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1. Introduction

Measurements of quantities with time-dependent values are 
becoming increasingly relevant in all areas of metrology4. 
We define a dynamic quantity as any quantity whose value 
varies with time in such a way that this time dependence 
must be taken into account to characterize the quantity to the 
accuracy desired. Measurements in which at least one of the 
involved quantities is dynamic are called dynamic measure-
ments. Dynamic measurements include a range of applica-
tions from single sensors to large networks, such as gas grids 
or electrical power grids; apply to a wide variety of physical 

quantities, such as pressure, force, or voltage; and cover  
timescales of variation from picoseconds to several minutes. 
For instance, measurements of mechanical quantities such as 
pres sure, force, torque, acceleration and vibration in automo-
tive and aerospace industries are usually taken under dynamic 
conditions [1, 2]. The same holds for measurements in the 
characterization of high-speed electronics [3, 4] or ultra-
sound devices [5, 6]. Despite the wide variety of applications, 
dynamic measurements share common mathematical struc-
tures in their measurement model. It follows that the chal-
lenges associated with their analysis are likewise overlapping. 
Nevertheless, current approaches for estimating measurands 
and their associated uncertainties differ significantly. A har-
monized treatment with uniform guidance capable of cutting 
across application domains is needed.
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The analysis of dynamic measurements is closely related 
to signal processing and system theory [7]. Thus, foundational 
elements of this theory are well-understood. The challenge for 
metrology lies in the adaptation of these methods, and more 
pointedly, in the development of statistical methods for the 
evaluation of measurement uncertainties [8]. In particular, the 
concept of uncertainty and its evaluation in signal processing 
differs from that in metrology outlined in the ‘guide to the 
expression of uncertainty in measurement’ (GUM) [9] and its 
supplements [10, 11]. For instance, in signal processing users 
are typically more interested in robustified methods than the 
evaluation of reliable statements of precision and accuracy, 
see, e.g. [12].

A common problem in the analysis of dynamic measure-
ments is that the measurement model is ill-posed. It follows 
that the estimation of the desired quantity is unstable in the 
presence of noise. Thus, in order to obtain a reasonable esti-
mate, one must introduce bias or prior knowledge into the 
estimation process, see sections 3 and 4. In mathematical and 
statistical analysis, the trade-off in which noise amplification 
is decreased at the expense of increased systematic error is 
known as regularization [13, 14]. The challenge for metrology 
lies in the corresponding assessment of the uncertainty 
contrib ution of this regularization. There are many approaches 
available in the literature that focus on carrying out regulariza-
tion, but there is yet a significant lack of guidance regarding 
the evaluation of associated uncertainty.

In this article we focus on differing approaches to the 
estimation of the measurand. We consider three practical 
case studies: dynamic calibration of micro-thrusters, meas-
urement of electrical pulses with dynamically calibrated 
sampling oscilloscopes and hydrophone measurements of 
pressure signals as generated by medical ultrasound devices. 
The three case studies cover a wide range of time scales and 
types of prior knowledge about the measurand. Thus, these 
examples can be considered as benchmark candidates for the 
development of a generic metrological treatment of regular-
ized deconvolution. In one case study the regularization is 
treated implicitly, one utilizes explicit statistical approaches 
and in the third example the aim is to explicitly take advan-
tage of prior knowledge about the measurand. The exam-
ples highlight that the treatment of regularization is strongly 
application dependent; an undesirable situation for generic 
guidance and the development of generic standard docu-
ments. In this regard, this paper represents an early step by 
gathering diverse applications to ensure that a suggested 
way forward is usable in a wide range of a metrological 
applications.

This paper is outlined as follows. Section  2 introduces 
the mathematical models considered and defines the esti-
mation problem. In section  3 the three case studies are 
presented together with their individual approaches to the 
regularization problem. Section 4 discusses some existing 
approaches to accounting for the regularization bias, and it 
delineates a research framework to address regularization in 
an application-independent manner. Finally, section 5 dis-
cusses several further challenges in metrology for dynamic 
measurements.

2. Deconvolution—an introduction

The analysis of dynamic measurements is closely related to 
analysis of measurement problems in signal processing. As 
a consequence, the vocabulary in this area of metrology is 
that of system theory and signal processing. For instance, the 
measurement device is considered as system and the quantities 
with time-varying values as signals. For many dynamic mea-
surement applications in metrology the system can be consid-
ered linear and time-invariant (LTI) in its working range. That 
is, the relationship between system H, input Y(t) and output 
X(t) satisfy

α β α β
τ τ
+ = +
− = −

H H H
H • •

Y Y Y Y
Y X

,1 2 1 2( ) ( ) ( )
( ( )) ( ) (1)

where α and β are scale factors and τ is an arbitrary time-shift. 
The first of the above equations represents linearity, and the 
second, time-invariance.

