
Formal Definition of Edge Computing: An Emphasis

on Mobile Cloud and IoT Composition

Charif Mahmoudi†‡, Fabrice Mourlin† and Abdella Battou‡
†Advanced Network Technologies Division, National Institute of Standards and Technology

‡Algorithmic, Complexity and Logic Laboratory, University of Paris-Est Créteil

charif.mahmoudi@nist.gov, fabrice.mourlin@u-pec.fr, abdella.battoug@nist.gov

Abstract—Within the Edge computing umbrella, mobile cloud

computing is an emerging area where two trends come together to

compose its major pillars. On one hand, the virtualization

affecting the data centers hypervisors. On the other hand, device’s

mobility, especially Smart Phones, which proved to be the most

effective and convenient tools in human life. This emerging area is

then changing the game in terms of mobility of workspaces and the

interaction with the connected devices and sensors. This paper

provides a formal specification of the Mobile cloud component

using the π-calculus. The proposed model defines the mobile cloud

component, the virtual device representation, and interaction that

leads to application offloading and device composition. This paper

describe our contribution that enables the composition of virtual

devices from physical devices, sensors, and actuators available on

the network. Moreover, we present a model of application

offloading and virtual devices networking on mobile clouds. Our

architectural model is inspired from the Cloudlet based system. In

addition to the formal specifications and architecture this paper

presents a case studies showing the structural congruence between

a locally executed application and an offloaded version of that

same application.

Keywords— formal definition; migration; mobile; mobile cloud

computing; offloading; virtualization; virtual device representation,

fog, internet of things

I. INTRODUCTION

Mobile devices are increasingly having an essential usage in
human life as the most effective and convenient communication
tools. The unbounded time and place usage introduced by those
devices allows mobile users to accumulate a rich experience of
various services and applications. The execution of those
services is not limited to the mobile device itself, more and more
applications use nowadays remote servers via wireless networks
to interact with services. Architectures based on the n-tiers
computing have become a powerful trend in the development of
IT technology as well as in the commerce and industry fields on
mobile computing [1]. Such a systems can accept any (finite)
number of layers (or tiers). Where each tier like presentation,
application processing, and data management functions is
physically separated from the others.

However, mobile devices have considerable hardware
limitations. Mobile computing faces many challenges in
attempting to provide the various applications living on a single
device with limited resources such as battery, storage, and
bandwidth. Communication challenges like mobility and
security arise too. Those challenges motivate the delegation of
the resources-consuming application modules to remote servers
using the cloud service platforms. Google offers one of the major

solutions called AppEngine [2]. Such a solution is allowing
developers without previous understanding or knowledge of
cloud technology infrastructure to deploy services and use the
cloud. These platforms execute the deployed services and
expose them as a remote service. That enables delegation of
massive computation pieces of the mobile software to the cloud
infrastructure.

As one component of the Edge computing, current mobile
cloud architectures are based on cloud computing abstractions
(IaaS, PaaS and SaaS) [3] and adapt this concepts for a
deployement at the edge of the network. This architecture
addresses the virtualization and distribution of the deployed
services. However, the mobility aspect is not designed for the
nomadic usage of mobile devices. The lack of specific
formalism to address mobile virtualisation contribute to the
heterogeneity of the actual solutions. Indeed, the virtualisation
of devices and services is following the server architectures that
are not suitable for the mobile platforms. This is due to the
heterogeneity of the hardware architectures and the available
resources. Another limitation is the lack of specific
representation of the mobile devices on the cloud. The deployed
services artefacts are a classical web service. There is no specific
representation that makes abstraction for the application
offloading and the location management. Moreover, using a
generic representation makes the remote services
implementations dependant of both the cloud platform and the
devices capability. In term of development, this constraint
implies that the software component developed as a remote
cannot be reused in the client side. In addition, interfaces that
exposes the same services may be deffirent from an
implementation to an other.

Our contribution aims to define an additional abstraction
level on the cloud to specify a structure that represents mobile
devices. It enables a common interface to communicate with
differents devices like mobile devices, sensors and actuators.
Communications addressed to the devices are translated to the
specific protocols by this representation. And the responses are
stored on a cache which is the virtual state of the device. This
representation act also as a “mobile-friendly” platform within
the cloud. Indeed, the representation is built on emulation
capabilities that offer a compliant environment with the physical
device on which the representation is associated.

We distinguish three kinds of representations depending on
their association (or not) with the physical devices. The first type
of representations are those associated with simple sensors or
actuators. They are the simplest forms for the representation
where there act as a cached proxy with a common interface. The

second type is the representations associated with the mobile
devices. This representation offers offloading capabilities, and
keeps a cached state of the differents sensors and actuators
available on the mobile device. We consider this second type of
representations as a composition of resources associated with a
mobile device and it is not the exact image of the device. It can
be used as an extension to the resources available locally on the
device. The third type of representations have no direct
association with a physical device. It is a composition of
multiple representations. We define this representation as a
composition of resources distributed over the network which
transforms the mobile device into a sort of “super device” by
eliminating the physical limitation. The composite
representation adds smartness to the devices by enabling the
composition of multiple devices in a smooth way.

This paper describes, in Section II, the various challenges
faced during virtualization and how they are addressed in work
related work. We describe the existing cloud techniques that are
useful for mobile cloud computing and presents the formalism
efforts that are related to the differents virtualization aspects. We
end this section with an introduction to the π-calculus which is
the formalism used for our definition. In Section III, we expose
our definition of the Virtual Device Representation(VDR) using
a formal language and how we address the orchestration and the
networking for these VDRs. In section IV, we will expose our
proposed architecture for Mobile Cloud Computing (MCC) and
the approach that we use in order to have a high performance
mobile cloud network. The last Section describes a case study
for an MCC platform highlighting the structural congruence
between the system when a mobile application is running
directly on the device and when this same application is
offloaded to a mobile cloud.

II. RELATED WORK

A. Mobile Device Challenges

The role of mobile devices has expanded into the modern
workplace. Workplaces are not limited to the office and the
warehouse anymore. They have expanded to include airport
terminals, loading docks and delivery trucks, physician waiting
rooms, and even playing fields and family gatherings. Mobile
devices have erased workplace boundaries, and as a result,
employees can connect with their corporate networks almost
anytime, anywhere.

