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Abstract—Within the Edge computing umbrella, mobile cloud 

computing is an emerging area where two trends come together to 

compose its major pillars. On one hand, the virtualization 

affecting the data centers hypervisors. On the other hand, device’s 

mobility, especially Smart Phones, which proved to be the most 

effective and convenient tools in human life. This emerging area is 

then changing the game in terms of mobility of workspaces and the 

interaction with the connected devices and sensors. This paper 

provides a formal specification of the Mobile cloud component 

using the π-calculus. The proposed model  defines the mobile cloud 

component, the virtual device representation, and interaction that 

leads to application offloading and device composition. This paper 

describe our contribution that enables the composition of virtual 

devices from physical devices, sensors, and actuators available on 

the network. Moreover, we present a model of application 

offloading and virtual devices networking on mobile clouds. Our 

architectural model is inspired from the Cloudlet based system. In 

addition to the formal specifications and architecture this paper 

presents a case studies showing the structural congruence between 

a locally executed application and an offloaded version of that 

same application.  

Keywords— formal definition; migration; mobile; mobile cloud 

computing; offloading; virtualization; virtual device representation, 

fog, internet of things 

I.  INTRODUCTION 

Mobile devices are increasingly having an essential usage in 
human life as the most effective and convenient communication 
tools. The unbounded time and place usage introduced by those 
devices allows mobile users to accumulate a rich experience of 
various services and applications. The execution of those 
services is not limited to the mobile device itself, more and more 
applications use nowadays remote servers via wireless networks 
to interact with services. Architectures based on the n-tiers 
computing have become a powerful trend in the development of 
IT technology as well as in the commerce and industry fields on 
mobile computing [1]. Such a systems can accept any (finite) 
number of layers (or tiers). Where each tier like presentation, 
application processing, and data management functions is 
physically separated from the others. 

However, mobile devices have considerable hardware 
limitations. Mobile computing faces many challenges in 
attempting to provide the various applications living on a single 
device with limited resources such as battery, storage, and 
bandwidth. Communication challenges like mobility and 
security arise too. Those challenges motivate the delegation of 
the resources-consuming application modules to remote servers 
using the cloud service platforms. Google offers one of the major 

solutions called AppEngine [2]. Such a solution is allowing 
developers without previous understanding or knowledge of 
cloud technology infrastructure to deploy services and use the 
cloud. These platforms execute the deployed services and 
expose them as a remote service. That enables delegation of 
massive computation pieces of the mobile software to the cloud 
infrastructure. 

As one component of the Edge computing, current mobile 
cloud architectures are based on cloud computing abstractions 
(IaaS, PaaS and SaaS) [3] and adapt this concepts for a 
deployement at the edge of the network. This architecture 
addresses the virtualization and distribution of the deployed 
services. However, the mobility aspect is not designed for the 
nomadic usage of mobile devices. The lack of specific 
formalism to address mobile virtualisation contribute to the 
heterogeneity of the actual solutions. Indeed, the virtualisation 
of devices and services is following the server architectures that 
are not suitable for the mobile platforms. This is due to the 
heterogeneity of the hardware architectures and the available 
resources. Another limitation is the lack of specific 
representation of the mobile devices on the cloud. The deployed 
services artefacts are a classical web service. There is no specific 
representation that makes abstraction for the application 
offloading and the location management. Moreover, using a 
generic representation makes the remote services 
implementations dependant of both the cloud platform and the 
devices capability. In term of development, this constraint 
implies that the software component developed as a remote 
cannot be reused in the client side. In addition, interfaces that 
exposes the same services may be deffirent from an 
implementation to an other.  

Our contribution aims to define an additional abstraction 
level on the cloud to specify a structure that represents mobile 
devices. It enables a common interface to communicate with 
differents devices like mobile devices, sensors and actuators. 
Communications addressed to the devices are translated to the 
specific protocols by this representation. And the responses are 
stored on a cache which is the virtual state of the device. This 
representation act also as a “mobile-friendly” platform within 
the cloud. Indeed, the representation is built on emulation 
capabilities that offer a compliant environment with the physical 
device on which the representation is associated. 

We distinguish three kinds of representations depending on 
their association (or not) with the physical devices. The first type 
of representations are those associated with simple sensors or 
actuators. They are the simplest forms for the representation 
where there act as a cached proxy with a common interface. The 



second type is the representations associated with the mobile 
devices. This representation offers offloading capabilities, and 
keeps a cached state of the differents sensors and actuators 
available on the mobile device. We consider this second type of 
representations as a composition of resources associated with a 
mobile device and it is not the exact image of the device. It can 
be used as an extension to the resources available locally on the 
device. The third type of representations have no direct 
association with a physical device. It is a composition of 
multiple representations. We define this representation as a 
composition of resources distributed over the network which 
transforms the mobile device into a sort of “super device” by 
eliminating the physical limitation. The composite 
representation adds smartness to the devices by enabling the 
composition of multiple devices in a smooth way. 

This paper describes, in Section II, the various challenges 
faced during virtualization and how they are addressed in work 
related work. We describe the existing cloud techniques that are 
useful for mobile cloud computing and presents the formalism 
efforts that are related to the differents virtualization aspects. We 
end this section with an introduction to the π-calculus which is 
the formalism used for our definition. In Section III, we expose 
our definition of the Virtual Device Representation(VDR) using 
a formal language and how we address the orchestration and the 
networking for these VDRs. In section IV, we will expose our 
proposed architecture for Mobile Cloud Computing (MCC) and 
the approach that we use in order to have a high performance 
mobile cloud network. The last Section describes a case study 
for an MCC platform highlighting the structural congruence 
between the system when a mobile application is running 
directly on the device and when this same application is 
offloaded to a mobile cloud. 

II. RELATED WORK  

A. Mobile Device Challenges 

The role of mobile devices has expanded into the modern 
workplace. Workplaces are not limited to the office and the 
warehouse anymore. They have expanded to include airport 
terminals, loading docks and delivery trucks, physician waiting 
rooms, and even playing fields and family gatherings. Mobile 
devices have erased workplace boundaries, and as a result, 
employees can connect with their corporate networks almost 
anytime, anywhere. 

