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Abstract 

An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living 
human cancer cells was performed with five participating laboratories.  Previously published results from 
nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity 
assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle 
dispersions, biological variability from testing living cell lines, and the potential for nano-related interference 
effects.  In this experiment, such challenges were addressed by developing a detailed experimental protocol and 
using a specially designed 96-well plate layout which incorporated a range of control measurements to assess 
multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument 
performance. Detailed data analysis of these control measurements showed that good control of the experiments 
was attained by all participants in most cases. The main measurement objective of the study was the estimation of 
a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, 
under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter 
logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known 
experimental conditions as well as between laboratory variability in a top-down manner. Computation was 
performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior 
predictive probabilities and found to be satisfactory.  
 

1. Introduction 
Engineered nanomaterials are currently being used in many commercial applications resulting in the likelihood of 
human and animal exposure to these materials. It is therefore important to obtain accurate measurements of their 
potential toxicological effects on living cells. Cell-based toxicity assays can be used to identify potentially hazardous 
nanomaterials but their use has led to conflicting results from similar nanoparticles in different laboratories [1-4]. 
This result is most likely due to differences in assay protocols and possibly lack of controls for monitoring assay 
performance [1,2].   

This study illustrated that it is possible to achieve agreement among laboratories performing these measurements. 
The participants were five national laboratories, all using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) viability assay, during which the percentage of 
live to dead cells is assessed by measuring the number of metabolically active cells in samples exposed to the toxic 
substance and not exposed. The measurements were of absorbance at 490 nm where the signal is related to the 
number of metabolically active cells. Two protocols, designed to test nanotoxicity under serum or serum-free 
conditions, were developed from a cause-and-effect analysis of the MTS assay [see reference 5 for details]. The 
plate design (Fig 1) contained three replicates of the nanoparticle dose response experiment in Columns 8, 9, and 
10, and several system controls to quantify critical sources of variability in the assay. Specifically, Columns 3, 4, and 
5 contained three replicates of a chemical control dose experiment. The dose response to the chemical control is 
well known and thus provides an excellent check of system performance. Column 2 contained no cells and the 
measurements were of background for the chemical control experiment. Column 6 contained non-treated cells 
seeded with a single ejection of the pipette and was used to check pipetting variability and general cell counting 
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procedures. It was very important for initial cell density to be as close to the same as possible in all the wells as 
there is no way to directly measure the effect of the toxic substance using a measurement of a single well (There 
cannot be a before- treatment and an after-treatment measurement in a single well). For this reason ratios of 
absorbance of experimental wells to absorbance of wells in column 6 were used to assess toxicity. The fact that 
these particular human cancer cells had a 24 hour doubling rate made it especially important to start out with 
equal numbers in each well. Row B of Columns 3, 4, 5, 8, 9, and 10 was treated with solvent but not the chemical 
control or nanoparticles and was used to check pipetting variability from multiple pipetting ejections. Column 7 
and the wells around the perimeter were used to check instrument background. The participants of the 
interlaboratory study all used these protocols, a common stock of the nanoparticles, and two specific clones of a 
human cancer cell line. Other sources of variability such as different cell treatment procedures, sources of serum, 
culture media, and cell culture plates were intentionally not controlled in order to produce the usual variability 
among laboratories.   

 

   

Figure 1. Plate Design                                                                     

The participants performed several rounds of the assay each on a separate plate under serum conditions and 
several under serum-free conditions. The number of rounds tested per laboratory ranged from 2 to 6.  

The main objective of the study was the estimation of response of the living cells to various concentrations of 
nanoparticles. The relationship was represented by a dose response curve between concentration and relative 
absorbance at 490 nm. Of particular interest was the EC50 value of the dose response which is the concentration 
that provides an effect (in this case loss of cell viability) in 50 % of the cells. The importance of this number is that 
it may be used in risk assessment models or in comparisons among studies or among (nano)materials if the toxicity 
of the substances is ranked.  This value could also potentially be used for in vivo to in vitro correlations. 

Section 2 presents data analysis of the control variables, estimation of the dose response is discussed in Section 3 
and conclusions and discussion are in Section 4.  

