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Understanding the structure–function relationship of biomole-

cules containing DNA has motivated experiments aimed at

determining molecular structure using methods such as small-

angle X-ray and neutron scattering (SAXS and SANS). SAXS and

SANS are useful for determining macromolecular shape in solu-

tion, a process which benefits by using atomistic models that

reproduce the scattering data. The variety of algorithms available

for creating and modifying model DNA structures lack the ability

to rapidly modify all-atom models to generate structure ensem-

bles. This article describes a Monte Carlo algorithm for simulat-

ing DNA, not with the goal of predicting an equilibrium

structure, but rather to generate an ensemble of plausible struc-

tures which can be filtered using experimental results to identify

a sub-ensemble of conformations that reproduce the solution

scattering of DNA macromolecules. The algorithm generates an

ensemble of atomic structures through an iterative cycle in

which B-DNA is represented using a wormlike bead–rod model,

new configurations are generated by sampling bend and twist

moves, then atomic detail is recovered by back mapping from

the final coarse-grained configuration. Using this algorithm on

commodity computing hardware, one can rapidly generate an

ensemble of atomic level models, each model representing a

physically realistic configuration that could be further studied

using molecular dynamics. VC 2016 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24474

Introduction

The conformation and dynamics of DNA directly impact bio-

logical processes at a fundamental level, but there are few

methods to rapidly generate model structures that agree with

experimental measurements of DNA, thus limiting the under-

standing its structure–function relationship. Within eukaryotic

cells, DNA is packaged as chromatin, a DNA–protein complex

which serves to compact, organize, and protect DNA while

also modulating genetic expression. The nucleosome core par-

ticle (NCP) is the molecular building block of chromatin and is

composed of 147 base pair (bp) of DNA wrapped 1.67 times

around a symmetric octamer of histone proteins.[1] In a nucle-

osome array, each NCP is linked by 10–90 bp of DNA as

“beads-on-a-string”.[2] The structure and packaging of an array

of nucleosomes to form chromatin is critically important as it

determines the accessibility of the genetic code, and therefore

affects DNA-directed processes, including transcription, replica-

tion, recombination, and repair.[3,4]

Despite decades of effort to reveal chromatin structure–func-

tion relationship, the structure of chromatin and its connection

to gene regulation remains an active area of research.[4] Efforts

to determine the structure of chromatin using X-ray crystallog-

raphy have led to atomic models for systems as simple as a

bare DNA double helix,[5,6] and as complicated as a NCP[7–9] and

short arrays of nucleosomes.[10,11] Cryo-electron microscopy

experiments have begun to expand these results to additional

nucleosome array constructs.[12] While much has been learned

by studying NCPs and nucleosome arrays in these biologically

artificial environments, understanding the structure–function

relationship of chromatin in vivo requires experiments in solu-

tion. To date, efforts to identify model structures from solution

studies of nucleosomes and nucleosome arrays have been limit-

ed to qualitative comparisons,[13] or structure models generated

from dummy spheres,[14] manual modifications of atomic struc-

tures,[15] or by replacing nucleosome-bound DNA with linear

DNA fragments.[16] Robust structure models of these and other

nucleosome complexes require efficient simulation tools to

complement the experimental methods used; in this context, a

robust structure model refers to an atomic representation of a

physically realistic molecular structure.

Small-angle X-ray and neutron scattering (SAXS and SANS)

are well suited for studying a wide variety of DNA structures

in biologically relevant conditions. In small-angle scattering

(SAS) experiments, a beam of collimated radiation (photons or

neutrons) interacts with inhomogeneities in the sample. The

elastic scattering from these interactions encodes the temporal

and spatial average of the pair-distance distribution of atoms

within the sample. This ensemble average provides structural

information related to characteristic internal distances, as well

as the overall size and shape of the scattering particles, for

example, molecular weight, radius of gyration.

More detailed structural information can be extracted from

SAS data by matching theoretical scattering profiles from mod-

el structures to experimental scattering data. For many mole-

cules, or molecular subunits, atomic coordinates are available
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from X-ray crystallography measurements. Such atomic models

serve as a starting point for evaluating the differences

between the static and solution structures.[17]

To determine solution structures that have scattering pro-

files consistent with experiment, ensembles of robust macro-

molecular structures need to be rapidly generated and then

their theoretical scattering profiles must be compared to

experimental data. For systems containing regions of flexible

amino acid or single-stranded nucleic acid, given an all-atom

structure model of the system, the program SASSIE can be

used to rapidly sample the conformation of the flexible

regions to generate ensembles of structures.[18] No such tool

exists for rapidly generating configuration ensembles of B-

DNA, the native form of double-stranded DNA.