With the emergence of Fog, the network connections
between edge devices and the cloud are reconsidered as part of
the computational processes being done close to the edge
devices called edge computing. Mobile Cloud is one of the
implementations of the Edge to incorporate the network needed
to get processed data to its destination. The mobile technology,
which is easing access to business data and applications is also
providing various means of communications. These features
continue to be embraced by users. For IT point of view, mobile
technology and the unprecedented pace of change in the mobile
arena will generate new IT management challenges. Indeed, as
mobile innovation continues, machine-to-machine (M2M)
connectivity (or Internet of Things) will further accelerate
mobile opportunity [4] and transform how people, enterprises,
and governments interact with the many aspects of modern life.

Several trends -- and the way companies react to them -- will
create challenges for IT, as organizations attempt to exercise
some control over devices that are not necessarily designed to be
secure and manageable. With careful planning and an
understanding of best practices and Mobile Device Management
(MDM) [5] options. IT can go a long way toward meeting those
challenges. With a well-implemented MDM strategy,
enterprises can enforce corporate security policies without
stifling user productivity.

B. Cloud and Virtualization

The virtualization is used for abstracting the Operating
System (OS) and applications from the physical hardware to
build a more cost-efficient, agile and simplified server
environment. There are two types of virtualization and many
major uses of virtualization.

1) Virtualization types
Two kinds of virtualization are used to simulate the machine

hardware and allow the execution of a guest OS. First is
emulation where VM emulates (or simulates) complete
hardware if the unmodified guest OS for a different PC cannot
be run. There are some hypervisors specialized on “emulation”
like Bochs, VirtualPC for Mac and Qemu [6]. Second is
full/Native where VM simulates “enough” hardware to allow an
unmodified guest OS to be run in isolation. This virtualization
type requires that the same hardware CPU if used by the VM
and the hypervisor. This type is supported also by many
hypervisors like, VMWare Workstation [7] and Microsoft
Hyper-V [8].

2) Virtualization usage
By using virtualization, multiple VM instances containing

operating systems can run on a single physical server or a single
VM can use hardware from multiple physical servers, each with
access to the underlying server's computing resources. The
virtualization is used to addresses the resources waste caused by
the fact that the host servers operate at less than 15 percent of
capacity, leading to server sprawl and complexity. According to
VMware statistics [9], virtualization can deliver 80 percent
greater utilization of resources on the server and 10:1 or better
server consolidation ratio.

The objective of this kind of virtualization -- considered as a
subset of server virtualization-- is to provide an abstraction of
the networking resources into a logical model that have the same
behavior as the physical resources. The virtual networking
resources are divided in two categories: first is the physical
resources virtualization like vRouter (Router) and vSwitch
(Switch), the second is the resources appliances like FWaS
(Firewall) and LBaaS (Load balancer). This network
virtualization approach is called Network Functions
Virtualization (NFV) [12]. It aims to consolidate and deliver the
networking components needed to support a fully virtualized
infrastructure and shared by multiple tenants in a secure and
isolated manner.

Existing efforts aims formalizing the cloud services
interactions [10] and orchestration [11]. However, those efforts
do not address the virtualization aspect of such cloud systems.

C. Virtualization Formalizm

In parallel with the pragmatic work on the networking, there
is many existing efforts on the definition of formalism dedicated
to networking. U. Montanari and M. Sammartino have worked
on a proper extension [13] of the π-calculus. The resulting
process calculi provide both an interleaving and a concurrent
networking oriented semantics. A. Singh et al have also worked
on an extension called ω-calculus [14] that formally modeling
and reasoning about mobile ad hoc wireless networks. These
works focus on the reasoning and the verification of the
networking protocols and does not address the virtualization
aspect. This lack of networking virtualization formalism
motivates our high-level definition of network virtualization in
the next section.

III. VIRTUAL DEVICE REPRESENTATION

In our approach, the VDR aims to address the mobile cloud
computing virtualization paradigm. We have identified three
types of VDRs, and each type has a specific role within the
mobile cloud.

1. Sensor VDR (SVDR): it represents a physical
sensor or actuator within to the mobile cloud.

2. Device VDR (DVDR): it represents a physical
mobile device within to the mobile cloud.

3. Composite VDR (CVDR): it represents a
composition of SVDR, DVDR, and mobile cloud
resources.

In this section, we present the different aspects turning
around the VDR by giving our definition of the VDR, a formal
definition using the Higher-Order π-Calculus (HOπC) [15],
stressing the orchestration mechanism for the VDRs, and the
networking aspect. Our choice for the HOπC is motivated by the
need of expressing the mobility of the VDRs in the mobile cloud,
also the mobility of mobile applications between the physical
devices and the VDRs. In our definition, we do not use the
network related extensions of the π-calculus for two reasons:
first, those extensions do not address the higher-order paradigm,
next, there are designed to express networking protocols not the
virtualization-oriented communication.

A. Definition

VDR is defined as composition of resources (CPU, RAM,
and Storage), devices, and sensors. It is a software composite
component that provides emulation of the behavior of the
physical hardware that it represents.

A VDR is a small VM instance used in cloud computing,
typically hosting a mobile OS and exposing management
services that emulate a display screen and/or a keyboard. As
same as the physical handheld computing device that it
represents, it can run various types of mobile applications
(known as apps) and it have a network connection.

A VDR can be associated to a physical device nor sensor in
this case, a 1:1 association is control their interactions (ex:
SVDR and DVDR). We call this category “Emulated VDR” A
VDR can be free of any hardware association, in this case, it is
a composed VDR (CVDR) that aggregates it components
hardware associations and have then a 0:n association to the

hardware devices. This category of VDR is called “Native
VDR”.

B. Formal Specification

The VDR operates according to an event driven architecture.
Every interaction is initiated by a message sent from a driver
(further to hardware sensing activity) nor a service call. We
define an event vector representing all interfaces of a VDR. This
event vector, illustrated in (1) contains channels that are used to
exchange messages

𝑒𝑣⃗⃗⃗⃗ ≝ [𝑐𝑎𝑚𝑒𝑟𝑎𝑚 , 𝑚𝑖𝑐𝑟𝑜𝑛 , 𝑛𝑓𝑐𝑜, 𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑𝑝, …] (1)

The event vector 𝑒𝑣⃗⃗⃗⃗ is used only for the interactions between
VDRs, the interactions between DVDR on one hand SVDR and
the physical device on the other hand, are using a service based
channel called 𝑤𝑠 that represents a web service based exchange.