With the emergence of Fog, the network connections 
between edge devices and the cloud are reconsidered as part of 
the computational processes being done close to the edge 
devices called edge computing. Mobile Cloud is one of the 
implementations of the Edge to incorporate the network needed 
to get processed data to its destination. The mobile technology, 
which is easing access to business data and applications is also 
providing various means of communications. These features 
continue to be embraced by users. For IT point of view, mobile 
technology and the unprecedented pace of change in the mobile 
arena will generate new IT management challenges. Indeed, as 
mobile innovation continues, machine-to-machine (M2M) 
connectivity (or Internet of Things) will further accelerate 
mobile opportunity [4] and transform how people, enterprises, 
and governments interact with the many aspects of modern life. 

Several trends -- and the way companies react to them -- will 
create challenges for IT, as organizations attempt to exercise 
some control over devices that are not necessarily designed to be 
secure and manageable. With careful planning and an 
understanding of best practices and Mobile Device Management 
(MDM) [5] options. IT can go a long way toward meeting those 
challenges. With a well-implemented MDM strategy, 
enterprises can enforce corporate security policies without 
stifling user productivity. 

B. Cloud and Virtualization 

The virtualization is used for abstracting the Operating 
System (OS) and applications from the physical hardware to 
build a more cost-efficient, agile and simplified server 
environment. There are two types of virtualization and many 
major uses of virtualization.  

1) Virtualization types  
Two kinds of virtualization are used to simulate the machine 

hardware and allow the execution of a guest OS. First is 
emulation where VM emulates (or simulates) complete 
hardware if the unmodified guest OS for a different PC cannot 
be run. There are some hypervisors specialized on “emulation” 
like Bochs, VirtualPC for Mac and Qemu [6]. Second is 
full/Native where VM simulates “enough” hardware to allow an 
unmodified guest OS to be run in isolation. This virtualization 
type requires that the same hardware CPU if used by the VM 
and the hypervisor. This type is supported also by many 
hypervisors like, VMWare Workstation [7] and Microsoft 
Hyper-V [8]. 

2) Virtualization usage 
By using virtualization, multiple VM instances containing 

operating systems can run on a single physical server or a single 
VM can use hardware from multiple physical servers, each with 
access to the underlying server's computing resources. The 
virtualization is used to addresses the resources waste caused by 
the fact that the host servers operate at less than 15 percent of 
capacity, leading to server sprawl and complexity. According to 
VMware statistics [9], virtualization can deliver 80 percent 
greater utilization of resources on the server and 10:1 or better 
server consolidation ratio.  

The objective of this kind of virtualization -- considered as a 
subset of server virtualization-- is to provide an abstraction of 
the networking resources into a logical model that have the same 
behavior as the physical resources. The virtual networking 
resources are divided in two categories: first is the physical 
resources virtualization like vRouter (Router) and vSwitch 
(Switch), the second is the resources appliances like FWaS 
(Firewall) and LBaaS (Load balancer). This network 
virtualization approach is called Network Functions 
Virtualization (NFV) [12]. It aims to consolidate and deliver the 
networking components needed to support a fully virtualized 
infrastructure and shared by multiple tenants in a secure and 
isolated manner. 

Existing efforts aims formalizing the cloud services 
interactions [10] and orchestration [11]. However, those efforts 
do not address the virtualization aspect of such cloud systems. 



C. Virtualization Formalizm 

In parallel with the pragmatic work on the networking, there 
is many existing efforts on the definition of formalism dedicated 
to networking. U. Montanari and M. Sammartino have worked 
on a proper extension [13] of the π-calculus. The resulting 
process calculi provide both an interleaving and a concurrent 
networking oriented semantics. A. Singh et al have also worked 
on an extension called ω-calculus [14] that formally modeling 
and reasoning about mobile ad hoc wireless networks. These 
works focus on the reasoning and the verification of the 
networking protocols and does not address the virtualization 
aspect. This lack of networking virtualization formalism 
motivates our high-level definition of network virtualization in 
the next section.  

III. VIRTUAL DEVICE REPRESENTATION 

In our approach, the VDR aims to address the mobile cloud 
computing virtualization paradigm. We have identified three 
types of VDRs, and each type has a specific role within the 
mobile cloud. 

1. Sensor VDR (SVDR): it represents a physical 
sensor or actuator within to the mobile cloud. 

2. Device VDR (DVDR): it represents a physical 
mobile device within to the mobile cloud. 

3. Composite VDR (CVDR): it represents a 
composition of SVDR, DVDR, and mobile cloud 
resources. 

In this section, we present the different aspects turning 
around the VDR by giving our definition of the VDR, a formal 
definition using the Higher-Order π-Calculus (HOπC) [15], 
stressing the orchestration mechanism for the VDRs, and the 
networking aspect. Our choice for the HOπC is motivated by the 
need of expressing the mobility of the VDRs in the mobile cloud, 
also the mobility of mobile applications between the physical 
devices and the VDRs. In our definition, we do not use the 
network related extensions of the π-calculus for two reasons: 
first, those extensions do not address the higher-order paradigm, 
next, there are designed to express networking protocols not the 
virtualization-oriented communication. 

A. Definition 

VDR is defined as composition of resources (CPU, RAM, 
and Storage), devices, and sensors. It is a software composite 
component that provides emulation of the behavior of the 
physical hardware that it represents.  

A VDR is a small VM instance used in cloud computing, 
typically hosting a mobile OS and exposing management 
services that emulate a display screen and/or a keyboard. As 
same as the physical handheld computing device that it 
represents, it can run various types of mobile applications 
(known as apps) and it have a network connection.  

A VDR can be associated to a physical device nor sensor in 
this case, a 1:1 association is control their interactions (ex: 
SVDR and DVDR). We call this category “Emulated VDR” A 
VDR can be free of any hardware association, in this case, it is 
a composed VDR (CVDR) that aggregates it components 
hardware associations and have then a 0:n association to the 

hardware devices. This category of VDR is called “Native 
VDR”. 