The various techniques currently used for modeling DNA

include user-directed modifications of all-atom models,[16,15,[19]

ab initio modeling using dummy spheres,[20,21] rigid body

modeling,[22,23] coarse-grained (CG) simulations,[24–37] and all-

atom molecular dynamics (MD).[38–44] Each of these modeling

techniques has different advantages and disadvantages, but

only CG and all-atom simulations incorporate physics of the

DNA molecule. While all-atom MD is the most exhaustive, the

large number of atoms in nucleosomes and nucleosome arrays,

over 25,000 atoms per nucleosome, make this method intracta-

ble using commodity hardware. MD simulations on high-

performance computing resources may not sample enough

configurations to find structures that match experimental results

in a reasonable amount of time. To overcome the limitation

caused by molecular complexity, CG simulations reduce the

degrees of freedom by replacing many atoms with a single CG

bead. Many of these models maintain the ability to simulate

DNA melting and hybridization while replacing each nucleotide

with as few as 6–7,[27,32,36] or even 3 CG beads.[25,28–30,33,34,37] Of

these, only those with 6–7 CG beads per nucleotide provide the

ability to map back from a CG representation to an all-atom

model after a simulation.[27,32,36] Though well suited for many

different purposes, none of these techniques offer the capability

to rapidly modify model structures thereby generating an

ensemble of structural configurations with atomic detail.

In this report, we present a Monte Carlo (MC) algorithm for

B-DNA, not designed for a priori structure prediction but for

rapidly generating ensembles of all-atom macromolecular struc-

tures to compare to experimental data. For nucleosomes and

nucleosome arrays, bending and twisting of B-DNA are the

dominant mechanisms for modifications of the macromolecular

structure. To simplify the simulations while allowing for B-DNA

bend and twist moves, we represent each DNA bp using a sin-

gle CG bead. This level of simplicity allows for a straightforward

implementation of MC sampling, a mechanism which typically

explores configuration space more rapidly than MD simulations

but for which there are few examples. To recover atomic detail

after performing CG MC sampling, our algorithm uses the final

orientation of each CG bead to reinsert the atoms of each bp.

The resulting model must then be energy minimized to elimi-

nate bond strains between the simulated base pairs.

To validate this algorithm, we compare resulting structural

metrics to both experimental and theoretical properties of B-

DNA. As CG moves create discontinuities in the resulting struc-

ture, we demonstrate that a short energy minimization relaxes

these discontinuities thereby producing robust atomic models.

We illustrate ensembles of structure models for a single nucleo-

some and a short array of nucleosomes, filtered against mock

experimental SAXS profiles. This method of filtering an ensem-

ble using experimental SAS data provides a powerful means to

determine the structures of DNA macromolecules in solution.

Methodology

In designing an algorithm for modeling DNA, our focus was to

rapidly generate atomic models that cover a wide range of

configurations while employing Metropolis Monte Carlo sam-

pling of DNA. The CG representation we use to achieve this

goal is based on the bead–rod model reported by Wang

et al.[31] which originates from the classical wormlike chain

model.[45] This simple model, illustrated in Figure 1, represents

DNA using N beads connected by N – 1 inextensible rods of

length l, for a total contour length, L5ðN21Þl. The energetics

of this model employs a bending penalty between adjacent

beads and an excluded volume repulsion between beads.

The bending energy, Ubend, is obtained by discretizing the

wormlike chain model:

Ubend5
kBT
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ou
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where kB is the Boltzmann constant, T is the temperature, Lp is

the experimentally determined salt dependent persistence

length of DNA (534 Å in 10 mM Na1,[46,47]) and uk is the unit

vector along the kth rod. The experimentally determined salt

dependent persistence length is a measure of the total persis-

tence length, which is the sum of the inherent and the elec-

trostatic persistence lengths.[48] Consequently, this bending

energy term accounts for the non-bonding electrostatic inter-

actions in addition to the bonded interactions of the DNA

molecule.

The energy term describing the excluded volume between

any two beads, i and j, separated by a distance rij, is repre-

sented using a Weeks–Chandler–Andersen (WCA) form of a

purely repulsive Lennard–Jones potential:

Figure 1. Illustration of the bead–rod model. The CG beads each have

width r and are connected by an inextensible rod of length l. The unit vec-

tor uk describes the orientation of the kth rod. The angle xk represents the

twist angle between beads k and k 1 1. This model builds on the bead–

rod model reported by Wang et al. [31] by allowing for DNA twisting. [Color

figure can be viewed at wileyonlinelibrary.com]
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where the bead width, r, determines the range of the interac-

tion. We fixed r5221=6l so UWCA applies only for rij < l.

Expanding on the bending energetics of the bead–rod mod-

el, we added a harmonic twist energy:

Utwist5
kBT

2
j
XN21

k51

ðxk2�xÞ2 (3)

where j50:0623ð1� Þ22 is the average twist force constant, xk

is the twist angle between base pairs k and k 1 1, and �x51

35:4
�

is the average twist angle.[49] Performing twist moves

based on this harmonic twist energy allows for increased con-

formational sampling while maintaining the appropriate major

and minor groove widths in simulated DNA.