𝑉𝐷𝑅(𝑤𝑠⃗⃗⃗⃗ ⃗) ≝

(𝜈 𝑒𝑣⃗⃗⃗⃗)

(

(𝜆 𝑒𝑣⃗⃗⃗⃗ 𝑤𝑠𝑖)𝑆𝑉𝐷𝑅
+

(𝜆 𝑒𝑣⃗⃗⃗⃗ 𝑤𝑠𝑗)𝐷𝑉𝐷𝑅

+
(𝜆 𝑒𝑣⃗⃗⃗⃗)𝐶𝑉𝐷𝑅

+
∅)

(2)

We define the generalization called 𝑉𝐷𝑅 as a
nondeterministic choice between the three types of VDRs as
illustrated in (2)

The term 𝑉𝐷𝑅(𝑤𝑠⃗⃗⃗⃗ ⃗) have a vector 𝑤𝑠⃗⃗⃗⃗ ⃗ of web services
channels as parameter, these channels are shared with the mobile
cloud system and are transmitted to the specific VDRs to allow
the communication with the physical devices. The term VDR
creates a new 𝑒𝑣⃗⃗⃗⃗ vector containing the channels that are used to
interface the specific VDRs. We benefit in the VDRs definition
of the use abstractions where (𝜆 𝑒𝑣⃗⃗⃗⃗ 𝑤𝑠𝑖)𝑆𝑉𝐷𝑅 is a natural way
to write 𝑆𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠), and so on for the two other VDR types.
The specific VDR is activated iff the corresponding element in
the 𝑤𝑠⃗⃗⃗⃗ ⃗ vector is a valid channel and not an empty process ∅.

The SVDR is activated behind the physical sensor
connection event. Once connected, the physical sensor sends the
identification data to the SVDR through the 𝑤𝑠 channel. This
data is persisted inside the SVDR using the term 𝐷𝑒𝑣𝐼𝑑 defined
in (5) that give back the identification data if requested through
the right event channel.

𝑆𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝

𝑤𝑠(𝑖𝑑). 𝜏. (
𝐷𝑒𝑣𝐼𝑑(𝑒𝑣𝑖 , 𝑖𝑑)

|𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠)
)

(3)

As illustrated in (3), the term 𝑆𝑉𝐷𝑅 uses the term
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟 defined in (4) to dispatch the data perceived by
the physical sensor using the event channel. At this level, we
consider the mapping between the sensor and the matching
channel as an invisible action represented by 𝜏. Two possible
behaviors can be adapted by the term 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟 as
illustrated in (4): if a Stop command (15) is received, the process
will end, else, the dispatching action is executed. The parallel
composition of the term 𝑆𝑉𝐷𝑅 allows the administrator to

retrieve the VDR identifier using the environment channel 𝑒𝑣𝑖
and don’t impact the execution of the virtual sensor.

𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝

𝑤𝑠(𝑠𝑒𝑛𝑠). (
[𝑠𝑒𝑛𝑠 = 𝑆𝑡𝑜𝑝] 𝑆𝑡𝑜𝑝

+
𝜏. 𝑒𝑣𝑖̅̅ ̅̅ 〈𝑠𝑒𝑛𝑠〉. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠)

)

(4)

𝐷𝑒𝑣𝐼𝑑(𝑟𝑒𝑞, 𝑖𝑑) ≝ 𝑟𝑒𝑞(𝑐𝑏). 𝑐𝑏̅̅ ̅〈𝑖𝑑〉. 𝐷𝑒𝑣𝐼𝑑(𝑟𝑒𝑞, 𝑖𝑑) (5)

Messages sent through the 𝑤𝑠 channel are initiated by the
mobile device or the sensor. However, these messages are
forwarded to the target VDR by the networking infrastructure
defined in (19) and (22).

The DVDR specification respects the same fundamentals as
the SVDR. As illustrated in (6), it uses the term 𝐷𝑒𝑣𝐼𝑑 to persist
and give back the device identifier and use term called
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒 to manage the virtual device behavior.
However, the DVDR can run applications instead of SVDR that
only proxy the sensor events.

𝐷𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝

𝑤𝑠(𝑖𝑑). 𝜏. (
𝐷𝑒𝑣𝐼𝑑(𝑒𝑣𝑖 , 𝑖𝑑)

|𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠)
)

(6)

We need to dissociate between sensing events sent from the
device embedded sensors and the application offloading
requests. To do that, we define a type called 𝐴𝑝𝑝 (7) that
encapsulate the offloaded application.

𝐴𝑝𝑝(𝐵𝑎𝑐𝑘𝐸𝑛𝑑𝑃𝑟𝑜𝑐(𝑤𝑠)) ≝ 𝐵𝑎𝑐𝑘𝐸𝑛𝑑𝑃𝑟𝑜𝑐(𝑤𝑠) (7)

We define in (8) the term 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒 that execute the
offloaded application if need, else, it proxies the sensing data.

𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝

𝑤𝑠(𝑚𝑠𝑔).

(

[𝑚𝑠𝑔 = 𝑆𝑡𝑜𝑝] 𝑆𝑡𝑜𝑝
+

(

 𝑐𝑎𝑠𝑒 𝑚𝑠𝑔 𝑜𝑓

∶ 𝐴𝑝𝑝(𝑃(𝑥)) ⇒ 𝑃(𝑥)

∶ 𝑚𝑠𝑔 ⇒ 𝜏. 𝑒𝑣𝑖̅̅ ̅̅ 〈𝑚𝑠𝑔〉

)

 . 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠))

(8)

We used to this definition the syntactic sugar introduced by
R. Milner in [16] by using the “case of” instruction to distinguish

between the offloading action represented by 𝐴𝑝𝑝(𝑃(𝑥)) and

sensing actions. Where we run the higher-order parameter 𝑃(𝑥)
within the DVDR on the offloading action, elsewhere, we proxy
the message to the corresponding event channel as we do for
SVDR. The service channel used for the communication
between the physical device and the offloaded application is set
as parameter 𝑥 before the offloading action, this channel is
different from the service channel that connects the DVDR and
the physical device.