B. Formal Specification 

The VDR operates according to an event driven architecture. 
Every interaction is initiated by a message sent from a driver 
(further to hardware sensing activity) nor a service call. We 
define an event vector representing all interfaces of a VDR. This 
event vector, illustrated in (1) contains channels that are used to 
exchange messages 

𝑒𝑣⃗⃗⃗⃗ ≝ [𝑐𝑎𝑚𝑒𝑟𝑎𝑚 , 𝑚𝑖𝑐𝑟𝑜𝑛 ,  𝑛𝑓𝑐𝑜, 𝑘𝑒𝑦𝑏𝑜𝑎𝑟𝑑𝑝, … ] (1) 

The event vector 𝑒𝑣⃗⃗⃗⃗  is used only for the interactions between 
VDRs, the interactions between DVDR on one hand SVDR and 
the physical device on the other hand, are using a service based 
channel called 𝑤𝑠 that represents a web service based exchange. 

𝑉𝐷𝑅(𝑤𝑠⃗⃗⃗⃗  ⃗) ≝ 

(𝜈 𝑒𝑣⃗⃗⃗⃗ )  

(

 
 
 
 

(𝜆 𝑒𝑣⃗⃗⃗⃗  𝑤𝑠𝑖)𝑆𝑉𝐷𝑅
+

(𝜆 𝑒𝑣⃗⃗⃗⃗  𝑤𝑠𝑗)𝐷𝑉𝐷𝑅

+
(𝜆 𝑒𝑣⃗⃗⃗⃗ )𝐶𝑉𝐷𝑅

+
∅ )

 
 
 
 

  

 

 

 

(2) 

We define the generalization called 𝑉𝐷𝑅 as a 
nondeterministic choice between the three types of VDRs as 
illustrated in (2)   

The term 𝑉𝐷𝑅(𝑤𝑠⃗⃗⃗⃗  ⃗) have a vector 𝑤𝑠⃗⃗⃗⃗  ⃗ of web services 
channels as parameter, these channels are shared with the mobile 
cloud system and are transmitted to the specific VDRs to allow 
the communication with the physical devices. The term VDR 
creates a new 𝑒𝑣⃗⃗⃗⃗  vector containing the channels that are used to 
interface the specific VDRs. We benefit in the VDRs definition 
of the use abstractions where (𝜆 𝑒𝑣⃗⃗⃗⃗  𝑤𝑠𝑖)𝑆𝑉𝐷𝑅 is a natural way 
to write 𝑆𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠), and so on for the two other VDR types. 
The specific VDR is activated iff the corresponding element in 
the 𝑤𝑠⃗⃗⃗⃗  ⃗ vector is a valid channel and not an empty process ∅. 

The SVDR is activated behind the physical sensor 
connection event. Once connected, the physical sensor sends the 
identification data to the SVDR through the 𝑤𝑠 channel. This 
data is persisted inside the SVDR using the term 𝐷𝑒𝑣𝐼𝑑 defined 
in (5) that give back the identification data if requested through 
the right event channel. 

𝑆𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝ 

𝑤𝑠(𝑖𝑑). 𝜏. (
𝐷𝑒𝑣𝐼𝑑(𝑒𝑣𝑖 , 𝑖𝑑)

|𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠)
) 

 

(3) 

As illustrated in (3), the term 𝑆𝑉𝐷𝑅 uses the term 
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟 defined in (4) to dispatch the data perceived by 
the physical sensor using the event channel. At this level, we 
consider the mapping between the sensor and the matching 
channel as an invisible action represented by 𝜏. Two possible 
behaviors can be adapted by the term 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟 as 
illustrated in (4): if a Stop command (15) is received, the process 
will end, else, the dispatching action is executed. The parallel 
composition of the term 𝑆𝑉𝐷𝑅 allows the administrator to 



retrieve the VDR identifier using the environment channel 𝑒𝑣𝑖  
and don’t impact the execution of the virtual sensor. 

𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝ 

𝑤𝑠(𝑠𝑒𝑛𝑠). (
[𝑠𝑒𝑛𝑠 = 𝑆𝑡𝑜𝑝] 𝑆𝑡𝑜𝑝

+
𝜏. 𝑒𝑣𝑖̅̅ ̅̅ 〈𝑠𝑒𝑛𝑠〉. 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑆𝑒𝑛𝑠𝑜𝑟(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠)

) 

 

(4) 

𝐷𝑒𝑣𝐼𝑑(𝑟𝑒𝑞, 𝑖𝑑) ≝ 𝑟𝑒𝑞(𝑐𝑏). 𝑐𝑏̅̅ ̅〈𝑖𝑑〉. 𝐷𝑒𝑣𝐼𝑑(𝑟𝑒𝑞, 𝑖𝑑)  (5) 

Messages sent through the 𝑤𝑠 channel are initiated by the 
mobile device or the sensor. However, these messages are 
forwarded to the target VDR by the networking infrastructure 
defined in (19) and (22). 

The DVDR specification respects the same fundamentals as 
the SVDR. As illustrated in (6), it uses the term 𝐷𝑒𝑣𝐼𝑑 to persist 
and give back the device identifier and use term called 
𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒 to manage the virtual device behavior. 
However, the DVDR can run applications instead of SVDR that 
only proxy the sensor events.  

𝐷𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝ 

𝑤𝑠(𝑖𝑑). 𝜏. (
𝐷𝑒𝑣𝐼𝑑(𝑒𝑣𝑖 , 𝑖𝑑)

|𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠)
) 

 

(6) 

We need to dissociate between sensing events sent from the 
device embedded sensors and the application offloading 
requests. To do that, we define a type called 𝐴𝑝𝑝 (7) that 
encapsulate the offloaded application. 

𝐴𝑝𝑝(𝐵𝑎𝑐𝑘𝐸𝑛𝑑𝑃𝑟𝑜𝑐(𝑤𝑠)) ≝ 𝐵𝑎𝑐𝑘𝐸𝑛𝑑𝑃𝑟𝑜𝑐(𝑤𝑠) (7) 

We define in (8) the term 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒 that execute the 
offloaded application if need, else, it proxies the sensing data.  

𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠) ≝  

𝑤𝑠(𝑚𝑠𝑔).