Though this bead–rod model, with its typical level of granu-

larity, was originally developed for long DNA (L > Lp), we dem-

onstrate in this manuscript that with the addition of hard-

sphere (HS) potentials between CG beads and back-mapped

atoms it can also be used to simulate MC moves of short DNA

structures (L < Lp). Considering a nucleosome array as an

example, the conformation of each 10–90 bp of linker DNA

significantly change the overall scattering.[13] With such a short

region of flexible DNA, using one CG bead to represent each

bp maximizes the range of structures generated through MC

simulations. One CG bead for each bp translates to an average

rod length between beads of l53:38 Å, and a bead width of r
53:01 Å. As 3.01 Å is much smaller than the width of B-DNA,

the WCA energy term does not fully enclose all the atoms rep-

resented by each bead and is therefore not sufficient to pre-

vent overlap between atoms in the final all-atom structures.

We avoid such overlap using an additional steric HS potential

at both the CG and all-atom levels. At the CG level, we use a

HS diameter of 19 Å, corresponding to the atomic width of

B-DNA, but only apply this restriction to beads separated by at

least 6 beads, or roughly 20 Å in either direction along the

DNA chain. After reinserting the transformed all-atom group

back into the transformed configuration, we use a HS diameter

of 0.8 Å for each non-hydrogen atom.

Sampling bend and twist moves, this algorithm generates

an ensemble of all-atom structures using an iterative multi-

step process. Figure 2 illustrates this process for a 40 bp linear

DNA fragment containing 10 base pairs designated to be the

only flexible region. The algorithm randomly selects one of the

user designated flexible groups, replaces each flexible DNA bp

with a CG bead positioned at the bp reference frame origin,[50]

then stores the coordinates of the bp atoms with respect to

that reference frame. The algorithm then generates a new

structure for the flexible group by selecting a CG bead and

sampling a move about one of the three coordinate axes of the

DNA bp reference frame. All successive beads and any other

post atoms are transformed with respect to the move sampled.

This new group structure is accepted according to Maxwell–

Boltzmann statistics[51] using the energies in eqs. (1)–(3) and the

HS potentials to only accept structures for which no beads nor

atoms overlap. After a new group structure is accepted, the

algorithm recovers an all-atom representation for the flexible

DNA by reinserting the atoms for each CG bead according to

its new origin and orientation. A screened Debye–H€uckel poten-

tial is applied to this complete all-atom structure to account for

long range electrostatic interactions. As a last check, the algo-

rithm verifies that the coordinates of the altered group atoms

do not overlap with the other atoms in the complete molecule

before accepting the new configuration and proceeding to the

next iteration. This cycle of selecting a flexible group, coarse-

graining the flexible DNA, sampling MC moves, mapping back

to all-atoms, and then checking for overlap is repeated for the

Figure 2. Schematic of the DNA Monte Carlo algorithm. Illustration of MC

sampling for a 40 bp linear DNA segment with 10 base pairs of flexible

DNA. Each flexible bp is uniquely colored. Note that the bead width used

in the WCA energy, r53:01 Å, does not enclose the volume of the atoms

represented by each bead. Consequently, the resulting energies do not ful-

ly prevent overlap of atoms when recovering an all-atom representation

after CG moves. Such overlap is prevented by including a HS potential

between beads separated by more than 6 bp. This HS diameter is set at 19

Å, the atomic width of B-DNA. DNA structures rendered using VMD.[65]

[Color figure can be viewed at wileyonlinelibrary.com]
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designated number of trial steps. After the cycle completes, all

structures must be energy minimized to relax atomic bond

strains between flexible DNA base pairs.

A key part of this multi-step process is the mechanism of

representing a DNA bp using a single bead, then reinserting

the atoms from that bp back onto the bead after performing

MC sampling. This requires first determining the coordinates

of the atoms within each bp with respect to the standard

DNA bp reference frame, defined by Olson et al. as follows

(illustrated in fig. 1 of Ref. 50). In this reference frame, the

x-axis is the perpendicular bisector of the C10 . . .C10 vector

spanning the bp and points in the direction of the pseudo-

dyad axis of an ideal Watson–Crick bp. The y-axis runs parallel

to the C10 . . .C10 vector, points in the direction of the

sequence strand, and passes through the intersection of the x-

axis and the vector connecting the pyrimidine Y(C6) and the

purine R(C8) atoms. The z-axis is defined as the cross product

of the x and y axes, that is, z5x3y, and consequently points

along the 50 to 30 direction of the sequence strand. Once this

reference frame has been determined, a CG bead is placed at

the bp center. During the MC sampling process, both the

bead position and orientation are updated with each accepted

move. The final position and orientation are used to reinsert

the atoms for each bp after the MC sampling. Though this

produces complete atomic models, an unavoidable conse-

quence of performing CG moves is that atomic bonds

between DNA base pairs become compressed or extended. A

short energy minimization relaxes these strains. This CG then

reverse-CG process sufficiently reduces the complexity of per-

forming MC sampling thereby facilitating the rapid generation

of atomic models by varying the DNA structure in an energeti-

cally sampled manner.