The CVDR in (9) have no direct association with a physical
device, its interactions pass through a SVDR nor a DVDR. The
term 𝐶𝑉𝐷𝑅 is defined as an aggregation of SVDR and DVDR
that are sharing the same events vector.

𝐶𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗) ≝ (𝜈 𝑖𝑑)

𝐷𝑒𝑣𝐼𝑑(𝑒𝑣𝑖 , 𝑖𝑑)|𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗) (9)

A identifier is created the term 𝐶𝑉𝐷𝑅 and returned trough
the right event channel 𝑒𝑣𝑖 .using the term 𝐷𝑒𝑣𝐼𝑑.

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗) ≝

𝑒𝑣𝑖(𝑒). 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ ^𝑒)

(10)

The term 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒 defined in (10) is used to
aggregate the events channels 𝑒𝑣⃗⃗⃗⃗ (the event channel associated
with the actual 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒) and 𝑒 (the event channel
associated with the VDR to add to this composition) using the
concatenation operator ^.

C. Orchestration

In an MCC context, orchestration is the automation of the
management and coordination tasks of the services and
components. In addition to the interconnection processes
running across heterogeneous systems, the localization of
services is an important issue. Processes and VDRs must cross
multiple organizations, systems and firewalls.

The mobile cloud orchestration aims to automate the
configuration, coordination and management of VDRs and
VDRs interactions in such an environment. The process involves
automating workflows required for the composition of VDRs
and the offloading of mobile Apps. Involved tasks include
managing virtualization and emulation in server runtimes,
directing the communication flow of Apps among VDRs and
dealing with exceptions to typical workflows.

In our approach, the orchestrator is composed by three main
components as illustrated in (11), we define these three
components as common orchestration tasks: 1) Configuration
where the cloud orchestrator manages the storage, compute, and
networking. In this paper, we do not focus on the resources
allocation algorithm (compute and storage), this aspect will be
stressed in a future publication. A high-level specification of the
networking mechanism is presented in the next sub section. 2)
Provisioning where the cloud orchestrator manages the VDRs
by providing the run, suspend, and terminate operations. 3)
Security where the cloud orchestrator manages the monitoring,
and reporting. We describe the details of this aspect also on a
separate paper where we describe our implementation and
detailed algorithms.

In the term 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 in (12), we illustrate the use of
the configuration 𝑎𝑝𝑖 that is used for the allocation of resources,
the deallocation (free) of resources, and to suspend the
execution. The 𝑎𝑝𝑖 is a vector in two-dimensional space. The
contravariant indicates the target module (ex: 𝑎𝑝𝑖𝑐 where 𝒄
stand for 𝑪𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛). The covariant indicates the service
called within the module (ex: 𝑎𝑝𝑖𝑎 where 𝒂 stand for
𝒂𝑙𝑙𝑜𝑐𝑎𝑡𝑒). The system administrator will use the vector 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) ≝

𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑜𝑟(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) ≝

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)|Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)

|(𝜈 𝑑𝑎𝑡𝑎)𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ , 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗)

(11)

(

𝑎𝑝𝑖𝑎
𝑐(𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒). 𝜏. (𝜈 𝑟𝑒𝑠)𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑟𝑒𝑠〉

|𝑎𝑝𝑖𝑓
𝑐(𝑓𝑟𝑒𝑒). 𝜏

 |𝑎𝑝𝑖𝑠
𝑐(𝑠𝑢𝑠𝑝𝑒𝑛𝑑). 𝜏

)

. 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)

(12)

The term Provisioning in (13) uses also an 𝑎𝑝𝑖 to ask the
configuration module for resource allocation. Once allocated, it
delegates the creation of the VDR to the term 𝑅𝑢𝑛 defined in
(14). We use the abstraction of the resources information
returned by the term 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 to communicate this
information to the term 𝑅𝑢𝑛 that is preconfigured with the two

parameters before its reception through the channel 𝑎𝑝𝑖𝑟
𝑝
.

Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) ≝

(

(
𝑎𝑝𝑖𝑟

𝑝(𝑅𝑢𝑛). (𝜈 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒)𝑎𝑝𝑖𝑎
𝑐̅̅ ̅̅ ̅̅ 〈𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒〉

 |𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑟𝑒𝑠). (𝜆 𝑟𝑒𝑠)𝑅𝑢𝑛()
)

|𝑎𝑝𝑖𝑠
𝑝(𝑠𝑢𝑠𝑝𝑒𝑛𝑑). 𝑎𝑝𝑖𝑠

𝑐̅̅ ̅̅ ̅̅ 〈𝑠𝑢𝑠𝑝𝑒𝑛𝑑〉

|(
𝑎𝑝𝑖𝑡

𝑝(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒). 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒(𝑤𝑠)

 . 𝑤𝑠̅̅ ̅̅ 〈𝑆𝑡𝑜𝑝〉. 𝑎𝑝𝑖𝑓
𝑐̅̅ ̅̅ ̅̅ 〈𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒〉

)
)

. Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)

(13)

The suspension is delegated to the term 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛
where it is represented as an invisible action 𝜏. The provisioning
sends the term 𝑆𝑡𝑜𝑝 to the VDR to terminate its execution. We
use for that the 𝑤𝑠 channel sent through the channel 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒.

The term 𝑅𝑢𝑛 defined in (14) composes a vector depending
on the type of the VDR that the initiator wants to create. After
the creation of the VDR, it creates and sends a new identifier
using the 𝑤𝑠 channel to start the new created VDR.

𝑅𝑢𝑛(𝑤𝑠 , 𝑡𝑦𝑝𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗) ≝

𝜏. (

 [𝑡𝑦𝑝𝑒𝑣 = 𝑡𝑦𝑝𝑒𝑠] 𝑉𝐷𝑅(𝑤𝑠 ∅̂ ∅̂)

|[𝑡𝑦𝑝𝑒𝑣 = 𝑡𝑦𝑝𝑒𝑑] 𝑉𝐷𝑅(∅ 𝑤̂𝑠 ∅̂)

|[𝑡𝑦𝑝𝑒𝑣 = 𝑡𝑦𝑝𝑒𝑐] 𝑉𝐷𝑅(∅ ∅̂ ∅̂)

)| (𝜈 𝑖𝑑)𝑤𝑠̅̅ ̅̅ 〈𝑖𝑑〉

(14)

𝑆𝑡𝑜𝑝() ≝ ∅ (15)

To keep our definitions as clear as possible, we didn’t
integrate the communications between the VDRs and the
monitoring module defined in 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔. We can easily
imagine that after each communication on the events vector 𝑒𝑣⃗⃗⃗⃗
channels, an information must be sent to the monitoring module
using the 𝑎𝑝𝑖𝑝𝑢𝑡

𝑚 channel. This information is stored in data

vector 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ on the recursive call in (16) to the term
𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔.