(

 
 
 
 

[𝑚𝑠𝑔 = 𝑆𝑡𝑜𝑝] 𝑆𝑡𝑜𝑝
+

(

 𝑐𝑎𝑠𝑒 𝑚𝑠𝑔 𝑜𝑓             

∶ 𝐴𝑝𝑝(𝑃(𝑥)) ⇒ 𝑃(𝑥)

∶ 𝑚𝑠𝑔 ⇒ 𝜏. 𝑒𝑣𝑖̅̅ ̅̅ 〈𝑚𝑠𝑔〉

)                       

                        . 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ , 𝑤𝑠))

 
 
 
 

  

 

 

 

(8) 

We used to this definition the syntactic sugar introduced by 
R. Milner in [16] by using the “case of” instruction to distinguish 

between the offloading action represented by 𝐴𝑝𝑝(𝑃(𝑥)) and 

sensing actions. Where we run the higher-order parameter 𝑃(𝑥) 
within the DVDR on the offloading action, elsewhere, we proxy 
the message to the corresponding event channel as we do for 
SVDR. The service channel used for the communication 
between the physical device and the offloaded application is set 
as parameter 𝑥 before the offloading action, this channel is 
different from the service channel that connects the DVDR and 
the physical device. 

The CVDR in (9) have no direct association with a physical 
device, its interactions pass through a SVDR nor a DVDR. The 
term 𝐶𝑉𝐷𝑅 is defined as an aggregation of SVDR and DVDR 
that are sharing the same events vector. 

𝐶𝑉𝐷𝑅(𝑒𝑣⃗⃗⃗⃗ ) ≝ (𝜈 𝑖𝑑)   

𝐷𝑒𝑣𝐼𝑑(𝑒𝑣𝑖 , 𝑖𝑑)|𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ ) (9) 

A identifier is created the term 𝐶𝑉𝐷𝑅 and returned trough 
the right event channel 𝑒𝑣𝑖 .using the term 𝐷𝑒𝑣𝐼𝑑. 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ ) ≝ 

𝑒𝑣𝑖(𝑒 ). 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑒𝑣⃗⃗⃗⃗ ^𝑒 ) 

 

(10) 

The term 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒 defined in (10) is used to 
aggregate the events channels 𝑒𝑣⃗⃗⃗⃗  (the event channel associated 
with the actual 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝐷𝑒𝑣𝑖𝑐𝑒) and 𝑒  (the event channel 
associated with the VDR to add to this composition) using the 
concatenation operator ^.  

C. Orchestration 

In an MCC context, orchestration is the automation of the 
management and coordination tasks of the services and 
components. In addition to the interconnection processes 
running across heterogeneous systems, the localization of 
services is an important issue. Processes and VDRs must cross 
multiple organizations, systems and firewalls. 

The mobile cloud orchestration aims to automate the 
configuration, coordination and management of VDRs and 
VDRs interactions in such an environment. The process involves 
automating workflows required for the composition of VDRs 
and the offloading of mobile Apps. Involved tasks include 
managing virtualization and emulation in server runtimes, 
directing the communication flow of Apps among VDRs and 
dealing with exceptions to typical workflows. 

In our approach, the orchestrator is composed by three main 
components as illustrated in (11), we define these three 
components as common orchestration tasks: 1) Configuration 
where the cloud orchestrator manages the storage, compute, and 
networking. In this paper, we do not focus on the resources 
allocation algorithm (compute and storage), this aspect will be 
stressed in a future publication. A high-level specification of the 
networking mechanism is presented in the next sub section. 2) 
Provisioning where the cloud orchestrator manages the VDRs 
by providing the run, suspend, and terminate operations. 3) 
Security where the cloud orchestrator manages the monitoring, 
and reporting. We describe the details of this aspect also on a 
separate paper where we describe our implementation and 
detailed algorithms.  

In the term 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 in (12), we illustrate the use of 
the configuration 𝑎𝑝𝑖 that is used for the allocation of resources, 
the deallocation (free) of resources, and to suspend the 
execution. The 𝑎𝑝𝑖 is a vector in two-dimensional space. The 
contravariant indicates the target module (ex: 𝑎𝑝𝑖𝑐 where 𝒄 
stand for 𝑪𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛). The covariant indicates the service 
called within the module (ex: 𝑎𝑝𝑖𝑎  where 𝒂 stand for 
𝒂𝑙𝑙𝑜𝑐𝑎𝑡𝑒). The system administrator will use the vector 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗   

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) ≝  

𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑜𝑟(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) ≝  

𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ )|Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) 

|(𝜈 𝑑𝑎𝑡𝑎)𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ , 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

 

(11) 



(

𝑎𝑝𝑖𝑎
𝑐(𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒). 𝜏. (𝜈 𝑟𝑒𝑠)𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑟𝑒𝑠〉

|𝑎𝑝𝑖𝑓
𝑐(𝑓𝑟𝑒𝑒). 𝜏

        |𝑎𝑝𝑖𝑠
𝑐(𝑠𝑢𝑠𝑝𝑒𝑛𝑑). 𝜏

)  

. 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ )   

 

(12) 

The term Provisioning in (13) uses also an 𝑎𝑝𝑖 to ask the 
configuration module for resource allocation. Once allocated, it 
delegates the creation of the VDR to the term 𝑅𝑢𝑛 defined in 
(14). We use the abstraction of the resources information 
returned by the term 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 to communicate this 
information to the term 𝑅𝑢𝑛 that is preconfigured with the two 

parameters before its reception through the channel 𝑎𝑝𝑖𝑟
𝑝
.  

Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) ≝  

(

 
 
 
(
𝑎𝑝𝑖𝑟

𝑝(𝑅𝑢𝑛). (𝜈 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒)𝑎𝑝𝑖𝑎
𝑐̅̅ ̅̅ ̅̅ 〈𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒〉

              |𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑟𝑒𝑠). (𝜆 𝑟𝑒𝑠)𝑅𝑢𝑛( ) 
)

|𝑎𝑝𝑖𝑠
𝑝(𝑠𝑢𝑠𝑝𝑒𝑛𝑑). 𝑎𝑝𝑖𝑠

𝑐̅̅ ̅̅ ̅̅ 〈𝑠𝑢𝑠𝑝𝑒𝑛𝑑〉          

|(
𝑎𝑝𝑖𝑡

𝑝(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒). 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒(𝑤𝑠)

          . 𝑤𝑠̅̅ ̅̅ 〈𝑆𝑡𝑜𝑝〉. 𝑎𝑝𝑖𝑓
𝑐̅̅ ̅̅ ̅̅ 〈𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒〉

)
)

 
 
 

 

. Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) 

 

 

 

(13) 

The suspension is delegated to the term 𝐶𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
where it is represented as an invisible action 𝜏. The provisioning 
sends the term 𝑆𝑡𝑜𝑝 to the VDR to terminate its execution. We 
use for that the 𝑤𝑠 channel sent through the channel 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒. 