Wall clock estimates using a standard desktop computer

indicate that, without energy minimization, the algorithm

would require 24 h to generate 430,000 different structures for

a 3800 atom 60 bp linear DNA model, and 700 different struc-

tures for a 107,000 atom model of an array of four nucleo-

somes (tetranucleosome). For these estimates, we designated

the middle 58 bp of the linear DNA as flexible and the five 20

bp linkers as flexible in the tetranucleosome model.

This algorithm, with the energy terms presented, is not pres-

ently suited to simulate A-DNA or Z-DNA. Implementing the

bending energetics described in eq. (1) requires that the bead

centers lie approximately on the line passing through the cen-

ter of the DNA chain. Unlike B-DNA, this is not the case for

A-DNA. To account for this spiral would require a different defi-

nition for the CG beads. While the bead centers for Z-DNA can

be approximated by the DNA center line, there are only limited

experimental measurements of the persistence length[52] and

the harmonic twist force constant. Consequently, we currently

only apply this bead–rod model to simulate B-DNA.

After applying this model to simulate B-DNA, evaluating

how well the generated structures represent experimental SAS

data requires calculating the theoretical scattering intensity

from each structure. In the simplified case of uniform scatter-

ing power of all atoms, the scattering intensity vs momentum

transfer (I(Q) vs. Q) is calculated using

IðQÞ54p
ð1

0

PðrÞ sin ðQ rÞ
Q r

dr (4)

where Q54psin ð#Þ=k, k is the incident (photon or neutron)

wavelength, 2# is the scattering angle, and P(r) is the pair-

distance distribution function describing the probability of

atoms being separated by a distance r. For the examples we

provide in Figures 8 and 9, we calculated the theoretical scat-

tering intensities using the open-source application FoXS,[53,54]

which calculates I(Q) in a two-step process. This application

first determines P(r) by explicitly calculating all the interatomic

distances and implicitly modeling the first hydration layer of

the molecule. It then performs a numerical integration at each

point in Q according to eq. (4).

Validation

A primary objective of this algorithm is to generate atomic

models of robust biological molecules which could then be

selectively studied further. Therefore, it is critically important

that the energetics, both bending and twisting, agree with

reported experimental results and accepted theory. To validate

the energetics of the MC sampling, we compared the structur-

al properties from simulation results to previous studies. Fur-

ther, we justified the process of energy minimizing the

reinserted atomic coordinates by comparing the dihedral

angles of resulting structures against those obtained using all-

atom MD simulations.

To validate the bending energetics in eqs. (1) and (2), we

performed MC simulations that only sampled bend moves (not

Figure 3. Bulk properties of the wormlike bead–rod model from DNA bend

moves. Comparison of the end-to-end distance, Re, and the radius of gyra-

tion, Rg, from simulations (blue and yellow symbols) versus the wormlike

chain theory[55] (lines) and experimental Rg measurements[56] (red circles).

The Re and Rg values are normalized by the DNA persistence length, Lp. To

validate the implementation of the energy terms in eqs. (1) and (2), these

MC simulations only allowed for bend moves. In these simulations, the

length between CG beads, l, was set at either 51.6 Å (blue), to reproduce

the results reported by Wang et al.,[31] or 3.38 Å (yellow) to correspond to

one bp per CG bead. Error values are smaller than the marker size. [Color

figure can be viewed at wileyonlinelibrary.com]
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allowing for twist moves) then calculated the root-mean-square

end-to-end distance, Re, and the radius of gyration, Rg. For these

simulations, we used two different sets of parameters for the rod

length between beads, l551:6 Å, in direct comparison to the

implementation of Wang et al.,[31] and l53:38 Å, to reproduce our

implementation of 1 bead for each DNA bp. As seen in Figure 3,

the results from the simulations using both conditions agree with

the accepted wormlike chain theory curves[55] and experimental

measurements[56] for DNA ranging in length from 265 Å, to 10,600

Å (0.5–20 3 Lp). Each calculated value represents the average of

over 300 configurations sampled every 105 steps after an initial

equilibration of 106 steps.

To validate our implementation of the twist energetics in eq.