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ , 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) ≝

(
𝑎𝑝𝑖𝑝𝑢𝑡

𝑚 (𝑑𝑎𝑡𝑢𝑚). 𝜏. (𝜈 𝑖𝑑)𝑎𝑝𝑖𝑟𝑒𝑡
𝑚 (𝑖𝑑)

|𝑎𝑝𝑖𝑔𝑒𝑡
𝑚 (𝑖𝑑). 𝑎𝑝𝑖𝑟𝑒𝑠

𝑚 (𝑑𝑎𝑡𝑎𝑖𝑑)
)

. 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ , 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝑑̂𝑎𝑡𝑢𝑚)

(16)

D. Networking

On our mobile cloud approach, multiple tenants can use the
same physical infrastructure. The network virtualization
simplifies the multi-tenancy. The shared infrastructure allows

independence of the VDRs regarding the physical host on which
it’s located. The VDR should be movable between the hosts
based on the need. We commit our networking definition to
allow VDRs across 2 different Layer 3 (L3) networks look like
they are in the same Layer 2 (L2) domain.

The proposed virtual networking model allows the
provisioning module (13) to manage the virtual network
component like a VDR and hide the complexity from the user.
The model allows also to bypass the scale perspective 4096
VLAN limit as proposed on VXLAN by the Internet
Engineering Task Force (IETF) RFC 7348 [17]. Our model
definition is composed from two terms: 𝑣𝑆𝑤𝑖𝑡𝑐ℎ defined in (19)
and 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 defined in (22).

For our network modelling, we define the structure of the
packet transiting on the networking infrastructure. The vector

𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ in (17) represents the L2 frame where the names
𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑑𝑠𝑡 and 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑠𝑟𝑐 are the channels corresponding to
the 𝑤𝑠𝑥 used by the VDRs in (2). 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝contains the

information needed by the 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 and the message as
𝑖𝑝𝑝𝑎𝑦𝑙𝑜𝑎𝑑. The names that composes the vectors in (17) and (18)

are abbreviations of header fields of the packets as described in
the IETF RFC 791.

𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≝ [𝑑𝑠𝑡, 𝑠𝑟𝑐, 𝑡𝑎𝑔, 𝑡𝑦𝑝𝑒, 𝑖𝑝⃗⃗ ⃗, 𝑐ℎ𝑒𝑐𝑘] (17)

𝑖𝑝⃗⃗ ⃗ ≝ [
𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑖ℎ𝑙, 𝑡𝑜𝑠, 𝑙𝑒𝑛, 𝑖𝑑, 𝑓𝑙𝑎𝑔, 𝑓𝑟𝑎𝑔, 𝑡𝑡𝑙

 , 𝑝𝑟𝑜𝑡𝑜, 𝑐ℎ𝑒𝑐𝑘, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑜𝑝𝑡, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑
]

(18)

Given that our objective is not to stress the networking
protocols but to point out the communications between the
virtual components, we abstract all network behavior that is not
directly related to the virtualization as non-observable
operations 𝜏.

The term 𝑣𝑆𝑤𝑖𝑡𝑐ℎ defined in (19) represents the
virtualization of the L2 switch. It is modelled as a congruency

𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗) ≝

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗ ⃗⃗ ⃗), 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)

 |
𝑎𝑑𝑟𝑖(𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗). 𝜏. 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑑𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 〈𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝𝑝𝑎𝑦𝑙𝑜𝑎𝑑〉

. 𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)

(19)

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑇𝑎𝑟𝑔𝑒𝑡, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗) ≝

 𝑐𝑛𝑡𝑙𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). 𝑇𝑎𝑟𝑔𝑒𝑡

|
𝑐𝑛𝑡𝑙𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). (𝜈 𝑝)

(𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗, (𝜈 𝑝), 𝑙𝑖𝑛𝑘, 𝑂))

(20)

𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗, 𝑝𝑜𝑟𝑡, 𝑖) ≝

[𝑖 = ‖𝑜𝑙𝑑⃗⃗⃗⃗⃗⃗ ‖](𝜆 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)𝑇𝑎𝑟𝑔𝑒𝑡

|
[𝑜𝑙𝑑𝑖 = 𝑝𝑜𝑟𝑡]

 𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗, 𝑝𝑜𝑟𝑡, 𝑖 + 1)

|𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑛𝑒𝑤⃗⃗⃗⃗⃗⃗ ⃗⃗ 𝑝̂𝑜𝑟𝑡, 𝑝𝑜𝑟𝑡, 𝑖 + 1)

(21)

between a control (20) that manage the VDRs connections and
a L2 network bridge.

The term 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 has three parameters, the first one is
higher-order called 𝑇𝑎𝑟𝑔𝑒𝑡 that is used to pass the terms
𝑣𝑆𝑤𝑖𝑡𝑐ℎ and 𝑣𝑅𝑜𝑢𝑡𝑒𝑟. The second is called 𝑐𝑛𝑡𝑙 and it is used
as a channel to control connections of the VDRs. The third one
the vector containing connected VDRs channels. The 𝑇𝑎𝑟𝑔𝑒𝑡
parameter is passed also to the term 𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡 defined in (21),

we use the abstraction 𝜆 to override the addresses vector 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗
that is still a free name in 𝑇𝑎𝑟𝑔𝑒𝑡 when a device is disconnected.

𝑣𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑝𝐴𝑑𝑟, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗) ≝

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (
𝑣𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑝𝐴𝑑𝑟, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)

 , 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗
)

|

| 𝑎𝑑𝑟𝑖(𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗). 𝜏.

(

[𝑖𝑝𝐴𝑑𝑟 = 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝𝑑𝑒𝑠𝑡]

 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑑𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 〉
+

𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝𝑑𝑒𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 〉)

 . 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗ 𝑙̂𝑖𝑛𝑘)

(22)

The term 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 defined in (22) represents the
virtualization of the L3 routing. It is modelled as a congruency
between a control (20) that manage the virtual switches nor
VDRs connections and a L3 network bridge. In this model, we
don’t illustrate some features like IP forwarding to keep our
definition clear.