The system function H characterizes the dynamic behavior 
of the measurement system, and it can be given either as a 
transfer function in the Laplace domain
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a complex valued frequency response function H( f ) in the 
frequency domain, or as an impulse response function h(t) in 
the time domain5. For discrete-time systems, the z-transform 
is applied to the Laplace domain model (2) or an appropriate 
sampling applied to the frequency response or the impulse 
response function, respectively.

For LTI systems the mathematical relation between the 
measurand y and the (noise-free) measurement x is given by 
a convolution

( ) ( ) ( ) ( )( )∫= − = ∗
−∞

∞
x t h t s y s s h y td : . (3)

For causal LTI systems the upper-limit of integration is 
replaced by t as, in this case, h(t)  =  0 for t  <  0. In any event, 
by the Convolution Theorem of Fourier analysis, the represen-
tation of (3) in the frequency domain is given by multiplication

( ) ( ) ( )=X f H f Y f . (4)

This holds true for continuous as well as for discrete time LTI 
systems.

An example of convolution is shown in figure  1. The 
figure shows an input waveform or measurand (blue) and the 
output (red). In this example, the output is given by convolu-
tion of the input with a proposed input response function (not 
shown). One observes that the relatively featureless impulse-
like input is recorded as a damped, oscillatory waveform on 
the output of the measurement device. In engineering terms 
this is considered to be a consequence of the finite bandwidth 
of the measurement device.

5 Note, throughout we use small letters for time domain functions and 
capital letters for frequency domain functions, in line with standard signal 
processing literature, see e.g. [7]. This is in contrast to the GUM, which uses 
capital letters for random variables and small letters for their corresponding 
realizations.
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Estimation of the measurand requires deconvolution, 
which is well known to be an ill-posed inverse problem [13]. 
Analytically, this ill-posedness can be illustrated by consid-
ering the procedure in the frequency domain. Given H( f ) 
obtained by, for example, an independent calibration experi-
ment, and the measured response X( f ), one solves (4) for Y( f ) 
by simple division

( ) ( )
( )

=Y f
X f

H f
. (5)

The difficulty with (5) is that, for physical reasons, ( )| |H f  
decays to zero for large f  6. By contrast, noise in the meas-
urement entails that the spectrum of X( f ) is very broad. For 
example, in the case of additive white noise ( )| |X f  tends 
to a constant for large f. The consequence is that the quo-
tient (5) diverges at any frequency f for which ( )| | ≈H f 0 
and ( )| | >X f 0. Furthermore and unfortunately, the above- 
mentioned physical considerations effectively guarantee that 
such f will exist in abundance. That is, measurement noise 
and numerical noise in the measured signal x(t) are amplified 
strongly. In the language of statistical estimation theory, one 
has that while deconvolution (5) is the best linear unbiased 
estimate for the desired measurand, the variance is so large 
as to make Y( f ) unusable7. To rectify the situation, unbiased 
estimation has to be augmented in a reasonable way. In the  
literature this is known as regularization of the ill-posed 
inverse problem [14]. Considering the following case studies 
it is worth pointing out that, mathematically speaking, the role 
of y and h in (3) and (4) can be interchanged. For instance, in a 
calibration the system’s impulse response h can be determined 
from measurements of x and y by a deconvolution.

3. Case studies

We consider three practical case studies to illustrate appli-
cation of the convolution model (3). The case studies take  
different approaches to carry out deconvolution for estimation 
of the measurand, see table 1. The first case study relies on 
designing a digital filter in the frequency domain; the second 
case study considers deconvolution as a linear estimation 
problem; whereas the third example aims at deconvolution 
in the frequency domain. Similarly, each case study takes a  
different approach for the regularization of the ill-posed 
inverse problem of deconvolution. For each case study we 
briefly introduce the technical background and present the 
deconvolution and regularization approach.

Despite the diverse background of the applications, there 
is the underlying generic estimation problem of determining 
a trade-off between reduced variance and increased system-
atic error. That is, in all case studies the ill-posed estima-
tion problem requires some kind of regularization which in 
turn introduces a systematic error. The generic problem for 
the evaluation of uncertainty is thus the quantification of the 
uncertainty contribution of the systematic error introduced. 
An estimate of this error requires some prior knowledge about 
the measurand, which is still unusual for measurement anal-
ysis in metrology, see section 4.