(3), we performed a MC simulation sampling only twist moves

then calculated the mean twist angle and standard deviation

about that mean. Figure 4 shows the twist angles between 58

flexible DNA base pairs over 350,000 MC steps. Following an initial

equilibration of 1000 steps, we calculated the twist angle between

flexible base pairs after every 100 MC steps (gray dots). The mean

twist angle from our MC results, light blue, has an overall average

of 135:9
�
, a close match to the expected 135:4

�
used as the

equilibrium angle in the harmonic energy, and determined from a

crystal structure survey of DNA–protein complexes.[49] The solid

dark blue and dashed yellow lines respectively identify two stan-

dard deviations from the mean (2rSD) for our MC result and the

crystal structure survey. The smaller standard deviation seen for

MC generated structures indicates that j50:0623ð1� Þ22 is a con-

servative selection, well within the limits for B-DNA.

In addition to validating the DNA bend and twist energetics,

we also evaluated the ability of the algorithm to generate

Figure 4. Survey of simulated DNA twist moves. Each gray dot represents

the DNA twist angle, x, between two adjacent simulated DNA bp. At each

MC step the light blue shows the average twist angle, �x , and the dark

blue shows two standard deviations, 2rSD, from the mean. The dashed red

and yellow lines indicate �x and �x62rSD from a crystal structure survey.[49]

The �x in the simulated structures closely matches the crystal structures,

135:4
�
, while the distribution about the mean is tighter for simulated

structures. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5. Schematic of DNA illustrating the a, b, c, d, e, g, and v, dihedral angles. The separation between DNA bases is between the O30 atom of one base

and the P atom of the following base. CG MC moves strain this bond (dashed line) causing a distortion of the e, f, and a11 dihedral angles. Energy mini-

mization relaxes this strain.
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DNA structures which maintain the canonical structure of B-

DNA despite performing CG moves. The essential step that

relieves the strain caused by CG moves is energy minimization

of the final atomic structures. This strain occurs between the

O30 atom on one base and the P atom of the following base.

An ideal mechanism for evaluating the degradation caused by

this strain is an analysis of the three dihedral angles which

contain the O30–P bond, illustrated in Figure 5: e, f, and a11.

To determine the acceptable ranges for the DNA dihedral

angles, a, b, c, d, e, f, and v, we evaluated a 75 ns MD simula-

tion of a solvated and ionized 12 bp B-DNA model (PDB ID:

119D[57]). The MD simulation was run using NAMD[58] with the

CHARMM36 force field,[38] which is noted for its improved abil-

ity to reproduce experimentally observed sampling of the dif-

ferent conformations of B-DNA. Plots of each dihedral angle as

a function of time are shown in Supporting Information Figs.

10–16. Table 1 summarizes the resulting average dihedral

angles and their standard deviations together with these same

values from a survey of 34 B-DNA crystal structures.[59] We

note the consistency between the average angles from the

MD simulation and the crystal structure survey with the angles

from simulation having a larger standard deviation.

Equipped with the expected DNA dihedral angles from MD

simulations, we evaluated these same angles for a set of struc-

tures generated using our CG MC algorithm with a particular

focus on the angles containing the O30–P bond. For the start-

ing structure, we used a 60 bp linear DNA model generated

from a random sequence using the 3D-DART DNA structure

modeling server.[60] Using NAMD[58] with the CHARMM36 force

fields,[38] we prepared this model for simulations by perform-

ing 2000 energy minimization steps followed by 200 MD steps

(0.2 ps) then another 2000 energy minimization steps. After

this preparation process, all the model dihedral angles were

within two standard deviations of the mean values from MD

simulations, shown in Table 1. With this prepared starting

structure, we iteratively sampled MC moves, using select val-

ues for d#max, creating a trajectory containing over 1000 times

as many accepted steps as the number of flexible DNA bp. For

a sample structure generated using 71,000 MC steps, Figure 6

compares select scatter plots of DNA dihedral angles, before

and after energy minimization. The shaded regions show the

angles within two standard deviations of the mean; yellow

and red respectively represent BI and BII backbone conforma-

tions. Before energy minimization approximately 20% of the a,

e, and f dihedrals are beyond two standard deviations of the

mean, but after 2000 energy minimization steps only 3% are

beyond the same limit, an acceptable amount for a normal

distribution.

To evaluate how the percentage of dihedral angles within

the two standard deviation range changes as a function of the

number of MC steps, for each d#max trajectory we calculated

the dihedral angles from every hundredth structure. Figure 7

plots this percentage as a function of the number of MC steps,

comparing angles before (left) and after (right) the 2000 ener-

gy minimization steps. Note that for all three of the dihedrals

containing the O30–P bond, the percentage in range, regard-

less of the d#max used, are relatively indistinguishable after 200

MC steps per bp. Also, after energy minimization, for nearly

every structure all seven of the dihedral angles are within the

95% cutoff (dashed line) for a normal distribution. This demon-

strates that performing 2000 energy minimization steps suffi-

ciently relaxes the bond strain between stacked bases even

Table 1. Summary of DNA dihedral angles. Dihedral angles from a MD

simulation of a solvated and ionized B-DNA model, compared to those

from 34 B-DNA crystal structures.[59] The tabulated values show the

mean plus or minus one standard deviation. Subscripts differentiate BI

and BII conformations (and purine versus pyrimidine for vI).