The management of the networking infrastructure in exposed
as a part of the provisioning API. To do so, we illustrate in (23)
an extension of the term Provisioning defined initially in (13).

Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) ≝

(

…
…
…

|

𝑎𝑝𝑖𝑣𝑠𝐶𝑟𝑒𝑎𝑡𝑒
𝑝 (𝑟𝑒𝑡). (𝜈 𝑐𝑛𝑡𝑙)

(
𝜏. (𝜈 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)

| 𝑟𝑒𝑡̅̅ ̅̅ 〈𝑐𝑛𝑡𝑙〉
)

|𝑎𝑝𝑖𝑣𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡
𝑝 (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟). 𝜏. 𝑐𝑛𝑡𝑙𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑎𝑑𝑟)

|𝑎𝑝𝑖𝑣𝑠𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡
𝑝 (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟). 𝜏. 𝑐𝑛𝑡𝑙𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑎𝑑𝑟)

…)

. 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)

(23)

In (12), we describe the Switch related provisioning API, the

channel 𝑎𝑝𝑖𝑣𝑠𝐶𝑟𝑒𝑎𝑡𝑒
𝑝

 is used to create the virtual switch and return

the control channel 𝑐𝑛𝑡𝑙 to the initiator of the request. The
Router provisioning API is like the Switch one, the two

differences is that the 𝑎𝑝𝑖𝑣𝑠∗
𝑝

 channels are defined as 𝑎𝑝𝑖𝑣𝑟∗
𝑝

 and

the 𝑎𝑝𝑖𝑣𝑟𝐶𝑟𝑒𝑎𝑡𝑒
𝑝

 is used to create a virtual router, to keep our

definition clear, we omit this part of the definition.

The previous terms are formally defined in the objective to
model a new architecture of cloudlet. The definitions are useful
not only for this current work but also for all software researcher
in cloud computing domain.

IV. ARCHITECTURE

The definition presented in the previous section is made

based on the state-of-art regarding the MCC research [18] [19]
that converge into the Cloudlet-based MCC. The cloudlets are
defined as trusted and resource-rich network computers that
offer bridging capabilities to the Internet and is available for use
by nearby mobile devices through a direct and well-connection.
In this section, we describe our Cloudlet-based architecture by
illustrating some of the technical aspects that was abstracted in
the formal definition. We also link the technical implementation
with their correspondent formal model. Moreover, we introduce
our contribution to the migration pattern and stress the projection
of the ACID (Atomicity, Consistency, Isolation, and Durability)
properties from the formal model to the implementation model.

A. Cloudlet-based MCC

In our approach, we have identified the need of a set of rules
and regulations, as a protocol, which determine how data and
processes are transmitted between the different components of
the MCC. The Fig. 1 illustrate our vision of the MCC that is
composed by three layers: the first is the Device Layer (DL)
composed by physical sensor and mobile devices. The second is
the Cloudlet Layer (CL) that is composed from the network of
Cloudlets, each Cloudlet may contain the VDRs, Virtual Service
Representation (VSR), and local services. The third layer is the
Internet Layer (IL) composed by the central Cloud that contains
Cloud services and needed registries in addition to Internet
services like the media sensors.

Fig. 1. Global architecture

In the CL, we define a networking infrastructure based on
the NFV. As illustrated in Fig. 2, the device is connected to the
VDR through a vRouter defined in (22) and a vSwitch defined
in (19). The networking infrastructure is managed using the
cloud orchestrator API, in our implementation model, we use
OpenStack [20] that contains a powerful networking module
called Neutron. Is module is based on Open vSwitch [21]. This
implementation and provide a ReST [22] API for the creation

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑇𝑎𝑟𝑔𝑒𝑡, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗) ≝

 𝑐𝑛𝑡𝑙𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). 𝑇𝑎𝑟𝑔𝑒𝑡

|
𝑐𝑛𝑡𝑙𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). (𝜈 𝑝)

(𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗, (𝜈 𝑝), 𝑙𝑖𝑛𝑘, 𝑂))

𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗, 𝑝𝑜𝑟𝑡, 𝑖) ≝

[𝑖 = ‖𝑜𝑙𝑑⃗⃗⃗⃗⃗⃗ ‖](𝜆 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗)𝑇𝑎𝑟𝑔𝑒𝑡

|
[𝑜𝑙𝑑𝑖 = 𝑝𝑜𝑟𝑡]

 𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗ ⃗, 𝑝𝑜𝑟𝑡, 𝑖 + 1)

|𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑛𝑒𝑤⃗⃗⃗⃗⃗⃗ ⃗⃗ 𝑝̂𝑜𝑟𝑡, 𝑝𝑜𝑟𝑡, 𝑖 + 1)

and the managing of the provided virtual networking
infrastructure.

Fig. 2. Cloudlet structure and networking

B. Mobile application offloading

As a part of our contribution with the Mobile Oriented
Cloudlet Protocol (MOCP), the formal definition of this paper
focus on the communications especially used by the Core
MOCP for the migration of the Apps from the physical device
to the VDRs. Our implementation model, as illustrated in Fig. 3,
extends the formal definition in (6) by adding technical details
to the abstract definition. The two components of the VDR are
the Device Descriptor that is modelled by the 𝐷𝑒𝑣𝐼𝑑 in (5) and
the Virtual device is modelled in (8). The Backend app is
modelled as the higher-order parameter 𝐵𝑎𝑐𝑘𝐸𝑛𝑑𝑃𝑟𝑜𝑐 in (7).
The OSGi [23] container operations are considered as non-
observable operations.

Our offloading approach differs from the actual overlays
oriented [24] approaches. We consider the Backend application
as an ACID service that can migrate from one host to another
one. Our definition of the DVDR in (8) allows the ACID
properties by isolating the Backend app in an atomic process,
which runs that makes durable impact on the target VDR. These
properties are extended to the implementation model by using
the OSGi framework that isolates the class-loading inside the
JVM and guarantees a strict lifecycle of the Backend app bundle.
This lifecycle management guarantees the consistency of the
service execution. The Apache Felix [25] OSGi implementation
in used in our architecture due to an Android porting effort that
Apache has been supporting since the version 1.3. This
mechanism works with stateless Backend services that provides
a response after for the Frontend Cloudlet Android Application
Package (CAPK) request, and then requires no further attention.
Regarding the stateful Backend service where subsequent
Frontend CAPK requests depend on the results of the first
request, they are more difficulties to manage because a single
action typically involves more than one request. We thus need
another isolation level in top of the OSGi.