3.1. Calibration of micro-Newton thrusters

So called micro-thrusters operate in the range from 0.1 μN 
up to 500 mN and are typically applied for spacecraft alti-
tude control, drag compensation and precise flight control [1]. 
In the application, a command signal is issued to the thruster 
which then generates a corresponding force signal. For precise 
flight control, the actual generated force signal for a known 
command signal has to be determined in a calibration before-
hand. The measurement principle for a traceable calibration 
of the forces generated by the thruster is based on a calibrated 
force actuator. This actuator aims at keeping the thruster in 
place on the thrust-balance assembly by generating forces 
itself. The force exerted by the thruster is the measurand and 
an unknown system input and the control signal issued to the 
force actuator is the system output, see figure 2. The control 
signal is modeled as a convolution of the thrust signal and the 
balance assembly response. A deconvolution then yields an 
estimate of the thruster force from the control signal.

Owing to the small forces generated by the thruster the  
calibration measurements are strongly affected by environmental 

Figure 1. Simulated example for a typical dynamic measurand with 
time-dependent input and output. The time-dependent deviations 
of the output are owing to the non-ideal dynamic behaviour of the 
measurement system.

Table 1. Comparison of the estimation approaches for the three 
case studies.

Example
Frequency  
range Deconvolution Regularization

Thrust balance ≈ 5 Hz Digital filter Visual  
inspection

Oscilloscope ≈ 40 GHz Linear estimation 
model

Data  
dependent

Hydrophone ≈ 40 MHz Division in  
frequation domain

Prior  
knowledge

6 Physically, the impulse response function is continuous as a function of 
time; therefore, its Fourier transform vanishes for large | |f .
7 As equation (3) is a linear operator, the best linear unbiased estimator 
is given by the pseudo-inverse applied to the measurement. This pseudo-
inverse is equivalent to the division shown in (5) restricted to f such that 

( )≠H f 0.
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noise. A reduction of measurement noise by simple low-pass 
filtering is not sufficient, because the required bandwidth of 
the filter would also deteriorate the measured signal. To this 
end, two parallel measurements are utilized as follows. The 
thrust-balance is equipped with two almost identical mechan-
ical assemblies. The measurement balance assembly (MBA) 
carries the thruster and a force actuator, whereas the tilt com-
pensation assembly (TCA) is equipped with a dummy and a 
force actuator. Thereby, the TCA is affected by the exact same 
environmental noise as the MBA.

The goal is then to utilize the measurement at the TCA 
to remove the environmental noise from the MBA meas-
urements. However, both measurements are affected by the 
dynamic behavior of the respective devices. That is, assuming 
that both setups are sensing the identical environmental noise 
process n(t), the measured output signal of the TCA setup is 
modeled as

( ) ( ) ( ) ( )( )∫= − = ∗
−∞

x t h t s n s s h n td .
t

TCA TCA TCA (6)

Similarly, with y(t) being the force generated by the thruster, 
the measured output at the MBA is given by

∫= − +

= ∗ +

−∞
x t h t s y s n s s

h y n t

d

.

t

MBA MBA

MBA

( ) ( )( ( ) ( ))

( ( ))( )
 

(7)

For both assemblies the measured output is thus a convolution 
of the signal of interest and the device’s impulse response. 
Although both, the TCA and the MBA, are mostly identically 
constructed, their dynamic behavior differs. That is, their 
impulse response and thus also their response to the noise pro-
cess n(t) are not identical. A utilization of the TCA for noise 
reduction in the MBA thus requires a deconvolution for both 
measurements beforehand.

The deconvolution approach utilized in this example is to 
design a digital filter

( ) =
∑

+∑
=

−

=
−

G z
b z

a z1
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N
k

k

k
N

k
kinv

0

1

b

a
 (8)

whose frequency response ( )ωG e j  ideally equals the reciprocal 
of the system’s frequency response ( )ωH j fs  with fs the sam-
pling frequency. Therefore, the system’s frequency response 

is determined using system identification, and the sought 
digital filter is then obtained by means of non-linear least-
squares adjustment of the filter coefficients [15]. Uncertainties 
associated with the frequency response values are prop-
agated to an uncertainty associated with the filter coefficients. 
Uncertainties associated with the deconvolution filter coeffi-
cients can be propagated to the corresponding estimate of the 
measurand either using closed formulas [16, 17] or a Monte 
Carlo method [18].

In an ideal noise-free scenario, the application of the 
obtained filter to the measured system output signal then pro-
duces the (discretized) system input signal

ˆ [ ] (( ) )( ) ( ( ))( ) ( )= ∗ ∗ = ∗ ∗ =y n h y g nT y h g nT y nT ,0 inv s inv s s
 (9)
with Ts the time domain sampling period. However, in prac-
tice the ideal inverse filter results in a strong noise amplifica-
tion, see figure 3. The compensation result has a flat frequency 
response amplitude, corresponding to an ideal dynamic 
behavior, whereas the result in the time domain does con-
tain almost only noise. Thus, the ideal inverse filter cannot 
be utilized to obtain a reasonable estimate of the system input 
signal.