  2. Data Analysis of control variables 

The control measurements in columns 2, 7, 11 and the perimeter wells were quite similar on the average over the 
various participating laboratories and plates. This indicated that the participants had good control of the pipetting 
procedures on average. There were some differences in the variability however. For illustration, Table 1 contains 
means and standard deviations of the control variables for laboratory 2 which was the least variable and 
laboratory 5 which was the most variable.  
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 Lab 2 
Mean (std) absorbance 

Lab 5 
Mean (std) absorbance 

Col 2  (background Chem Ctrl) 0.0564 (0.0007)  0.057 (0.004)  
Col 7 0.0567 (0.0009)  0.058 (0.003)  
Col 11  (background NP) 0.20 (0.04)  0.23 (0.04)  
wells around the perimeter 0.0558 (0.0005)  0.058 (0.004)  
Table 1. Comparison of control measurements of absorbance (optical density or OD) 

In addition to these control variables, the absorbance values of the wells containing cells with no treatment were 
of importance because all dosed cells were expected to have an equivalent or smaller absorbance value. Fig 2 
shows means and 95 % confidence intervals of the average absorbance measurements in column 6. Replicates for 
this calculation are the multiple plates for both clones.   

 

Figure 2. Average absorbance (with 95 % uncertainty intervals) in Column 6, a control containing cells with no 
treatment. This provides maximum absorbance. 

Judging from the uncertainty intervals, it appears that the average maximum absorbance was relatively constant 
over plates and clones for most laboratories with the exception of laboratory 5. This suggests that initial cell 
density was in rather good control. Nevertheless, the experiment protocol could be further improved by 
determining the factors that caused the larger variability for Laboratory 5 and including additional information to 
address these factors. There did not appear to be differences in the standard deviations of the maximum 
absorbance between the two serum conditions but the mean maximum absorbance was larger with serum.  

3. Analysis of Dose response 

3.1 Individual Plate and Laboratory Dose Response Curve 

There were 4 distinct experiments in this study defined by the two clones of the cell line (1 or 2) and serum 
condition (yes or no) which were analyzed separately. Each 96 well plate in one of these experiments produced six 
columns of data 

  
6,...,1,3,...,1,,...,1,5,...,1,1 ====−= lknjiry iijklijkl  

where ijklr is the relative absorbance at the lth concentration ijklx , of the kth column, of the jth plate, of the ith 
laboratory. Laboratories measured different number of plates each so this is denoted by ni. There were three 
columns for chemical control experiment, and three for the nanoparticle experiment. In all cases a dose response 
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curve for a single column could be estimated using a three parameter logistic model, that is, the mean of an 
observation at concentration ijklx was 

( )
ijk

ijklijk x
ijk

ijkl

e β
α

γ
µ −

+

=

1

. 

A small supplementary study was performed to assess how repeatable the absorbance measurements were and 
found that the coefficient of variation was between 0.5 and 1 %.  Using the more conservative 1 %, this additional 
uncertainty was included in the statistical model as  

( )201.0,~ ijklijkl mNY , ( )2,~ ijkijklijkl Nm σm . 

The estimation of the logistic parameters was performed using a Bayesian model with proper prior distributions 
for the parameters, that is integrating to 1, but quite vague in the sense that the prior variances were large as   

( )510,0~ Naijk , ( )30,1~ −Uniformijkβ , ( )1,0~ Uniformijkγ , and ( )44 10,10~ Gammaijkσ .  

The fitting was done using Markov Chain Monte Carlo in OpenBUGS [6 ]. Sensitivity analysis with respect to the 
prior distributions showed that the specific parameter values were not important.  Visual inspection of plots of the 
fitted curves, as for example the 18 curves for the chemical control experiment for laboratory 2 in Figure 3, 
showed very good agreement between curves based on the three columns of a single plate.  

       

Figure 3. Dose response to chemical control for 6 plates of laboratory 2, that is, all 18 curves. 

For this reason it was reasonable to treat the three columns on a single plate as three independent replicates and 
combine them by assuming that the mean of an observation at concentration ijklx was 

( ) 3,2,1,

1

=

+

= − k

e ij

ijklij x
ij

ijkl

β
α

γ
µ . 

