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a b s t r a c t

A B-spline version of a general Dirac–Hartree–Fock program is described. The usual differential equations
are replaced by a set of generalized eigenvalue problems of the form (Ha−εa B)Pa = 0, whereHa and B are
the Hamiltonian and overlap matrices, respectively, and Pa is the two-component relativistic orbit in the
B-spline basis. A default universal grid allows for flexible adjustment to different nuclear models. When
two orthogonal orbitals are both varied, the energy must also be stationary with respect to orthonormal
transformations. At such a stationary point the off-diagonal Lagrange multipliers may be eliminated
through projection operators. The self-consistent field procedure exhibits excellent convergence. Several
atomic states can be considered simultaneously, including some configuration-interaction calculations.
The program provides several options for the treatment of Breit interaction and QED corrections. The
information about atoms up to Z = 104 is stored by the program. Along with a simple interface through
command-line arguments, this information allows the user to run the program with minimal initial
preparations.

Program summary

Program title: DBSR_HF

Catalogue identifier: AEZK_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEZK_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html

No. of lines in distributed program, including test data, etc.: 22643

No. of bytes in distributed program, including test data, etc.: 354629

Distribution format: tar.gz

Programming language: Fortran 95.

Computer: No specific requirements to the computer.

Operating system: Any system with a Fortran 95 compiler.

Classification: 2.1.

External routines: LAPACK (http://www.netlib.org/lapack/)

Nature of problem:
Relativistic Dirac–Hartree–Fock wavefunctions are determined for atoms in a bound state. These
wavefunctions may be used to predict a variety of atomic properties.

Solution method:
The radial functions for large and small components of the one-electron spinor are expanded in B-
spline bases. The variational principle applied to an energy functional that includes Lagrange multipliers
for orthonormal constraints defines the Dirac–Hartree–Fock matrix for each orbital. Orthonormal
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transformations for a stationary solution were applied and Lagrange multipliers eliminated through
projection operators.
Restrictions:
There is no restriction on calculations for the average or specific term energy of any atomic configuration
with shells whose angular momenta are less than or equal to 9/2.
Unusual features:
The program allows the consideration of a few atomic states simultaneously. A simple interface through
the command-line arguments allows the user to run the program with minimal initial preparations.
Running time:
From a few seconds to a few minutes depending on the atom under consideration.

© 2016 Published by Elsevier B.V.

1. Introduction

TheHartree–Fock (HF)method for a single configuration state [1] is one of themost important problems in atomic structure calculations
and has attracted a lot of attention since the beginning of quantum physics. The HF method is based on the self-consistent field (SCF)
procedure. A number of HF computer programs based on different numerical methods were developed and published during the last
decades. Further development of modern computers with increasing speed and memory calls for new versions of the existing computer
codeswith enhanced efficiency. One themost promising approaches inmodern computational physics is based on the B-spline expansions.
In particular, differential equations can be avoided entirely and the calculations are reduced to thewell-developedmatrix algebramethods.
Because the results from one B-spline grid may easily be mapped onto a refined grid, it is possible to improve the calculations for greater
accuracy. Numerous examples of employing B-splines in atomic physics are given in review publications [2,3], and a B-spline version of a
non-relativistic Hartree–Fock program, SPHF, is available from the Computer Physics Communications (CPC) Program library [4].

The first application of B-splines to relativistic atomic structure calculations was reported by Johnson and Sapirstein [5] in the
framework of many-body perturbation theory using basis sets determined from a frozen-core Dirac–Hartree–Fock (DHF) approximation.
The resulting basis was finite and effectively complete, with a spectrum of eigenvalues that can be separated cleanly into positive and
negative energies. This simplifies the implementation of the no-pair Hamiltonian by omitting the negative eigenstates from the basis.
Following this publication a number of applications have been reported using mainly the basis sets obtained by solving the HF/DHF
equations for one electron outside a frozen core. In this way the differential equation is linear in the orbital sought, and no iteration to
self-consistency is required. The use of B-splines for optimizing all orbitals has mainly been restricted to non-relativistic calculations [3,4].

The construction of a relativistic B-spline basis is somewhat different from the nonrelativistic case. Spurious states have been
observed when the Dirac equation is expanded in a single finite basis set [6], whereas similar phenomena have not been encountered
in nonrelativistic calculations. This problem has been widely discussed in the literature. One possible solution was suggested in [7] based
on B-spline bases with different orders for the large and small components. In relativistic calculations, it is advantageous to use a finite
nuclear potential instead of the Coulomb potential with its singularity at the origin, which is difficult to handle with B-splines. However,
B-splines have the advantage of flexibility with regard to the distribution of the knot points near the nucleus.