In order to render the ill-posed estimation problem stable, 
some kind of regularization is required. In this example an 
additional low-pass filter is designed which aims at sup-
pressing high-frequency noise in the estimation process. The 
low-pass filter here was chosen as FIR-type filter with cut-off 
at 2 Hz, designed using a Kaiser window with length of 100 
samples and with a scaling factor of β = 8. That is, the ideal 
inverse filter is replaced by the deconvolution filter

( ) ( ) ( )=G z G z G z ,dec inv low (10)

and the application of the combined filter results in

ˆ[ ] (( ) )( )= ∗ ∗y n h y g nT .dec s (11)

In the frequency domain the compensation result has a 
flat frequency amplitude up to a certain frequency and goes 
to zero from there on owing to the low-pass filter glow. In the 
time domain the noise amplification is reduced significantly, 
see figure 4.

The design of the low-pass filter requires one to choose 
a suitable filter type, filter order and cut-off frequency. In 
particular the choice of the low-pass filter cut-off frequency 
introduces a bias to the estimation and controls the suppres-
sion of the frequency content of the estimated signal. Any 
choice >f 0cut  necessarily results in a systematic error in the 
estimate as it represents a deviation from the ideal inverse of 
the measurement equation, see figure  5. If this bias cannot 
be considered to be negligibly small, then the uncertainty 
contrib ution of the low-pass filter must be accounted for in the 
total uncertainty of the measurand. In this example the low-
pass filter cut-off frequency is typically chosen such that the 
obtained estimate of the measurand is close to that expected 
by the experimenter. The effect of the systematic error is then 
assumed to be negligible. However, an assessment of the  
systematic error requires some prior knowledge about the 
measurand itself is known, see section 4.

Figure 2. Working principle of the employed thrust balance. The 
force actuator acts as a compensation of the force generated by the 
thruster, and thereby provides an indication of the force generated.
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3.2. Sampling oscilloscope

Ultra-fast sampling oscilloscopes with a nominal bandwidth 
of over 100 GHz are ideal instruments for characterizing high-
speed electrical equipment, such as pulse generators, and for 
the measurement of high-speed waveforms. A quasi-dynamic 

approach to take the oscilloscope’s reaction time into account 
is based on the oscilloscope’s rise time. However, many 
examples have shown that such a single parameter device 
characterization is insufficient as it does not take into account 
the non-ideal dynamic behavior. Moreover, despite their 
small rise time of about 4–7 ps, ultra-fast sampling oscillo-
scopes are sometimes only marginally faster than the signals 
to be measured, making some kind of correction necessary 
[19]. When the influence of the oscilloscope is not taken into 
account, the obtained measurement result can lead to a wrong 
characterization of the device under test. For instance, an 
eye-diagram test for a pulse generator may give a false rejec-
tion of the generator owing to the dynamic behavior of the 
oscilloscope not taken into account. To this end, a full wave-
form approach is recommended which completely takes into 
account the non-ideal dynamic behavior of the measuring 
instrument. Therefore, the mathematical relation between the 
measurand ( ( ) ( ))= …y y t y t, , N

T
1  and the measured signal 

( ( ) ( ))= …x x t x t, , N
T

1  is considered to be modeled by

= +x Hy n (12)

with ( ( ) ( ))= …n n t n t, , N
T

1  the noise process and H the convo-
lution matrix calculated from the (discretised) oscilloscope’s 

Figure 3. Result of the application of the ideal inverse filter in the frequency domain (left) and the time domain (right).

Figure 4. Result of the application of the inverse filter together with the additional low-pass filter in the frequency domain (left) and the 
time domain (right).

Figure 5. Effect of the low-pass filter cut-off frequency on the 
estimation result.
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impulse response h(t) [7]. The noise process n is assumed to 
be normally distributed ( )Σ∼n N 0, n  with known covariance 
matrix Σn.

The mathematical relation (12) is a linear regression model 
with y being the vector of sought parameters. The best linear 
unbiased estimator (BLUE) for this regression problem is a 
weighted linear least-squares with solution given by [14]

( )Σ Σ= − − −y H H H x.T
n

T
n0

1 1 1 (13)

However, similar to the first case study, the ideal estimator 
results in a strong noise amplification, see figure  6. As in 
the previous case study, this noise amplification reflects the  
ill-posedness of deconvolution [13, 14].