Angle MD Crystal

a 300� 620� 298� 615�

bI 165� 624� 176� 69�

bII 152� 626� 146� 68�

c 52� 615� 48� 611�

dI 131� 621� 128� 613�

dII 136� 613� 144� 67�

eI 185� 620� 184� 611�

eII 247� 630� 246� 615�

fI 259� 622� 265� 610�

fII 182� 637� 174� 614�

vIpur
259� 616� 258� 614�

vIpyr
249� 622� 241� 68�

vII 272� 616� 271� 68�

Figure 6. Raw versus energy minimized dihedral angles. Scatter plots of

the DNA dihedral angles between adjacent DNA bp. These angles were

extracted from a 60 bp DNA model after each of the flexible bases had

experienced an average of 1233 MC steps using d#max510
�
. The red and

yellow patches respectively show the two standard deviation ranges for BI

and BII DNA, based on MD simulation results (Table 1). [Color figure can

be viewed at wileyonlinelibrary.com]
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after performing 1000 MC steps per flexible bp, with a maxi-

mum d# � 60
�
.

In exploring energy minimization, we recognized that an

excessive number of minimization steps lead to degradation of

the DNA molecule, as noted in the literature.[61] To investigate

this degradation, we iteratively performed 2000 energy mini-

mization steps on the 3D-DART linear DNA without performing

any MC simulations. DNA degradation was not apparent from

evaluating the dihedral angles as a function of the number of

energy minimization iterations, Supporting Information Fig. 17,

but was visually apparent after as few as 10 iterations, or

20,000 total energy minimization steps. This degradation

results in a collapse of the DNA minor groove. Calculating the

root-mean-square deviation (RMSD) provided a better measure

for ensuring that the number of energy minimization steps

was not excessive. The RMSD was 0.35 after one iteration but

increased from 2.3 after 10 iterations to 6.7 after 80 iterations.

Based on these validations, the recommended protocol to

produce robust atomic structures, given a robust starting

structure, is to perform up to 1000 MC steps per flexible bp

Figure 7. Percentage of DNA dihedral angles, before (left) and after (right) energy minimization, that are within two standard deviations of the mean,

based on MD simulation results (Table 1). This percentage is shown as a function of the number of accepted MC steps normalized by the number of flexi-

ble base pairs. The dashed lines mark the 95% cutoff for the amount of dihedral angles that should be within two standard deviations of the mean. [Color

figure can be viewed at wileyonlinelibrary.com]
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followed by 2000 energy minimization steps. This means that

when using a structure from a previous MC simulation as the

starting structure for another MC simulations, one should use

the non-minimized structure to avoid excessive minimization,

which leads to deformation of the DNA major and minor

groove. Additionally, in this situation, one should reduce the

total number of MC steps simulated by the number of MC

steps already performed, as we have only verified up to 1000

MC steps per flexible bp. After completing the MC simulations,

2000 energy minimization steps should be performed on each

structure to relieve the strain caused by CG moves. Subse-

quently, structures with theoretical scattering profiles that

matches an experimental data set can be further studied using

MD simulations.

A web server hosting this MC algorithm is freely available at

https://sassie-web.chem.utk.edu/sassie2/. Table 2 contains a

summary of the simulation parameters used for this server

and the following examples. The “Standard Operation” values

are those used in the validation of the algorithm and thus are

the values users should use when performing B-DNA simula-

tions. The “Advanced Inputs” are settings users can adjust to

tune the bend and twist energetics to the experimental condi-

tions they want to simulate. The “Internal Parameters” are val-

ues fixed within our implementation of this model. Using

these parameters, the MC sampling algorithm provides rapid

configuration space coverage reserving local configuration

space exploration to more computationally expensive MD

simulations.

Examples

We provide two examples to demonstrate the application of

this algorithm. The first simulates flexible DNA tails of a NCP,

and the second simulates flexible linker DNA between an array

of four nucleosomes (tetranucleosome). These examples not

only exhibit the creation of an ensemble of structures but also

filtering that ensemble against mock experimental data.

We chose these examples because they correspond to two

areas of active investigation, DNA breathing and unwrapping

from a NCP[15,62], and the configuration of a short array of

nucleosomes.[10–[13] For the NCP, we designated 30 bp on

each end to be flexible (in Figs. 8d and 8e, the flexible DNA

is contained inside the white isosurface). For the tetranucleo-

some, we designated each of the three 20 bp linker DNA

fragments to be flexible (in Figs. 9d–9k, the linker DNA is the

DNA between nucleosomes) and also roughly 20 bp before

the first and after the last nucleosome. For both the NCP and

tetranucleosome examples, all proteins and any DNA not

designated as flexible were considered rigid bodies through-

out the simulations. The atomic coordinates for the starting

structures were based on the crystal structures of the 1KX5

NCP[8] and the 1ZBB tetranucleosome.[11] These starting

structures were prepared for MC simulations in the same

manner as the 60 bp linear DNA model used for the dihedral

angle verification, using 2000 energy minimization steps fol-

lowed by 200 MD steps and then another 2000 energy mini-

mization steps.