The term 𝑅𝑢𝑛 defined in (14) composes a vector depending 
on the type of the VDR that the initiator wants to create. After 
the creation of the VDR, it creates and sends a new identifier 
using the 𝑤𝑠 channel to start the new created VDR. 

𝑅𝑢𝑛(𝑤𝑠 , 𝑡𝑦𝑝𝑒⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗) ≝ 

𝜏. (

  [𝑡𝑦𝑝𝑒𝑣 = 𝑡𝑦𝑝𝑒𝑠] 𝑉𝐷𝑅(𝑤𝑠 ∅̂ ∅̂)

|[𝑡𝑦𝑝𝑒𝑣 = 𝑡𝑦𝑝𝑒𝑑] 𝑉𝐷𝑅(∅ 𝑤̂𝑠 ∅̂)

|[𝑡𝑦𝑝𝑒𝑣 = 𝑡𝑦𝑝𝑒𝑐] 𝑉𝐷𝑅(∅ ∅̂ ∅̂)  

)| (𝜈 𝑖𝑑)𝑤𝑠̅̅ ̅̅ 〈𝑖𝑑〉 

 

(14) 

𝑆𝑡𝑜𝑝( ) ≝ ∅ (15) 

To keep our definitions as clear as possible, we didn’t 
integrate the communications between the VDRs and the 
monitoring module defined in 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔. We can easily 
imagine that after each communication on the events vector 𝑒𝑣⃗⃗⃗⃗  
channels, an information must be sent to the monitoring module 
using the 𝑎𝑝𝑖𝑝𝑢𝑡

𝑚  channel. This information is stored in data 

vector 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ on the recursive call in (16) to the term 
𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔. 

𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ , 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) ≝ 

(
𝑎𝑝𝑖𝑝𝑢𝑡

𝑚 (𝑑𝑎𝑡𝑢𝑚). 𝜏. (𝜈 𝑖𝑑)𝑎𝑝𝑖𝑟𝑒𝑡
𝑚 (𝑖𝑑)

|𝑎𝑝𝑖𝑔𝑒𝑡
𝑚 (𝑖𝑑). 𝑎𝑝𝑖𝑟𝑒𝑠

𝑚 (𝑑𝑎𝑡𝑎𝑖𝑑)                  
) 

. 𝑀𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ , 𝑑𝑎𝑡𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑑̂𝑎𝑡𝑢𝑚) 

 

 

(16) 

D. Networking 

On our mobile cloud approach, multiple tenants can use the 
same physical infrastructure. The network virtualization 
simplifies the multi-tenancy. The shared infrastructure allows 

independence of the VDRs regarding the physical host on which 
it’s located. The VDR should be movable between the hosts 
based on the need. We commit our networking definition to 
allow VDRs across 2 different Layer 3 (L3) networks look like 
they are in the same Layer 2 (L2) domain.  

The proposed virtual networking model allows the 
provisioning module (13) to manage the virtual network 
component like a VDR and hide the complexity from the user. 
The model allows also to bypass the scale perspective 4096 
VLAN limit as proposed on VXLAN by the Internet 
Engineering Task Force (IETF) RFC 7348 [17]. Our model 
definition is composed from two terms: 𝑣𝑆𝑤𝑖𝑡𝑐ℎ defined in (19) 
and 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 defined in (22). 

For our network modelling, we define the structure of the 
packet transiting on the networking infrastructure. The vector 

𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   in (17) represents the L2 frame where the names 
𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑑𝑠𝑡  and 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑠𝑟𝑐 are the channels corresponding to 
the 𝑤𝑠𝑥  used by the VDRs in (2). 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝contains the 

information needed by the 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 and the message as 
𝑖𝑝𝑝𝑎𝑦𝑙𝑜𝑎𝑑. The names that composes the vectors in (17) and (18) 

are abbreviations of header fields of the packets as described in 
the IETF RFC 791. 

𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ≝ [𝑑𝑠𝑡, 𝑠𝑟𝑐, 𝑡𝑎𝑔, 𝑡𝑦𝑝𝑒, 𝑖𝑝⃗⃗  ⃗, 𝑐ℎ𝑒𝑐𝑘] (17) 

𝑖𝑝⃗⃗  ⃗ ≝ [
𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑖ℎ𝑙, 𝑡𝑜𝑠, 𝑙𝑒𝑛, 𝑖𝑑, 𝑓𝑙𝑎𝑔, 𝑓𝑟𝑎𝑔, 𝑡𝑡𝑙

             , 𝑝𝑟𝑜𝑡𝑜, 𝑐ℎ𝑒𝑐𝑘, 𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑜𝑝𝑡, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑
] 

(18) 

Given that our objective is not to stress the networking 
protocols but to point out the communications between the 
virtual components, we abstract all network behavior that is not 
directly related to the virtualization as non-observable 
operations 𝜏.  

 

The term 𝑣𝑆𝑤𝑖𝑡𝑐ℎ defined in (19) represents the 
virtualization of the L2 switch. It is modelled as a congruency 

𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ ) ≝  

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗ ⃗⃗  ⃗ ), 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ ) 

 |
𝑎𝑑𝑟𝑖(𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). 𝜏. 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑑𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 〈𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝𝑝𝑎𝑦𝑙𝑜𝑎𝑑〉

. 𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ )
 

 

 

(19) 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑇𝑎𝑟𝑔𝑒𝑡, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ ) ≝  

  𝑐𝑛𝑡𝑙𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). 𝑇𝑎𝑟𝑔𝑒𝑡  

|
𝑐𝑛𝑡𝑙𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). (𝜈 𝑝 )                                            

(𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗, (𝜈 𝑝 ), 𝑙𝑖𝑛𝑘, 𝑂 ))
  

 

 

(20) 

𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗, 𝑝𝑜𝑟𝑡, 𝑖 ) ≝ 

[𝑖 =  ‖𝑜𝑙𝑑⃗⃗⃗⃗⃗⃗ ‖](𝜆  𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗)𝑇𝑎𝑟𝑔𝑒𝑡                           

|
[𝑜𝑙𝑑𝑖 =  𝑝𝑜𝑟𝑡]                                                     

         𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗, 𝑝𝑜𝑟𝑡, 𝑖 + 1 )
 

|𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑛𝑒𝑤⃗⃗⃗⃗⃗⃗ ⃗⃗  𝑝̂𝑜𝑟𝑡, 𝑝𝑜𝑟𝑡, 𝑖 + 1 ) 

 

 

 

(21) 



between a control (20) that manage the VDRs connections and 
a L2 network bridge. 