To address the issue of the state management, we use a
chroot of ArchLinux that provides an additional layer of
abstraction using the Docker package available with this
distribution. We are working on the integration of Docker on
Android to bypass the need of a chroot and to allow a native
isolation support on Android.

Fig. 3. DVDR implementation model

V. CASE STUDIES

Our case of study aims to show the structural congruence
between a Backend app offloaded in a VDR and the same
backend app running in the device. Our objective is to illustrate
that a Backend App (7) that runs in a VDR are identical up to
structure parallel composition to the Backend App which runs in
a mobile device. This result is obtained after the reduction of
both systems to an identical system.

A. Mobile device

We first define the terms 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑 which represents the
Frontend CAPK and 𝐵𝑎𝑐𝑘𝐸𝑛𝑑 which represents the Backend
app used in our study. Those terms are composing the mobile
devices defined in (26) and (27).

The term 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑, defined in (24), is a model of a “web
view” which sends messages to the Backend using the channel
𝑤𝑠, once the response received from the Backend, the Frontend
execute another iteration as a recursion. This term has also the
𝑡𝑜𝑢𝑐ℎ channel as parameter to communicate with the user
defined in (29).

𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑡𝑜𝑢𝑐ℎ, 𝑤𝑠) ≝ (𝜈 𝑐𝑏)

𝑡𝑜𝑢𝑐ℎ(𝑒𝑣𝑒𝑛𝑡). 𝜏. 𝑤𝑠̅̅ ̅̅ 〈𝑒𝑣𝑒𝑛𝑡, 𝑐𝑏〉

|𝑐𝑏(𝑟𝑒𝑠). 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑤𝑠)

(24)

The term 𝐵𝑎𝑐𝑘𝐸𝑛𝑑, defined in (25), react to the message
sent by the Frontend. If the abstraction 𝑖𝑛𝑡𝑟𝑎 binds to the same
channel as the parameter 𝑤𝑠, the Backend app is executed
locally to the mobile device. Else, the Backend send a message
containing a copy of itself to the corresponding VDR and
terminate the local execution. The execution continues into the
VDR after the offloading.

𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠) ≝ (𝜆 𝑖𝑛𝑡𝑟𝑎)

𝑤𝑠(𝑒𝑣𝑒𝑛𝑡, 𝑐𝑏). 𝜏

. (
[𝑖𝑛𝑡𝑟𝑎 = 𝑤𝑠]. 𝑖𝑛𝑡𝑟𝑎̅̅ ̅̅ ̅̅ ̅〈 〉

+ 𝑤𝑠̅̅ ̅̅ 〈𝐴𝑝𝑝((𝜆 𝑤𝑠)𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠))〉. ∅
)

|𝑖𝑛𝑡𝑟𝑎(). 𝜏. (𝜈 𝑟𝑒𝑠)𝑐𝑏̅̅ ̅〈𝑟𝑒𝑠〉

(25)

We define two parallel composition as models for the mobile
devices. The first mobile device is defined in (26) as the parallel
execution of a Frontend and a locally executed Backend. The

second mobile device is defined in (27) as the parallel execution
of a Frontend and a Backend which is configured to be offloaded
to the VDR.

𝐷𝑒𝑣𝑖𝑐𝑒𝑙𝑜𝑐𝑎𝑙(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ) ≝

𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑡𝑜𝑢𝑐ℎ, 𝑤𝑠)|(𝜆 𝑤𝑠)𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠)

(26)

𝐷𝑒𝑣𝑖𝑐𝑒𝑅𝑒𝑚𝑜𝑡𝑒(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ) ≝ (𝜈 𝑙𝑜𝑐𝑎𝑙)

(𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑡𝑜𝑢𝑐ℎ, 𝑙𝑜𝑐𝑎𝑙)|(𝜆 𝑙𝑜𝑐𝑎𝑙)𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠))

(27)

To keep the clarity of our specification, we omit the details
of the definition of the term 𝐴𝑑𝑚𝑖𝑛, we define just the signature
in (28). It is important to note that this term send all needed
messages using the vector 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ . It starts the networking
infrastructure and the VDRs.

𝐴𝑑𝑚𝑖𝑛(𝑤𝑠, 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) ≝ ⋯ (28)

The term 𝑢𝑠𝑒𝑟 defined in (29) represents a device user
executing a single action by sending an event to the Frontend
through the channel 𝑡𝑜𝑢𝑐ℎ that represents the device’s touch
screen. We have defined a simple action for the user to have a
system which can be reduced manually by a human is a
reasonable time slot.

𝑢𝑠𝑒𝑟(𝑡𝑜𝑢𝑐ℎ) ≝ (𝜈 𝑒𝑣𝑒𝑛𝑡)𝑡𝑜𝑢𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ 〈𝑒𝑣𝑒𝑛𝑡〉 (29)

B. Systems

To verify the structural congruence, we define two systems
as parallel composition of the mobile user, mobile device,
administrator, and the orchestrator. The term 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔
defined in (30) represents the system that will give raise to a
Backend offloading after some reductions.

𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 ≝ (𝜈 𝑤𝑠)

(

(𝜈 𝑡𝑜𝑢𝑐ℎ) (

𝑢𝑠𝑒𝑟(𝑡𝑜𝑢𝑐ℎ)

|𝐷𝑒𝑣𝑖𝑐𝑒𝑅𝑒𝑚𝑜𝑡𝑒(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ)
)

|(𝜈 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) (
𝐴𝑑𝑚𝑖𝑛(𝑤𝑠, 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)

|𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑜𝑟(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)
)

)

(30)

The term 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 defined in (31) represents the
system that initiate a Backend after some reductions.

𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 ≝ (𝜈 𝑤𝑠)

(

(𝜈 𝑡𝑜𝑢𝑐ℎ) (

𝑢𝑠𝑒𝑟(𝑡𝑜𝑢𝑐ℎ)

|𝐷𝑒𝑣𝑖𝑐𝑒𝑙𝑜𝑐𝑎𝑙(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ)
)

|(𝜈 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗) (
𝐴𝑑𝑚𝑖𝑛(𝑤𝑠, 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)

|𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑜𝑟(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗)
)

)

(31)

C. Structural congruence

We have performed some computations steps to fully to
reach a stable system starting from 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔. We call this
stable state reached after those reductions 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′ where

𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔
𝑡𝑜𝑢𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑒𝑣𝑒𝑛𝑡〉,…
→ 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′.