In order to render the estimation of the measurand y 
stable, a bias has to be introduced to the unbiased esti-
mator (13) to reduce the variation in the estimated signal. 
One possible change to the estimator is to consider a 
smoothing penalty. For instance, with L the matrix rep-
resentation of the second-order finite difference operator 
( [ ])( ) ( ( ) ( ) ( ))∆ = − − + +x k x k x k x k T1 2 1 /L s

2, a regularized 
estimator can be derived as

ˆ ( )λΣ Σ= +λ
− − − −y H H L L H x,T
n

T
n

1 2 1 1 1 (14)

with λ denoting the so called regularization parameter. The 
larger λ the stronger the influence of the penalty L, and hence, 
λ controls the smoothness of the solution. For very small 
values of λ, the obtained estimate is still mostly covered 
by noise. In contrast, a large value of λ produces an overly 
smoothed estimate, see figure 7.

Many methods have been suggested in the literature to 
determine suitable values for λ based on an assumed statistical 
model for the measurement, see, e.g. [14, 20, 21]. Primarily 
these methods are heuristic and based on practical experi-
ence rather than a strict mathematical and statistical proof. 
For instance, a commonly applied approach is the so called 
L-curve method. It is based on the observation that when plot-
ting the generalized norm ( ∥ ∥Lx 2 ) of the regularized solution 

versus the norm of the corresponding residual for all valid reg-
ularization parameters, the resulting curve resembles the letter 
‘L’ and the optimal choice of the regularization parameter cor-
responds to the L-shape corner. The reasoning for this choice 
is that at the corner of the L-curve, the nature of the regulari-
zation changes from smoothing the estimate to reducing the 
residual and thus often provides a good compromise between 
the two parts. While many methods for choosing λ produce 
reasonably good estimates in specific scenarios, no method 
is provably ‘optimal’ for all cases. Moreover, all methods can 
fail completely when the underlying assumptions about the 
statistical model of the measurement are incorrect [21].

In any case, the regularization parameter introduces a sys-
tematic error to the estimation of the measurand whenever 
λ> 0. Thus, irrespective of the chosen method for the deter-
mination of an ‘optimal’ value for λ, the uncertainty contrib-
ution of the induced systematic error has to be taken into 
account. Currently, there is no generally applicable guidance 
for such analysis, see also section 4.

3.3. Hydrophones

Calibrated hydrophones are commonly utilized for precise 
measurements of technical and medical ultrasound fields. 
In particular for the characterization of medical ultrasound 
devices precise and reliable determination of positive and 
negative pressure peaks is required in order to ensure patient 
safety. The current standard practice in the analysis of hydro-
phone measurements is to consider the frequency response 
amplitude ( )=M H fawf  at a single frequency, the so called 
working frequency fawf. For hydrophones with sufficiently flat 
frequency response in the bandwidth of the measured ultra-
sound field this approach produces a reasonable estimate. 
However, for many practical ultrasound devices, hydrophones 
that satisfy this requirement are hardly available. Moreover, 
many hydrophones show non-flat frequency response ampl-
itude values even in their stated working range, see figure 8. 
To this end, the full frequency response of the hydrophone has 
to be taken into account [6, 22].

In this case study, the convolution is considered in the fre-
quency domain,

( ) ( ) ( )=X f H f Y f (15)

with Y( f ), X( f ) denoting the discrete Fourier transform (DFT) 
of the measurand and the indication, respectively. The ideal 
deconvolution is therefore given by

( ) ( )
( )

=Y f
X f

H f
. (16)

As observed previously, (16) results in significant noise ampli-
fication. To mitigate this issue, the deconvolution (16) is aug-
mented with a low-pass filter with frequency response L( f )

ˆ( ) ( )
( )

( )=Y f
X f

H f
L f . (17)

The associated time domain estimate of the measurand is cal-
culated using the inverse DFT [6, 23]. Similarly to the first case 
study, the amount of regularization is controlled mainly by the 

Figure 6. Deconvolution without regularization y0(t) as the result of 
the application of the best linear unbiased estimator (13). The black 
curve ( )∗y t  shows the true input signal for comparison.
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low-pass filter cut-off frequency. A small cut-off frequency results 
in overly smoothed estimates, whereas a large cut-off increases 
the noise content in the estimated waveform. The quantities of 
interest, the maximum and minimum in the estimated pressure 
versus time curve, depend nontrivially on the low-pass filter cut-
off frequency, see figure 9. Thus, the possible systematic error 
introduced by the low-pass filter has to be taken into account.