The term 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 has three parameters, the first one is 
higher-order called 𝑇𝑎𝑟𝑔𝑒𝑡 that is used to pass the terms 
𝑣𝑆𝑤𝑖𝑡𝑐ℎ and 𝑣𝑅𝑜𝑢𝑡𝑒𝑟. The second is called 𝑐𝑛𝑡𝑙 and it is used 
as a channel to control connections of the VDRs. The third one 
the vector containing connected VDRs channels. The 𝑇𝑎𝑟𝑔𝑒𝑡 
parameter is passed also to the term 𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡 defined in (21), 

we use the abstraction 𝜆 to override the addresses vector 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ 
that is still a free name in 𝑇𝑎𝑟𝑔𝑒𝑡 when a device is disconnected.  

𝑣𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑝𝐴𝑑𝑟, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ ) ≝ 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (
𝑣𝑅𝑜𝑢𝑡𝑒𝑟 (𝑖𝑝𝐴𝑑𝑟, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ )        

                                         , 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ 
)        

|

| 𝑎𝑑𝑟𝑖(𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ). 𝜏.

(

 
 

[𝑖𝑝𝐴𝑑𝑟 = 𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝𝑑𝑒𝑠𝑡]

       𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑑𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉
+

𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡𝑖𝑝𝑑𝑒𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 〈𝑒𝑡ℎ𝑒𝑟𝑛𝑒𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  〉 )

 
 
 

                                             . 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ 𝑙̂𝑖𝑛𝑘 )

 

 

 

 

 

(22) 

The term 𝑣𝑅𝑜𝑢𝑡𝑒𝑟 defined in (22) represents the 
virtualization of the L3 routing. It is modelled as a congruency 
between a control (20) that manage the virtual switches nor 
VDRs connections and a L3 network bridge. In this model, we 
don’t illustrate some features like IP forwarding to keep our 
definition clear. 

The management of the networking infrastructure in exposed 
as a part of the provisioning API. To do so, we illustrate in (23) 
an extension of the term Provisioning defined initially in (13). 

Provisioning(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) ≝  

(

 
 
 
 
 
 
 

…
…
…

|

𝑎𝑝𝑖𝑣𝑠𝐶𝑟𝑒𝑎𝑡𝑒
𝑝 (𝑟𝑒𝑡). (𝜈 𝑐𝑛𝑡𝑙)                              

(
𝜏. (𝜈 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗)𝑣𝑆𝑤𝑖𝑡𝑐ℎ (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ )

| 𝑟𝑒𝑡̅̅ ̅̅ 〈𝑐𝑛𝑡𝑙〉                    
)   

            

|𝑎𝑝𝑖𝑣𝑠𝐶𝑜𝑛𝑛𝑒𝑐𝑡
𝑝 (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟). 𝜏. 𝑐𝑛𝑡𝑙𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑎𝑑𝑟)         

|𝑎𝑝𝑖𝑣𝑠𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡
𝑝 (𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟). 𝜏. 𝑐𝑛𝑡𝑙𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑎𝑑𝑟)

… )

 
 
 
 
 
 
 

 

. 𝑃𝑟𝑜𝑣𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑔(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) 

 

 

 

 

(23) 

In (12), we describe the Switch related provisioning API, the 

channel 𝑎𝑝𝑖𝑣𝑠𝐶𝑟𝑒𝑎𝑡𝑒
𝑝

 is used to create the virtual switch and return 

the control channel 𝑐𝑛𝑡𝑙 to the initiator of the request. The 
Router provisioning API is like the Switch one, the two 

differences is that the 𝑎𝑝𝑖𝑣𝑠∗
𝑝

 channels are defined as 𝑎𝑝𝑖𝑣𝑟∗
𝑝

 and 

the 𝑎𝑝𝑖𝑣𝑟𝐶𝑟𝑒𝑎𝑡𝑒
𝑝

 is used to create a virtual router, to keep our 

definition clear, we omit this part of the definition. 

The previous terms are formally defined in the objective to 
model a new architecture of cloudlet. The definitions are useful 
not only for this current work but also for all software researcher 
in cloud computing domain. 

IV. ARCHITECTURE 

The definition presented in the previous section is made 

based on the state-of-art regarding the MCC research [18] [19] 
that converge into the Cloudlet-based MCC. The cloudlets are 
defined as trusted and resource-rich network computers that 
offer bridging capabilities to the Internet and is available for use 
by nearby mobile devices through a direct and well-connection. 
In this section, we describe our Cloudlet-based architecture by 
illustrating some of the technical aspects that was abstracted in 
the formal definition. We also link the technical implementation 
with their correspondent formal model. Moreover, we introduce 
our contribution to the migration pattern and stress the projection 
of the ACID (Atomicity, Consistency, Isolation, and Durability) 
properties from the formal model to the implementation model. 

A. Cloudlet-based MCC 

In our approach, we have identified the need of a set of rules 
and regulations, as a protocol, which determine how data and 
processes are transmitted between the different components of 
the MCC. The Fig. 1 illustrate our vision of the MCC that is 
composed by three layers: the first is the Device Layer (DL) 
composed by physical sensor and mobile devices. The second is 
the Cloudlet Layer (CL) that is composed from the network of 
Cloudlets, each Cloudlet may contain the VDRs, Virtual Service 
Representation (VSR), and local services. The third layer is the 
Internet Layer (IL) composed by the central Cloud that contains 
Cloud services and needed registries in addition to Internet 
services like the media sensors. 