To create mock experimental data for both the NCP and tet-

ranucleosome examples, we performed a separate MC simula-

tion on each initial structure and selected a random resulting

structure as the goal configuration. We then calculated the

theoretical scattering profile from the selected structure using

FoXS.[53,54]

The discrepancy between the SAXS profiles from the model

data, Im, and the mock experimental data, Ie, was quantified

using the R-factor, defined as

R5

XN

i51

jIeðQiÞ2c ImðQiÞj

XN

i51

jIeðQiÞj
(5)

summing over N points in Q, and scaling the data sets to

match at Q 5 0 using the scale factor c5Ieð0Þ=Imð0Þ. We do

not use the v2 statistic as we do not have an estimate of

experimental error.

Figures 8 and 9 respectively show the results from compar-

ing theoretical scattering profiles from 23,044 NCP structures

and 86,001 tetranucleosome structures with the mock experi-

mental data. In each figure, panel (a) shows a plot of the R-fac-

tor versus Rg for each structure with insets illustrating the

configurations with the best and worst discrepancy. Panel (b)

compares the experimental data with the calculated theoreti-

cal scattering from the best-matched, worst-matched, and

average of the 500 best matches. Panel (c) shows a conver-

gence analysis for the structure ensemble in both real space

and reciprocal space, with an inset comparing the spatial

range envelopes from the entire ensemble and from the sub-

ensembles of 500 best-matched structures. Panels (d) and (e)

show from two angles the spatial range of the best sub-

ensemble overlaid on an illustration of the structure with the

absolute smallest R-factor. This spatial range exemplifies the

extent of structures which represent mock experimental data

equally well. Panels (f )–(k) further depict the variance in best-

matched structures by showing three additional example

Table 2. Summary of operation and simulation parameters. The

“Standard Operation” values are based on the validations discussed and

should be followed when applying this algorithm. The “Advanced Inputs”

allow users to tune the energetics according to their experimental condi-

tions. The “Internal Parameters” are fixed parameters embedded in our

implementation of this model.

Default

Standard Operation

Maximum MC angle (d#max): 10�

MC steps before minimizing: � 1000 per flexible bp

Energy minimization procedure: 2000 steps

Advanced Inputs

DNA persistence length (Lp): 534 Å

Twist force constant (j): 0:0623ð1�Þ22

Internal Parameters

Granularity: 1 bp/bead

Rod length (l): 3.38 Å

Bead width (r): 3.01 Å

Mean twist angle (x): 35.4�
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structures randomly selected from the sub-ensemble of 500

best structures.

When creating an ensemble of structures, it is important to

consider when convergence has been reached, or when have

a sufficient number of structures been generated to sufficient-

ly sample the configuration space. To quantify the conver-

gence of an ensemble, we analyze each new structure and its

calculated scattering to determine how different it is from the

other structures in the ensemble, both in real space, and in

the reciprocal space of SAS. Figures 8c and 9c show the results

of this analysis for the NCP and tetranucleosome respectively.

For the real space analysis, we discretize all space into 5 Å vox-

els and for each structure count the number of new voxels

that are occupied by either an alpha carbon or a phosphate

atom. For the reciprocal space analysis, we first consider the

calculated scattering curves from all structures in the ensem-

ble to find the overall maximum, ImaxðQiÞ, and minimum,

IminðQiÞ, at each Qi point. We then discretize the possible IðQiÞ
between these extremum into Ng 5 100 grids. For each new

structure we bin the IðQiÞ values using

gðQiÞ5Round Ng
IðQiÞ2IminðQiÞ

ImaxðQiÞ2IminðQiÞ

� �
(6)

where gðQiÞ specifies the grid for each IðQiÞ value. After each

structure we count the total integer number of occupied grids.

For both methods, as more structures are generated, the num-

ber of occupied voxels and grids will eventually plateau indi-

cating the ensemble has reasonably explored possible spatial

configurations and IðQiÞ values. In our examples, both the NCP

and tetranucleosome ensembles are reasonably converged. We

further explored the spatial convergence of the individual

nucleosomes in the tetranucleosome array and found that

each nucleosome also demonstrates convergence (see Sup-

porting Information fig. 19).