We have applied the operation to the 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙.
However, the reduction of this system is simpler by dint of no
offloading related reductions. Also, we obtain 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′

where 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙
𝑡𝑜𝑢𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑒𝑣𝑒𝑛𝑡〉,…
→ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′.

Only some bound names and non-observables actions
composes the difference between the two reduced systems. We
have thus find that 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′ ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′.

The structural congruence is commutative and associative.
We can then write:

given that 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′

and 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′

and 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′ ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′

then 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙

(32)

VI. CONCLISION AND FUTURE WORKS

In this paper, we present our formal definition of the MCC.
This specification focus on the communications interactions on
the MCC. Moreover, architectural aspects dedicated to the
realization of a MCC solution are described. The case studies
proof the structural congruence between offloading and local
execution of a mobile application and shows the transparency of
the offloading in our MCC system. On our future work, we will
focus on two aspects of the MCC. First one is a formal definition
of a metric to define a unit to measure the applications migration.
The second aspect is the definition of the data collection and
algorithm to calculate the application offloading cost.

DISCLAIMER

Any mention of commercial products or organizations is for
informational purposes only; it is not intended to imply
recommendation or endorsement by the National Institute of
Standards and Technology, nor is it intended to imply that the
products identified are necessarily the best available for the
purpose. The identification of any commercial product or trade
name does not imply endorsement or recommendation by the
National Institute of Standards and Technology, nor is it
intended to imply that the materials or equipment identified are
necessarily the best available for the purpose. Certain
commercial entities, equipment, or materials may be identified
in this document in order to describe an experimental procedure
or concept adequately. Such identification is not intended to
imply recommendation or endorsement by NIST, nor is it
intended to imply that the entities, materials, or equipment are
necessarily the best available for the purpose.

REFERENCES

[1] B. Varghese and R. Buyya, "Next generation cloud computing: New
trends and research directions.," Future Generation Computer Systems,
vol. 79, pp. 849-861, 2014.

[2] D. Sanderson, Programming google app engine: build and run scalable
web apps on google's infrastructure., O'Reilly Media, Inc., 2009.

[3] A. Hosseinian-Far, M. Ramachandran and C. L. Slack, "Emerging
Trends in Cloud Computing, Big Data, Fog Computing, IoT and Smart
Living," in Technology for Smart Futures, vol. 53, Springer, 2018, pp.
29-40.

[4] W. Geng, S. Talwar, K. Johnsson, N. Himayat and K. D. Johnson,
"M2M: From mobile to embedded internet.," IEEE Communications
Magazine, vol. 49, no. 4 , pp. 36-43, 2011.

[5] L. Liu, R. Moulic and D. Shea, "Cloud service portal for mobile device
management," IEEE 7th International Conference on e-Business
Engineering (ICEBE), pp. 474-478, 2010.

[6] D. Bartholomew, "Qemu a multihost multitarget emulator," Linux
Journal, no. 145, p. 3, 2006.

[7] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman and E. Y. Wang,
"Bringing virtualization to the x86 architecture with the original vmware
workstation," ACM Transactions on Computer Systems (TOCS), vol.
30, no. 4, p. 12, 2012.

[8] A. Velte and T. Velte, Microsoft virtualization with Hyper-V, McGraw-
Hill, Inc., 2009.

[9] B. Walters, "VMware virtual platform," Linux journal, vol. 63, p. 6,
1999.

[10] N. M. K. Chowdhuryr and R. Boutaba, "A survey of network
virtualization," Computer Networks, vol. 54, no. 5, pp. 862-876, 2010.

[11] J. Jiulei, L. Jiajin, H. Feng, W. Yan and S. Jie, "Formalizing Cloud
Service Interactions," Journal of Convergence Information Technology,
vol. 7, no. 13, 2012.

[12] C. Mahmoudi, Orchestration d'agents mobiles en communauté,
Universite Paris-Est Creteil, 2014.

[13] M. Ugo and S. Matteo, Network conscious pi-calculus, Pisa: Universita
di Pisa, 2012.

[14] A. Singh, C. Ramakrishnan and S. A. Smolka, "A process calculus for
mobile ad hoc networks," Science of Computer Programming, vol. 75,
no. 6, pp. 440-469, 2010.

[15] R. Milner, P. Joachim and W. David, "A calculus of mobile processes,"
Information and computation , vol. 100, no. 1, pp. 1-40, 1992.

[16] R. Milner, The polyadic π-calculus: a tutorial, Berlin Heidelberg:
Springer, 1993.

[17] T. Sridhar, L. Kreeger, D. Dutt, C. Wright, M. Bursell, M. Mahalingam,
P. Agarwal and K. Duda, Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks, IETF, 2014.

[18] H. T. Dinh, C. Lee, D. Niyato and P. Wang, "A survey of mobile cloud
computing: architecture, applications, and approaches.," Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587-1611,
2013.

[19] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R.
Chandra and P. Bahl, "MAUI: making smartphones last longer with code
offload," Proceedings of the 8th international conference on Mobile
systems, applications, and services, pp. 49-62, 2010.

[20] A. Corradi, M. Fanelli and L. Foschini, "VM consolidation: A real case
based on OpenStack Cloud," Future Generation Computer Systems, vol.
32, pp. 118-127, 2014.

[21] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen and S. Shenker,
Extending Networking into the Virtualization Layer., Hotnets, 2009.

[22] R. Fielding, "Representational state transfer," Architectural Styles and
the Design of Netowork-based Software Architecture, pp. 76-85, 2000.

[23] Alliance, OSGi, Osgi service platform, release 3, IOS Press, Inc., 2003.

[24] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti, "Clonecloud:
elastic execution between mobile device and cloud," Proceedings of the
sixth conference on Computer systems, pp. 301-314, 2011.

[25] Felix, Apache, "Apache Felix-welcome," Apache Software Fundation, 2
03 2018. [Online]. Available: http://felix.apache.org. [Accessed 2 03
2018].