 

Fig. 1. Global architecture 

In the CL, we define a networking infrastructure based on 
the NFV. As illustrated in Fig. 2, the device is connected to the 
VDR through a vRouter defined in (22) and a vSwitch defined 
in (19). The networking infrastructure is managed using the 
cloud orchestrator API, in our implementation model, we use 
OpenStack [20] that contains a powerful networking module 
called Neutron. Is module is based on Open vSwitch [21]. This 
implementation and provide a ReST [22] API for the creation 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 (𝑇𝑎𝑟𝑔𝑒𝑡, 𝑐𝑛𝑡𝑙, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗ ) ≝  

  𝑐𝑛𝑡𝑙𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). 𝑇𝑎𝑟𝑔𝑒𝑡  

|
𝑐𝑛𝑡𝑙𝑑𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑙𝑖𝑛𝑘). (𝜈 𝑝 )                                            

(𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗, (𝜈 𝑝 ), 𝑙𝑖𝑛𝑘, 𝑂 ))
  

 

𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑇𝑎𝑟𝑔𝑒𝑡, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗, 𝑝𝑜𝑟𝑡, 𝑖 ) ≝ 

[𝑖 =  ‖𝑜𝑙𝑑⃗⃗⃗⃗⃗⃗ ‖](𝜆  𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗)𝑇𝑎𝑟𝑔𝑒𝑡                           

|
[𝑜𝑙𝑑𝑖 =  𝑝𝑜𝑟𝑡]                                                     

         𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑎𝑑𝑟⃗⃗⃗⃗⃗⃗  ⃗, 𝑝𝑜𝑟𝑡, 𝑖 + 1 )
 

|𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑒𝑐𝑡(𝑐, 𝑜𝑙𝑑⃗⃗⃗⃗ ⃗⃗ , 𝑛𝑒𝑤⃗⃗⃗⃗⃗⃗ ⃗⃗  𝑝̂𝑜𝑟𝑡, 𝑝𝑜𝑟𝑡, 𝑖 + 1 ) 

 



and the managing of the provided virtual networking 
infrastructure. 

 

Fig. 2. Cloudlet structure and networking 

B. Mobile application offloading 

As a part of our contribution with the Mobile Oriented 
Cloudlet Protocol (MOCP), the formal definition of this paper 
focus on the communications especially used by the Core 
MOCP for the migration of the Apps from the physical device 
to the VDRs. Our implementation model, as illustrated in Fig. 3, 
extends the formal definition in (6) by adding technical details 
to the abstract definition. The two components of the VDR are 
the Device Descriptor that is modelled by the 𝐷𝑒𝑣𝐼𝑑 in (5) and 
the Virtual device is modelled in (8). The Backend app is 
modelled as the higher-order parameter 𝐵𝑎𝑐𝑘𝐸𝑛𝑑𝑃𝑟𝑜𝑐 in (7). 
The OSGi [23] container operations are considered as non-
observable operations.  

Our offloading approach differs from the actual overlays 
oriented [24] approaches. We consider the Backend application 
as an ACID service that can migrate from one host to another 
one. Our definition of the DVDR in (8) allows the ACID 
properties by isolating the Backend app in an atomic process, 
which runs that makes durable impact on the target VDR. These 
properties are extended to the implementation model by using 
the OSGi framework that isolates the class-loading inside the 
JVM and guarantees a strict lifecycle of the Backend app bundle. 
This lifecycle management guarantees the consistency of the 
service execution. The Apache Felix [25] OSGi implementation 
in used in our architecture due to an Android porting effort that 
Apache has been supporting since the version 1.3. This 
mechanism works with stateless Backend services that provides 
a response after for the Frontend Cloudlet Android Application 
Package (CAPK) request, and then requires no further attention. 
Regarding the stateful Backend service where subsequent 
Frontend CAPK requests depend on the results of the first 
request, they are more difficulties to manage because a single 
action typically involves more than one request. We thus need 
another isolation level in top of the OSGi.  

To address the issue of the state management, we use a 
chroot of ArchLinux that provides an additional layer of 
abstraction using the Docker package available with this 
distribution. We are working on the integration of Docker on 
Android to bypass the need of a chroot and to allow a native 
isolation support on Android. 

 

Fig. 3. DVDR implementation model 

V. CASE STUDIES 

Our case of study aims to show the structural congruence 
between a Backend app offloaded in a VDR and the same 
backend app running in the device. Our objective is to illustrate 
that a Backend App (7) that runs in a VDR are identical up to 
structure parallel composition to the Backend App which runs in 
a mobile device. This result is obtained after the reduction of 
both systems to an identical system. 

A. Mobile device 

We first define the terms 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑 which represents the 
Frontend CAPK and 𝐵𝑎𝑐𝑘𝐸𝑛𝑑 which represents the Backend 
app used in our study. Those terms are composing the mobile 
devices defined in (26) and (27). 

The term 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑, defined in (24), is a model of a “web 
view” which sends messages to the Backend using the channel 
𝑤𝑠, once the response received from the Backend, the Frontend 
execute another iteration as a recursion. This term has also the 
𝑡𝑜𝑢𝑐ℎ channel as parameter to communicate with the user 
defined in (29). 

𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑡𝑜𝑢𝑐ℎ, 𝑤𝑠) ≝  (𝜈 𝑐𝑏) 

𝑡𝑜𝑢𝑐ℎ(𝑒𝑣𝑒𝑛𝑡). 𝜏. 𝑤𝑠̅̅ ̅̅ 〈𝑒𝑣𝑒𝑛𝑡, 𝑐𝑏〉 

|𝑐𝑏(𝑟𝑒𝑠). 𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑤𝑠) 

 

(24) 

The term 𝐵𝑎𝑐𝑘𝐸𝑛𝑑, defined in (25), react to the message 
sent by the Frontend. If the abstraction 𝑖𝑛𝑡𝑟𝑎 binds to the same 
channel as the parameter 𝑤𝑠, the Backend app is executed 
locally to the mobile device. Else, the Backend send a message 
containing a copy of itself to the corresponding VDR and 
terminate the local execution. The execution continues into the 
VDR after the offloading.  

𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠) ≝ (𝜆 𝑖𝑛𝑡𝑟𝑎) 

𝑤𝑠(𝑒𝑣𝑒𝑛𝑡, 𝑐𝑏). 𝜏 

. (
[𝑖𝑛𝑡𝑟𝑎 = 𝑤𝑠]. 𝑖𝑛𝑡𝑟𝑎̅̅ ̅̅ ̅̅ ̅〈 〉              

+ 𝑤𝑠̅̅ ̅̅ 〈𝐴𝑝𝑝((𝜆 𝑤𝑠)𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠))〉. ∅
) 

|𝑖𝑛𝑡𝑟𝑎( ). 𝜏. (𝜈 𝑟𝑒𝑠)𝑐𝑏̅̅ ̅〈𝑟𝑒𝑠〉  

 

 

(25) 

We define two parallel composition as models for the mobile 
devices. The first mobile device is defined in (26) as the parallel 
execution of a Frontend and a locally executed Backend. The 



second mobile device is defined in (27) as the parallel execution 
of a Frontend and a Backend which is configured to be offloaded 
to the VDR. 