In Figs. 8 and 9, plots of the spatial range envelopes, shown

as insets in panel (c) and also panels (d), and (e), allow one to

visualize the extent in space that is covered by the structure

ensembles. Envelopes of the best-matched sub-ensembles

identify the configuration range of the structures that have

scattering profiles that are consistent with the mock

Figure 8. Example NCP simulation. An example of filtering a structure ensemble of NCP models against mock SAXS data. (a) R-factor versus Rg for each

structure. Labeled insets illustrate the model structures with the best and worst R-factor. (b) mock SAXS data compared to the scattering profiles calculated

from the worst match (purple), best match (red), and average of the 500 best matches (green). (c) spatial (blue) and SAXS (red) convergence analysis for

the structure ensemble. The inset in (c) shows the spatial range envelope of the entire ensemble of structures (white) overlaid on the spatial range enve-

lope for the sub-ensemble of the 500 best-matched structures (red). Panels (d) and (e) show from two angles the spatial range envelope for the best-

matched sub-ensemble, overlaid on an illustration of the structure with the smallest R-factor. Panels (f )–(k) show three additional example structures from

the best-matched sub-ensemble. The view in (d), (f ), (h), and (j) is looking at a face of the NCP. The view in (e), (g), (i), and (k) is looking at the NCP dyad.

NCP structures rendered using VMD.[65] [Color figure can be viewed at wileyonlinelibrary.com]
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experimental data. This viewing method can be used to visual-

ize the range of space occupied by different molecular

domains. We demonstrate this for the tetranucleosome exam-

ple, Fig. 9c, using separate colored regions to represent the

range of each nucleosome. Supporting Information Fig. 18 fur-

ther illustrates each of these separate regions for added clarity.

From these examples we obtained single structures and

sub-ensembles of structures with SAXS profiles that reproduce

the mock experimental data. We note that the number of rele-

vant constraints inherent in a SAS profile is largely unknown,

but it is generally accepted that the mathematical problem is

largely underdetermined. Such highly underdetermined prob-

lems can have an infinite number of solutions.[63] Thus, one

should be careful in choosing a single structure, or even a line-

ar combination of structures, as a definitive solution to the

problem. We submit that the plots of the spatial range of the

best-matched structure ensembles provide a conservative

method for representing the solution structures of molecules,

as molecules in solution adopt a wide range of configurations.

Conclusions

We have developed a MC algorithm to rapidly generate

ensembles of robust molecular structures of B-DNA. This algo-

rithm represents flexible DNA using a CG bead–rod model,

samples DNA bend and twist moves, then recovers an all-atom

representation based on the final CG configuration. To relax

strains of the O30–P bond between adjacent bases, the final

structures must be energy minimized. Our implementation of

this algorithm for ensemble modeling of experimental data,

rather than for equilibrium structure prediction, complements

the underdetermined nature of SAS experiments. We empha-

size the significant benefit this algorithm provides for model-

ing SAS experiments of nucleosomes, nucleosome arrays, and

other similar systems.

This algorithm effectively generates structures spanning a

wide range of configuration space in a rapid manner. This is

demonstrated by example simulations of NCP and tetranucleo-

some structures. These examples also demonstrate the process

Figure 9. Example tetranucleosome simulation. An example of filtering a structure ensemble of tetranucleosome models against mock experimental SAXS

data. (a) R-factor versus Rg for each structure. Labeled insets illustrate the model structures with the best and worst R-factor. (b) mock SAXS data compared

to the scattering profiles calculated from the worst match (purple), best match (red), and average of the 500 best matches (green). (c) spatial (blue) and

SAXS (red) convergence analysis for the structure ensemble. The inset in (c) shows the spatial range envelope of the entire ensemble of structures (left)

together with the envelope for the sub-ensemble of the 500 best-matched structures (right). As a reference point, each structure in the ensemble was

aligned using the second NCP in the array, illustrated with a blue protein core. The different colored regions indicate the range envelopes for the individu-

al NCPs, where red, yellow, and purple correspond to the range of NCP1, NCP3, and NCP4, respectively. Panels (d) and (e) show from two angles the spatial

range envelope for the best-matched sub-ensemble, overlaid on an illustration of the structure with the smallest R-factor. Panels (f )–(k) show three addi-

tional example structures taken from the best-matched sub-ensemble. The illustrated proteins are colored to match the spatial ranges shown in (c). The

view in (d), (f ), (h), and (j) is looking at a face of NCP2. The view in (e), (g), (i), and (k) is looking at a side of NCP2. Nucleosome array structures rendered

using VMD.[65] [Color figure can be viewed at wileyonlinelibrary.com]
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of filtering a structure ensemble against mock experimental

data. We recognize the bead–rod model in this algorithm only

allows for homogeneous DNA bending and therefore does not

explore locally complex configurations, including the potential-

ly significant possibility of DNA kinking and stretching.[64] Such

eccentricity can be explored by performing MD simulations on

select structures from the MC sub-ensemble best matched to

experimental data.

Keywords: structural biology � deoxyribonucleic acid � molecu-
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angle scattering � neutron scattering � X-ray scattering
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