For the example considered here, the shape of the measured 
pulses in the characterization of ultrasound devices is typically 
known to some extent owing to the nature of the signals gen-
erated. For instance, very strong high frequency oscillations 
and signal overshooting as can be seen in figure 8 (right) for 
some hydrophone signals is not realistic for ultrasonic pressure 
waveforms. This could be employed for the design of the low-
pass filter. Moreover, such knowledge may be utilized to derive 
an estimate of the systematic error, see, section 4.

4. Regularization approaches for metrology

Since the deconvolution problem is an ill-posed inverse 
problem, a key task in the estimation is regularization and 
the evaluation of its uncertainty contribution. For metrology,  
a generic treatment of the regularization uncertainty at the 

level of the GUM would be favorable. A prerequisite of 
the application of the GUM is a model that accounts for all  
uncertainty sources. For ill-posed problems, and without 
incorporating additional information, such a model does not 
exist. Hence, GUM-compliant solutions always need to be 
application-dependent, making general guidance rather diffi-
cult. The here discussed examples provide three approaches to 
the regularization of the estimation problem, that differ in the 
kind of prior knowledge about the measurand and the corresp-
onding potential treatment of regularization uncertainty.

For the thrust-balance signal in section  3.1, assumptions 
about the smoothness of the measurand guide the choice of 
the low-pass filter. The design of a low-pass filter as a means 
for regularization is a common approach in signal processing. 
In fact, many classical approaches, such as Wiener deconvolu-
tion and Tikhonov regularization can be interpreted as gener-
alized low-pass filters in the following sense. Let us denote 
the frequency response of the regularized estimation kernel in 
a standardized, factored form by

( ) ( ) ( )= −G f H f R f1 (18)

where H( f ) is the frequency response of the LTI system and 
R( f ) is that of the regularizer. Regularization approaches are 
distinguished by their choice of R( f ), which may be viewed as 

Figure 7. Application of the regularized estimator with regularization parameter being λ too small (left) and too large (right).

Figure 8. Left: Calibrated frequency response amplitude for various hydrophones Right: Simulated application of all hydrophones to the 
exact same input to demonstrate the impact of the individual sensor characteristic on the measured signal.
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a generalized, low-pass filter. For example, the Wiener decon-
volution is given by

=
| |

| | +
R f

H f

H f N f Y f/

2

2
( )

( )
( ) ( ) ( )

with N( f ) the power spectrum of the assumed noise process 
and Y( f ) that of the measurand when interpreted as wide-sense 
stationary noise process, see [24]. Tikhonov regularization 
replaces the reciprocal signal-to-noise ratio in the denomi-
nator with a less-specific form, for example

( )
( )

( ) ( )λ
=

| |
| | + | |

R f
H f

H f L f

2

2 2 2

with L( f ) being, for instance, the frequency domain represen-
tation of the smoothness penalty. For both classical methods 
the resulting frequency response R( f ) resembles that of a low-
pass filter. In the thrust-balance example the regularizer R( f ) 
is chosen as a specific low-pass filter with cut-off frequency 
determined by expert knowledge about the smoothness, i.e. 
frequency content, of the measurand. Consequently, the 
resulting systematic bias introduced by the low-pass filter is 
assumed to be negligibly small compared to the other sources 
of uncertainty.

For the hydrophone example in section 3.3, the approach 
to regularization is also the design of a suitable low-pass filter. 
However, in this case, prior knowledge about the frequency 
content of the measurand is more specific than in the thruster 
application. This allows for a GUM-compliant evaluation 
of the uncertainty contribution of the regularization bias in 
the following way [25]. Assume that knowledge about the 
measurand is given by means of an upper bound B( f ) on the 
absolute value of its Fourier transform Y( f ), in other words, 

( ) ( )| | < | |Y f B f  for all real f. Then there exists an upper bound 
∆ such that

ˆ[ ] ( ) ⩽| − | ∆y n y nTs (19)

independent of n, with ˆ[ ]y n  the estimate of the measurand y(t) 
at time instant nTs with Ts the sampling interval length. That 
is, the upper bound for the magnitude of the Fourier spectrum 

is translated into an upper bound in the time domain, see [8]. 
In this way, knowledge about the measurand is applied to 
derive knowledge about the regularization error. According to 
GUM supplement 1 [10], this kind of knowledge is expressed 
in terms of a probability density function (PDF) by assigning 
a rectangular distribution to the regularization error

( ) /( ) ⩽
[ ]

⎧
⎨
⎩

δ δ= ∆ | | ∆
∆p

1 2
0 otherwise

.n (20)

It is worth noting, that this approach can also be employed to 
derive a low-pass filter cut-off frequency that yields minimal 
uncertainty [25].

