspond to these situations, and some further con-
sideration is warranted.

To facilitate discussion, in Fig. 4 we have schemat-
ically shown 95% surfaces of the simulated joint prob-
ability distributions for each of the cases described
above, where k1 is always measured as an absolute
rate constant and k2 is either an independent absolute
measurement or is derived relative to k1. The isopleths
shown can be compared to the solid lines in Fig. 3.
In Fig. 4, the absolute/absolute case corresponds to
the broad ovoid encompassing regions a and c, and the
absolute/relative case is parameterized by the narrower
ovoid consisting of the b and c regions. In this diagram,
we have assumed that the projected uncertainty of k2

is the same whether or not it is treated as an absolute
or relative value, just as we have done in the kinetic
simulations, although there is no general reason this
should be true.

In both cases, the projection of the joint probability
distribution on either axis leads to the identical, fully
Gaussian uncertainty distributions for each rate con-
stant. Notice that in the absolute/relative case, the large
correlation between k1 and k2 leads to a narrower joint

International Journal of Chemical Kinetics DOI 10.1002/kin.20996



364 MANION AND MCGIVERN

Figure 3 Two-dimensional histograms showing for the absolute (top) and relative (bottom) cases the joint parameter spaces
kOH−H versus kOH−CH3 and kO−H versus kO−CH3 .
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k 1
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b
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Figure 4 Schematic view of parameter space for abso-
lute/absolute (a + c), absolute/relative (b + c), and abso-
lute/absolute + relative (c).

probability distribution, part of which extends outside
the range of the absolute/absolute case. This is be-
cause k2 is measured only relative to k1, and therefore
the culling of the tails of the joint distribution along
the k1 = k2 axis (region b in Fig. 4), that would be
accomplished by an absolute measurement of k2 does
not occur. However, it is not unusual to have a set of
three measurements consisting of an absolute measure-
ment of k1, an absolute measurement of k2, and a mea-
surement of k1/k2 [i.e., the absolute/(absolute+relative)
case], which then leads to a smaller region of parameter
space (region c in the figure) that remains consistent
with the kinetics data. Careful consideration of all of
the available data, including both the individual data
point’s uncertainties and measurement type, is critical
in accurately defining rate constants that are consistent
with available experimental data. Specific recommen-
dations for implementing these restrictions is outside
the scope of this paper, and a future publication will ex-
plore the implications of these restrictions using exper-
imental data and a broader, more expressive, chemical
kinetics model.
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Conclusions and Final Remarks

Current model optimization procedures generally
couch the uncertainties of reaction rate constants in
terms of their absolute values, i.e., k ± σ k, without re-
gard for the method by which the value and uncertainty
was obtained. The present work strongly indicates that
a more sophisticated treatment of the available rate
constant data, specifically including relative rate infor-
mation in combustion model optimization procedures,
is necessary. It is seen that this leads to a significant re-
duction in the allowable parameter space and, in turn, is
expected to significantly affect uncertainties in model
predictions of global phenomena of interest. Equally
important, we suggest that the noninclusion of such
information is highly likely to result in the adjustment
of rate parameters such that they fall outside of a phys-
ically realistic set of values as delineated by the avail-
able experimental data or assumed rate rules. A conse-
quence of such an omission is that “optimized” models
may have less, rather than greater, fidelity to physical
reality, thus raising serious questions about the ability
to extrapolate such models to unstudied conditions of
interest.

The above observations represent both a challenge
and an opportunity for modelers, theoreticians, and
experimentalists in the combustion community. The
results suggest that accurate data on relative rates and
product branching ratios will frequently be of greater
value than measurements of absolute rate constants,
at least at the current levels of measurement accuracy.
We note further that computational chemistry has ma-
tured such that absolute rate constants can often be
predicted with a reasonable level of accuracy. How-
ever, a number of recent comparisons of experiment
and theory from this laboratory [52,55,58] have shown
that the ability to accurately predict branching ratios is
less well developed. This is a concern and represents
an area that needs to be carefully considered, partic-
ularly for multichannel reactions that are common at
high temperatures.

For experimentalists, certain types of relative rate
measurements are commonly and accurately per-
formed, for example, those involving reactions of OH
with various substrates under conditions relevant to at-
mospheric chemistry. Data at the higher temperatures
more germane to combustion are often lacking, how-
ever, and methods for such conditions need to be better
developed. The atmospheric example represents rela-
tive rate measurements involving OH + RH/R′H sys-
tems. Perhaps more challenging is the need to develop
techniques that accurately probe unrelated reactions,
e.g., H + O2 versus H + RH. Such interclass compar-
isons are anticipated to be of great value. One can envi-

sion that the development of an accurate interlinked set
of intraclass and interclass relative rate measurements
will constrain models to a much greater degree than
current independent measurements. Finally, for model
optimizers, we suggest here that a greater emphasis
on how relative rate information constrains input and
output parameters is needed. While this criticism sug-
gests some inadequacies in current implementations,
we note that there is also a great deal of kinetic infor-
mation that has not yet been brought to bear and we
believe that its inclusion has the potential to rapidly
advance the predictive capabilities of detailed kinetic
models.
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