B-splines also have receivedwide application in scattering problems, in particular, solving the close-coupling equations by the R-matrix
method. Since the R-matrix approach is based on solving the Schrödinger equation in a box, it could be expected that B-splines would be
very useful as a basis for the R-matrix approach. The effective completeness of the B-spline basis means that no additional correction
(known as the ‘‘Buttle’’ correction) is required. The use of B-splines in R-matrix calculations was first explored by van der Hart [8] for two-
electron systems, and later was extended by the present authors to themany-electron atoms [9]. The general suite of codes, BSR (B-Splines
R-matrix code), based on this technique was submitted to the CPC library in 2006 [10] and was employed in a variety of scattering and
atomic-structure calculations producing extremely accurate results [11].

The non-relativistic BSR code was recently extended to the fully-relativistic version, DBSR, based on the Dirac–Coulomb
Hamiltonian [12]. The fully-relativistic calculations considerably improve the accuracy for electron scattering on heavy atoms [13]. The
important ingredient for the scattering calculations is the accurate description of the target states. As a main option, the DBSR complex
of codes uses the target wavefunctions generated with the GRASP code [14,15]. GRASP is an elaborate code for many-configuration DHF
calculations, however, its application in DBSR calculations requires conversion of radial orbitals to a B-spline basis. For this reason, we
developed the DBSR_HF program,which runs the DHF calculations, directly in the B-spline basis.We also expect better numerical accuracy
and improved convergence as was demonstrated in the case of the non-relativistic B-spline calculations with the program SPHF [4]. At the
moment, the DBSR complex is in the process of preparation for submission to the CPC library. As a first step towards this submission, the
present DBSR_HF program is submitted separately as a code that can be used outside theDBSR complex for a variety of atomic applications.

2. Dirac–Hartree–Fock equations

We use the Dirac–Coulomb (DC) Hamiltonian to describe the arbitrary N-electron atom or ion. In atomic units, the DC Hamiltonian for
N electrons in a central field for a nucleus of charge Z is given by

HDC =

N
i

hD(ri) +


i<j

1
rij

, (1)

hD(r) = cα · p + βc2 + Vnuc(r), (2)
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where α and β are Dirac matrices, p is the momentum operator of the electron, c ≈ 137 a.u. is the speed of light, and Vnuc is the nuclear
potential. For each total symmetry Jπ , with J denoting the total electronic angular momentum in a jj-coupling scheme and π indicating
the parity, the total wave function is constructed using anti-symmetrized products of Dirac four-component spinors

φnκm(r) =
1
r


Pnκ(r)χκm(r̂)

iQnκ(r)χ−κm(r̂)


, (3)

where the real and imaginary radial Pauli spinors are the large and small components, respectively, χκm is the spinor spherical harmonic,
and κ is the relativistic angular momentum quantum number.

The energy of the atom can be expressed through one-electron integrals and two-electron Slater integrals as

EDHF =


a

qa⟨a|hD|a⟩ +


a<b


k

(fk(a, b)Rk(abab) + gk(a, b)Rk(abba)) , (4)

Rk(abcd) =


∞

0


∞

0
[Pa(r1)Pc(r1) + Qa(r1)Qc(r1)]

rk<
rk+1
>

[Pb(r2)Pd(r2) + Qb(r2)Qd(r2)]dr1dr2, (5)

where the indices a and b refer to one-electron orbitals (naκa) and (nbκb), respectively, the qa is the occupation of the orbital a, and
coefficients fk and gk depend on the angular symmetry of the atomic state under consideration. The Dirac–Hartree–Fock equations now
can be derived from the variation condition

δ


EDHF −


ab

δ(κa, κb)λab⟨a|b⟩


= 0 (6)

where we introduce Lagrange multipliers λab to ensure the orthogonality of orbitals with the same κ values. Eq. (6) applies to all allowed
perturbations that satisfy orthogonality constraints and the boundary conditions. For the perturbation of a single orbital the resulting
Dirac–Hartree–Fock differential equations have the form

c


d
dr

−
κ

r


Qa +


VDHF + Vnuc + c2


Pa = εaPa +


b≠a

εabP

−c


d
dr

+
κ

r


Pa +


VDHF + Vnuc − c2


Qa = εaQa +


b≠a

εabQ
(7)

where we introduce the DHF potential

VDHFPa(r) =


b

1 + δab

qa


k

(fk(a, b)vk(bb; r)Pa(r) + gk(a, b)vk(ab; r)Pb(r)) (8)

vk(ab, r) =


∞

0

rk<
rk+1
>

[Pa(r ′)Pb(r ′) + Qa(r ′)Qb(r ′)]dr ′ (9)

and εa = λaa/qa, εab = λab/qa are referred to as energy parameters. Unlike the matrix of Lagrange multipliers, the matrix of energy
parameters is no longer symmetric when qa differs from qb. Symmetry would be regained if the equation for an orbital (Eq. (7)) were
multiplied by qa. In this case the energy parameters equal the Lagrange multipliers that are symmetric.