This formed a single response curve per plate and captured the variability among the measurements of the three 
columns, generally attributed to the variability of separate ejections of the 8 channel pipette used to seed the 
plate. Reference [5] found pipetting to be the largest source of variability.  
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Examination of plots of the dose response curves of individual plates showed variability among plates that was 
somewhat larger than between the columns on each plate. This suggested that between-plate variability should be 
directly included in the model in terms of additional parameters. A Bayesian hierarchical model can capture this 
variability by specifying a relationship between the plate parameters of the logistic regression. This is analogous to 
including a random laboratory effect in the model for the calculation of a consensus value in an interlaboratory 
comparison with a single constant measurand as discussed for example in [7,8]. Here the individual plate 
parameters of each laboratory were given Gaussian probability distributions with common means as     

( )2,~ iiij aN aσa , ( ) ( )2,~log iiij bN bσb , ( ) ( )2,~log iiij gN gσg  , i=1,…,5, j=1,…,ni. 

The variances of the Gaussian distributions represented the between-plate variability being captured by this 

model. Note that the mean for laboratory i, at concentration x was now represented by ( ) ( )
ib

i

i
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=
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 Prior distributions for the additional laboratory parameters were again set to be proper, but quite vague.  This 
model, estimated via MCMC, produced for each experimental condition estimated curves and uncertainty intervals 
for each plate, and consensus curves for each laboratory. Sensitivity to choice of prior distribution was examined 
and found to be low. 

To illustrate the results, Figure 4 shows the individual measurements in blue, the 6 plate curves in green, and the 
consensus laboratory curve with 95 % uncertainty bounds in black for the chemical control experiment with clone 
1, for laboratory 2. 

 

Figure 4. Individual measurements (blue circles), plate curves (green lines), and consensus laboratory curve with 95 
% uncertainty bounds (black dotted lines) for the chemical control experiment for laboratory 2, with clone 1, 
serum-free. 

3.2 Overall Consensus Dose Response Curve 

In order to summarize all relevant information from the 5 laboratories and to enable examination of their 
agreement it is useful to estimate an overall consensus dose response curve. This was accomplished by adding 
another layer to the hierarchy of the statistical model, that is, specifying that 

 ( )2,~ aai Na σµ  , ( )2,~ bbi Nb σµ , ( )2,~ ggi Ng σµ , 

Re
la

tiv
e 

ab
so

rb
an

ce
 a

t 4
90

 n
m

 

Dose in µg/mL 



6 
 

with prior distributions for the new parameters set to be proper but quite vague as ( )510,0~ Naµ , 

( )30,1~ −Uniformbm , ( )2,1~ −Uniformgm , and ( )44 10,10~ Gammaaσ , ( )10,0~ Uniformbσ , ( )10,0~ Uniformgσ , 

( )44 10,10~ Gammaiσ . The consensus mean at concentration x was given by 

( ) ( )
b

a

g

e
x

C

e

ex
µ

µ

µ

µ −

+

=

1
. 

This model produced curves and uncertainty bounds for plates, consensus curves for laboratories and an overall 
consensus curve for each of the four experimental conditions. Figure 5 shows the plot of the laboratory dose 
response curves for clone 1, the nanoparticle experiment. It also shows the consensus curve, and the 95 % 
uncertainty bounds for the consensus curve. Agreement among the 5 laboratories is remarkably good for a 
nanocytoxicity experiment, especially for the serum-free condition. Degree of agreement can also be assessed by 
the EC50 values, that is, the ai (and the aµ ). Table 2 shows these values and their standard uncertainty for the 4 
experimental conditions of the nanoparticle experiment. Not all laboratories used clone 2 and so are missing these 
values. 

 

     
 

Figure 5. Nanoparticle dose response curves with 95 % uncertainty bounds for clone 1. Horizontal dashed line 
shows relative absorbance of 50%, the corresponding value on the horizontal axis is the EC50. 