𝐷𝑒𝑣𝑖𝑐𝑒𝑙𝑜𝑐𝑎𝑙(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ) ≝ 

𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑡𝑜𝑢𝑐ℎ, 𝑤𝑠)|(𝜆 𝑤𝑠)𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠)  

 

(26) 

𝐷𝑒𝑣𝑖𝑐𝑒𝑅𝑒𝑚𝑜𝑡𝑒(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ) ≝ (𝜈 𝑙𝑜𝑐𝑎𝑙) 

(𝐹𝑟𝑜𝑛𝑡𝐸𝑛𝑑(𝑡𝑜𝑢𝑐ℎ, 𝑙𝑜𝑐𝑎𝑙)|(𝜆 𝑙𝑜𝑐𝑎𝑙)𝐵𝑎𝑐𝑘𝐸𝑛𝑑(𝑤𝑠))  

 

(27) 

To keep the clarity of our specification, we omit the details 
of the definition of the term 𝐴𝑑𝑚𝑖𝑛, we define just the signature 
in (28). It is important to note that this term send all needed 
messages using the vector 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ . It starts the networking 
infrastructure and the VDRs. 

𝐴𝑑𝑚𝑖𝑛(𝑤𝑠, 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) ≝ ⋯ (28) 

The term 𝑢𝑠𝑒𝑟 defined in (29) represents a device user 
executing a single action by sending an event to the Frontend 
through the channel 𝑡𝑜𝑢𝑐ℎ that represents the device’s touch 
screen. We have defined a simple action for the user to have a 
system which can be reduced manually by a human is a 
reasonable time slot. 

𝑢𝑠𝑒𝑟(𝑡𝑜𝑢𝑐ℎ) ≝ (𝜈 𝑒𝑣𝑒𝑛𝑡)𝑡𝑜𝑢𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ 〈𝑒𝑣𝑒𝑛𝑡〉 (29) 

B. Systems 

To verify the structural congruence, we define two systems 
as parallel composition of the mobile user, mobile device, 
administrator, and the orchestrator. The term 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 
defined in (30) represents the system that will give raise to a 
Backend offloading after some reductions. 

𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 ≝ (𝜈 𝑤𝑠) 

(

 
(𝜈 𝑡𝑜𝑢𝑐ℎ) (

𝑢𝑠𝑒𝑟(𝑡𝑜𝑢𝑐ℎ)

|𝐷𝑒𝑣𝑖𝑐𝑒𝑅𝑒𝑚𝑜𝑡𝑒(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ)
)

|(𝜈 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) (
𝐴𝑑𝑚𝑖𝑛(𝑤𝑠, 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ )

|𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑜𝑟(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ )
)

)

  

 

 

(30) 

The term 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 defined in (31) represents the 
system that initiate a Backend after some reductions. 

𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 ≝ (𝜈 𝑤𝑠) 

(

 
(𝜈 𝑡𝑜𝑢𝑐ℎ) (

𝑢𝑠𝑒𝑟(𝑡𝑜𝑢𝑐ℎ)

|𝐷𝑒𝑣𝑖𝑐𝑒𝑙𝑜𝑐𝑎𝑙(𝑤𝑠, 𝑡𝑜𝑢𝑐ℎ)
)

|(𝜈 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ ) (
𝐴𝑑𝑚𝑖𝑛(𝑤𝑠, 𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ )

|𝑂𝑟𝑐ℎ𝑒𝑠𝑡𝑟𝑎𝑡𝑜𝑟(𝑎𝑝𝑖⃗⃗⃗⃗ ⃗⃗ )
)

)

   

 

 

(31) 

C. Structural congruence 

We have performed some computations steps to fully to 
reach a stable system starting from 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔. We call this 
stable state reached after those reductions 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′ where 

𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔
𝑡𝑜𝑢𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑒𝑣𝑒𝑛𝑡〉,…
→          𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′.  

We have applied the operation to the 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙. 
However, the reduction of this system is simpler by dint of no 
offloading related reductions. Also, we obtain 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′ 

where 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙
𝑡𝑜𝑢𝑐ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅〈𝑒𝑣𝑒𝑛𝑡〉,…
→          𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′.  

Only some bound names and non-observables actions 
composes the difference between the two reduced systems. We 
have thus find that 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′  ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′. 

The structural congruence is commutative and associative. 
We can then write: 

given that      𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′ 

and              𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′ 

and               𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔′  ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙′ 

then                𝑆𝑦𝑠𝑡𝑒𝑚𝑀𝑖𝑔 ≡ 𝑆𝑦𝑠𝑡𝑒𝑚𝐿𝑜𝑐𝑎𝑙 

 

(32) 

VI. CONCLISION AND FUTURE WORKS 

In this paper, we present our formal definition of the MCC. 
This specification focus on the communications interactions on 
the MCC. Moreover,  architectural aspects dedicated to the 
realization of a MCC solution are described. The case studies 
proof the structural congruence between offloading and local 
execution of a mobile application and shows the transparency of 
the offloading in our MCC system. On our future work, we will 
focus on two aspects of the MCC. First one is a formal definition 
of a metric to define a unit to measure the applications migration. 
The second aspect is the definition of the data collection and 
algorithm to calculate the application offloading cost. 

DISCLAIMER  

Any mention of commercial products or organizations is for 
informational purposes only; it is not intended to imply 
recommendation or endorsement by the National Institute of 
Standards and Technology, nor is it intended to imply that the 
products identified are necessarily the best available for the 
purpose. The identification of any commercial product or trade 
name does not imply endorsement or recommendation by the 
National Institute of Standards and Technology, nor is it 
intended to imply that the materials or equipment identified are 
necessarily the best available for the purpose. Certain 
commercial entities, equipment, or materials may be identified 
in this document in order to describe an experimental procedure 
or concept adequately. Such identification is not intended to 
imply recommendation or endorsement by NIST, nor is it 
intended to imply that the entities, materials, or equipment are 
necessarily the best available for the purpose. 
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