Whereas the hydrophone and the thruster example use 
explicit prior knowledge about the measurand, the oscilloscope 
example aims at an objective data-driven method for the deter-
mination of the regularization parameter. Many approaches for 
this task can be found in the literature, although no method 
yields mathematically proven optimality. To some extent, the 
regularization parameter chosen by a data-driven method aims 
at balancing the amount of noise reduction and the size of the 
regularization bias. Prior knowledge is incorporated implicitly 
by the choice of the regularization operator, e.g. a smoothness 
operator. Depending on the statistics of the data, then a regu-
larization parameter value is determined to weigh the impact of 
the prior knowledge yielding a more objective result. However, 
some knowledge about the measurand is still required for the 
assignment of an uncertainty to the systematic error induced 
by the regularization process, unless its value can be assumed 
to be negligible compared to the other sources of uncertainty.

Bayesian inference allows for an incorporation of prior 
knowledge about the measurand in a probabilistic framework. 
The viewpoint on probabilities and the interpretation of prob-
ability density functions in the GUM is closely related to that 
in Bayesian statistics. However, the relation of a Bayesian 
inference to the framework of the GUM and its supplements is 
a topic of ongoing research in metrology. In a Bayesian infer-
ence, the prior distribution expresses one’s subjective belief 
about the measurand, which translates to a PDF assigned to 
the estimate of the measurand which expresses the (subjective) 
belief about its value. For instance, the approach taken for the 
oscilloscope example in section 3.2 can similarly be derived 
in a Bayesian framework when the data is normally distrib-
uted. If one assigns a multi-variate normal with mean zero and 
covariance L LT  as a prior distribution for the measurand, then 
Bayes’ rule yields a multivariate normal distribution for the 
measurand posterior. Under this interpretation, equation (14) 
in section 3.2 amounts to estimation of the measurand by the 
maximum posterior. Several approaches towards the deter-
mination of prior distributions that incorporate assumptions 
about signal smoothness can be found in the literature, see 
[26, 27] and references therein. Whereas the approach for the 
oscilloscope example aims at determining a value of the regu-
larization parameter λ from the observed data using heuristic 
methods, a Bayesian inference would employ prior elicitation 
methods. The resulting prior distribution then expresses the 
prior belief about the measurand, which propagates to a poste-
rior belief using Bayes’ rule. Consequently, there is no formal 

Figure 9. Illustration of the effect of the low-pass filter cut-
off frequency on the determined pressure peak values in the 
deconvolution of a pulse measured with the IP038 hydrophone.
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estimation bias to be determined. This is a conceptual advan-
tage of a (subjective) Bayesian inference, but requires great 
care regarding the choice of the prior distribution associated 
with the measurand in order to obtain reliable results.

Bayesian inference is a common regression approach used 
when prior knowledge about the sought parameter is avail-
able, see [28]. The common use case for Bayesian infer-
ence in regression entails estimating a parameter vector of 
small dimension. In the context of dynamic measurements, 
one may consider a parametric model of the measurand and 
infer its parameter values from the measured data. However, 
this model choice requires considerable prior knowledge and 
imposes significant structure in the resulting measurand. In 
many metrological applications this is not feasible. As an 
alternative, the discrete-time values of the measurand itself 
can be viewed as the parameters of interest. In principle, this 
allows the application of Bayesian regression using standard 
tools. However, in practice the huge dimensionality of the 
measurand poses significant challenges. First of all, reason-
able prior knowledge has to be formulated for each time 
instant at which the value of the measurand is considered. 
Secondly, the application of Bayesian regression in most cases 
requires numerical tools such as Markov Chain Monte Carlo 
(MCMC) [28]. These tools work very well for small dimen-
sions, but require an increased effort for increased dimension-
ality of the sought parameter vector. To this end, in some cases 
so-called conjugate priors can be employed that allow for an 
analytical treatment, i.e. without the need of MCMC. There 
is an ongoing discussion in the statistical literature about the 
consistency of Bayesian estimates when the dimensionality 
increases [8]. That is, the estimates may become inconsistent 
when the sampling frequency is increased. Another alterna-
tive is the application of non-parametric Bayesian inference, 
for instance by using penalized spline regression, Dirichlet 
processes, wavelets or reproducing Kernel Hilbert space 
methods [29]. However, currently available methods are very 
challenging conceptually as well as numerically, making their 
widespread use in metrology laboratories unfeasible.

Summarizing the above discussion, Bayesian inference 
appears to be a viable approach for regularization in dynamic 
metrology, but further research is necessary in order to pro-
vide generic guidance for a broad class of users.

5. Further challenges

Beyond the challenge of regularized deconvolution and the 
corresponding evaluation of uncertainties discussed here, 
there are additional mathematical and statistical challenges in 
dynamic metrology.