 

Laboratory Clone 1, No serum  Clone 1,Serum Clone 2, No serum Clone 2, Serum 

1 25.6(0.4) 55.2(2.4) 25.0(0.6) 66.9(8.5) 

2 23.7(0.5) 64.4(3.2) 21.3(0.5) 63.1(4.8) 

3 23.9(0.5) 49.8(1.7) 21.0(0.8) 46.7(2.5) 

4 23.2(0.7) 47.1(0.7)  52.2(0.8) 

5 22.3(1.2) 47.3(1.0)   

Consensus 23.7(0.9) 52.7(4.8) 22.5(3.8) 57.1(8.7) 

Table 2. EC50 (in µg/mL ) for the nanoparticle dose response, means and standard uncertainties 

No Serum Serum 

Dose in µg/mL Dose in µg/mL 
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Lab 1 green 
Lab 2 blue 
Lab 3 purple 
Lab 4 red 
Lab 5 orange  
Consensus  black 
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Table 2 shows good agreement among laboratories for clone 1 and more variability for clone 2.  Interestingly, the 
mean EC50 values for the serum condition for both clones were about 30 µg/mL higher than for the serum-free 
condition, and the uncertainty was also substantially higher. This is surprising as Figure 2 showed that serum did 
not introduce additional uncertainty to the control variables. An explanation is suggested by Figure 6 which 
contrasts the laboratory consensus curves for the serum and serum-free conditions for laboratory 2, clone 1. 

 
Figure 6. Laboratory consensus curves with 95 % uncertainty bounds for nanoparticle dose response, serum 
(green) and serum-free (blue) for clone 1, laboratory 2. Dashed horizontal line shows 50% relative absorbance. 

 
The uncertainty bounds of the consensus curves were the narrowest around the experimental concentration that 
was close to the inflection point of the curve.  For the serum-free condition this was 25 µg/mL which is close to the 
EC50 value of 23.7 µg/mL thus making the uncertainty of this parameter small compared to that of the serum 
condition where the EC50 value was 64.4 µg/mL and the bounds were narrowest at 50 µg/mL.Thus the larger 
variability of the serum EC50 value was due to the experimental design and not a response of the cells to the 
serum. 

 
3.3 Checking Model Fit 
For any estimation of parameters based on a statistical model, it is important to check the fit of the model to the 
data.  In a Bayesian analysis, one method of checking model fit is to compute posterior predictive probabilities 
( )obsp yYP > , where pY  are predicted values according to the fitted Bayesian statistical model and obsy are the 

observed measurements [9].  These probabilities, usually called Bayesian posterior predictive p-values, measure 
how likely it is to obtain the value obsy  given the model and the observed data (These differ from conventional p-
values in that they are computed using the posterior predictive distribution of the pY , not the sampling 
distribution). Figure 7 shows means and uncertainty bounds of the predictive p-values computed over the 
replicates and plates, for the clone 1 experiment.  
 
Predictive p-values should be around 0.5 [9], that is, about half the time the predicted value should be larger than 
the observed and half the time smaller. It appears that the data from the serum experiment had a better fit to the 
model than the serum-free data, except possibly for lab 5. The serum-free data exhibited somewhat poor fit for 
laboratories 3, 4, and 5 in the low concentrations of 1 and 10 µg/mL. On further examination these are data points 
that exceeded 1.0 due to the adjustments by background and maximum absorbance. The poor fit was due to the 
fact that such values were not allowed by the model. But even for the serum-free condition the fit close to the EC50 
concentration (around level 4) was quite good. 
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Figure 7. Predictive p-values (with 95 % uncertainty intervals) by laboratory and concentration level (#1=0 µg/mL, 
#2=1 µg/mL, #3=10 µg/mL, #4=25 µg/mL, #5=50 µg/mL, #6=100 µg/mL) for clone 1. 
 
 
4.0 Discussion 
Analysis of this inter-laboratory experiment showed that it is possible to achieve agreement among laboratories 
making biological assay measurements. It is also clear that careful monitoring of the protocol is necessary. 
Uncertainty analysis of the dose response function was accomplished in a top-down fashion using a Bayesian 
statistical model and MCMC estimation. The statistical model included an uncertainty component for the 
absorbance measurement itself, showing that it is feasible to augment the top-down model with further 
uncertainty evaluations in a bottom-up manner.   

The plate design was a crucial element of this study, providing critical information as to the quality of the 
measurements. A potential experimental design improvement is to include concentrations close to the anticipated 
EC

50
 value. 
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