3. B-spline basis

B-splines are functions designed to generate piece-wise polynomial functions for approximating arbitrary functions in some finite
interval. Consider the interval [a, b] divided into subintervals. The endpoints of these subintervals are given by the knot sequence
[ti], i = 1, 2, . . . , n + k. The B-splines of order k, Bi,k(r), on this knot sequence are defined recursively by the relations

Bi,1(r) =


1, ti ≤ r ≤ ti+1
0, otherwise (10)

and

Bi,k(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r
ti+k − ti+1

Bi+1,k−1(r). (11)

Each Bi,k is defined over the interval [ti, ti+k], which contains k + 1 consecutive knots, and is indexed by the knot where it starts. In
order to confine all B-splines in the given interval [a, b], the multiplicity of knots in the endpoints is usually chosen to be the maximum
possible value, which is equal to the B-spline order k. The most common choice for the multiplicity at inner knots is unity, corresponding
to the maximum continuity of B-spline functions inside the interval. With this choice, employed in the present program, the number of
subintervals is related to the number of B-splines as nint = n + 1 − k.

For a detailed introduction to the background theory of B-splines and their application to atomic physics, the reader is referred to the
review articles [2,3] and the description of the SPHF [4] and BSR [10] codes as examples of the numerical implementation of splines in
atomic calculations.

In our implementation, we expand the radial functions for the large and small components P(r) and Q (r) in separate B-spline bases as

P(r) =

np
i=1

piB
kp
i (r), Q (r) =

nq
i=1

qiB
kq
i (r). (12)
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Both B-spline bases are defined on the same grid, with the same number of intervals, however, with different orders, kp and kq. Only in
this way can the calculations of various matrix elements and integrals of interest be performed with the same routines and the same
computational resources as in the case of a single B-spline basis. At the same time, using the different bases avoids the appearance of
pseudo-states that are a common problem for solutions of the Dirac equations in any finite-element basis. More details on this issue are
discussed in our previous paper [7]. By default, kq = kp + 1.

With basis (12), the Dirac–Hartree–Fock equations (7) are reduced to a matrix generalized eigenvalue problem
Hpp Hpq
Hqp Hqq

 
p
q


= ε


Bpp 0
0 Bqq

 
p
q


, (13)

where p and q are vectors of the expansion coefficients for the given orbital, and B is the B-spline overlapmatrix

Bi | Bj


. For more detailed

description of the Hamiltonian matrix H, let us introduce the matrices for the one-electron terms

D±

κ → ⟨Bi| ±
d
dr

+
κ

r

Bj

, (14)

Vnucl → ⟨Bi| Vnucl(r)
Bj

, (15)

and the four-dimensional arrays for Slater integrals between individual B-splines

Rk(ij; i′j′) =


∞

0


∞

0
Bi(r1)Bj(r2)

rk<
rk+1
>

Bi′(r1)Bj′(r2)dr1dr2. (16)

The direct and exchange potentials VDHF (8) can then be expressed as matrices obtained by convolution of these arrays over two variables
as

Vdir
b → Rk( . b . b)ij ≡


jj′

bjbj′Rk(ij; i′j′), (17)

Vexc
b → Rk( . b b . )ij′ ≡


i′j

bi′bjRk(ij; i′j′) (18)

the ‘‘dots’’ indicate the position of the orbital under consideration, and bi stand for B-spline expansion coefficients of the atomic orbital
(Pb,Qb) in Eq. (8). More details are given in Refs. [3,4,10]. Note that the direct integrals are defined only by diagonal banded blocks with
respect to small and large components, but exchange requires full matrices and numerically takes most of the computation time. Because
we have two components of different order, calculations of interaction matrices are approximately 4 times more time consuming than
those in the nonrelativistic calculations. According to the definition of Slater integrals (5), we actually have four different integrals, which
we denote as Rk(PP; PP), Rk(QQ ;QQ ), Rk(PQ ; PQ ), and Rk(QP;QP), and because we use different bases for P and Q components, they all
are different. Finally, the Hamiltonian matrix, Ha for orbital a, has the form

Ha
=


Vnucl
pp cD−

pq

cD+

qp Vnucl
qq − 2c2Bqq


+


Vdir
pp 0

0 Vdir
qq


+

Vexc
pp Vexc

pq

Vexc
qp Vexc

qq


, (19)

where the direct and exchange potentials are represented bymatrices obtained by summation and convolution of the corresponding Slater
integrals (16). As an example, for the PP sub-block we have