5.1. Dimensionality

The previously discussed huge dimensionality of the discre-
tised dynamic quantities pose a challenge for the evaluation 
of an uncertainty from measurements alone. For instance, the 
measured system output signal has to be accompanied with 
an uncertainty. For univariate quantities typically repeated 

measurements are utilized for this purpose. However, the 
number of repeated measurements required to reliably deter-
mine the covariance matrix of a multivariate quantity increases 
with its dimension. Thus, in most practical cases parametric 
approaches for the uncertainty have to be developed.

5.2. Mathematical modeling

In many cases mathematical models for dynamic systems are 
based on differential equations whereas static measurements 
typically rely on algebraic models. This results in mathemat-
ical challenges for the derivation of appropriate measurement 
models. Moreover, it poses conceptual challenges, because 
the uncertainty associated with parameters of the differential 
equations  result in stochastic differential equations  as mea-
surement models, leading to stochastic process noise models.

5.3. Statistical modeling

In many applications so far only idealized noise structures are 
considered, partly for simplicity and owing to the above men-
tioned challenge in uncertainty evaluation. However, in prac-
tice measurement noise is typically non-ideal. For instance, 
an anti-aliasing filter or some other kind of filtering applied to 
the measured signal introduces correlation in the signal noise. 
For practical reasons, this can be dealt with only by utilizing 
parametrized models, such as, e.g. auto-regressive models, for 
the statistical modeling of measurement uncertainty.

5.4. Software tools

In recent years many software tools have been developed to 
carry out uncertainty evaluation in line with the GUM and 
its supplements. However, these tools are not applicable 
to dynamic measurements owing to the dimensionality and  
the ill-posedness of the estimation task. A prerequisite for 
the wide-spread implementation of dynamic metrology is the 
availability of harmonised standard approaches and software 
tools for common tasks, such as estimation of the measurand 
and the propagation of measurement uncertainty.

5.5. Calibration certificates

Often a non-parametric calibration of dynamic systems is  
carried out. For instance, sampling oscilloscopes are cali-
brated dynamically in terms of their discretised impulse 
response ( ( ) ( ))= …h h t h t, , N

T
1 . Reporting and transferring 

the calibration result requires transferring the associated 
uncertainties, i.e. the covariance matrix. Typically, the dimen-
sion N of the calibrated impulse response is on the order of 
several thousands, which makes traditional calibration certifi-
cates infeasible.

5.6. Incomplete calibration data

In many applications the proposed deconvolution relies on 
approximate information about the dynamic behavior of the 

Metrologia 53 (2016) S125



S Eichstädt et al

S134

measurement system. Hydrophones, for instance, are usually 
experimentally calibrated in a limited frequency range due to 
technical limitations and restrictions of time and costs. For 
deconvolution applications, however, the frequency response 
is needed from zero up to the Nyquist frequency of the 
measurement application. Therefore appropriate frequency 
response extrapolations are necessary in addition to the regu-
larization procedure, and their implications on the uncertainty 
of the results need to be considered as well.

5.7. Key comparisons

An essential part of metrology is the execution of laboratory 
intercomparison studies. For static measurements a unique 
univariate value is considered and a key comparison reference 
value is sought. For dynamic metrology this concept cannot 
be adopted easily. One reason is the dimensionality of the 
dynamic measurand. First approaches, such as in dynamic 
calibration of accelerometers, mimic the static approach by 
considering individual values at defined frequencies as inde-
pendent key comparisons, neglecting correlation.

6. Summary and outlook

Although industrial applications carry out dynamic measure-
ments on a day-to-day basis, the underlying metrological 
foundation is still mostly based on static calibration. However, 
an increasing number of applications make the implementa-
tion of dynamic measurement analysis inevitable.

A typical task in dynamic metrology is deconvolution 
as a method to estimate the dynamic measurand. Three  
different approaches have been presented and discussed here. 
Despite their different physical quantities and time scales, 
all case studies have to deal with similar mathematical chal-
lenges. The key issue is the regularization of the otherwise 
unstable estimation, owing to its mathematical ill-posedness. 
As regularization unavoidably introduces a systematic error 
to the estimation, its uncertainty contribution has to be taken 
into account. In order to estimate this systematic error, some 
kind of prior knowledge about the measurand has to be avail-
able. Unfortunately, currently there is no generally applicable 
approach to accomplish this task. Methods available in the lit-
erature typically focus on statistical optimality rather than a 
metrologically sound evaluation of uncertainty. Hence, there 
is a great need for future metrological research and the devel-
opment of harmonized guidance for end-users.
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