Vdir
pp =


b


k

fk(a, b)

Rk(. Pb . Pb) + Rk(. Qb . Qb)


, (20)

Vexc
pp =


b


k

g(a, b)Rk(. Pb Pb .). (21)

When twoorbitals, connected by an orthogonality condition, are varied simultaneously as in a unitary transformation, the energymust also
be stationary. This results in an implicit condition on the solution of the differential equations. At such a solution, orthogonality of orbitals
can be achieved through the use of the projection operator method [16], what leads to a modification of the Hamiltonian matrix (19), one
modification for each orthogonality constraint. If, for example, we have the constraint ⟨a|b⟩ = 0, the modification of the Hamiltonian
matrix for orbital a is

Ha
→ (1 − B bbt)Ha(1 − bbtB), (22)

where B is the B-spline overlap matrix. This method allows us to work without the explicit presence of Lagrange multipliers in Eq. (13).

4. Program structure

The block-scheme of the program is shown in the Fig. 1, along with optional input/output data files. The primary steps of the program
consist of the analysis of input parameters by the module get_case, the calculation of all needed angular coefficients by the module
def_energy_coef, the definition of the grid and spline parameters by the module def_spline_param, the reading of the initial estimations
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Fig. 1. Block diagram for the program DBSR_HF and data flow. All indicated input files are optional and can be modified by program (see text).

by the module get_estimates, the solution of Dirac–Hartree–Fock equations by the main module SOLVE_HF, followed by the output of
resulting wavefunctions in different formats. The main blocks will be described separately in the following subsections.

4.1. Input parameters

Each calculation is supposed to have its own name, given as the first argument on the command line for which the variable name is
not needed. Other input parameters can be given either on the command line or in the file <name>.inp if they differ from the default
value. Here we have used the notation <var>to represent the value of a variable var.

In order to simplify calculations, many options are set when the name is that of an atomic symbol, also referred to as the value of the
variable atom. In this case, the program itself prepares the input file <atom>.inp and runs the calculations automatically. The input
file in this case contains all possible parameters with their default values, along with additional information and hints for running the
program. If needed the user can change the parameters and rerun the case. A typical input file for the case where <name>=Rb contains
the following atomic parameters:

The file contains the atomic symbol, nuclear charge, atomic weight, a core which is one of [He], [Be], [Ne], [Mg], [Ar], [Zn], [Kr], [Cd], [Xe],
[Hg], or [Rn], the configuration of electrons outside the core, and an indication of which orbitals should be varied. All input parameters are
given with their key words as parameter=value, and any parameter from the input file can be redefined on the command line with the
same construction. The key-word format for input parameters simplifies their preparation: there is no restrictions on their position in the
input file. All parameters have their default values, so any missing parameters will not halt the calculations (unless the name of the case
is missing). Formal detailed description of all input parameters is given in the Section 7.

4.2. Spline parameters and nuclear description

As we can see from the definition of B-splines in Eq. (10), B-splines are fully determined by the given knot sequence and the spline
order k. Although there is complete freedom in choosing the mesh of knots, the optimal choice depends on the type of the result we
are interested in. With splines, we can create any composite grid when needed, but too dense a grid can lead to a rapid saturation of
the computational resources. Experience has shown that the most appropriate choice is a logarithmic grid that reflects the exponential
behavior of atomic orbitals. On the other hand, in continuum calculations, the wavelength of the scattering particle cannot be smaller than
the grid step; otherwise, the B-spline basis hardly describes the oscillating behavior of the wavefunction. In the present implementation,
we use a mixed sequence which can easily be adjusted to the task under consideration. The knot points ti are defined by the following
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relations:

ti = 0 for i = 1, . . . , k
ti+1 = ti + hi for i = k, . . . , k + mi
ti+1 = ti(1 + he) while ti+1 − ti < hmax
ti+1 = ti + hmax for the rest of ti while ti < rmax
ti = tmax for i = ns + 1, ns + k.

(23)

We see that the knots are defined on the finite interval (0, rmax). Density of knots near the origin is defined by the initial step hi, the
exponential growth in themiddle-radii region is defined by the factor he, and themaximum step at high radii is defined by hmax. By varying
these parameters, we may easily change this semi-logarithmic grid to the equally-spaced grid or to a completely logarithmic grid (equally
spaced with respect to log(r)). The number of B-splines, ns, is a derived value, depending on all the above parameters. For bound-state
calculations we can use the logarithmic grid in the outer region, whereas in scattering calculations the maximum size of the subintervals
should be restricted according to the maximum energy of the scattering electron. As a practical implementation, we can use a less dense
grid for the bound-state calculation and then, if needed, convert to B-spline expansions in any other grid.

Consistent with the BSR and DBSR suites of codes, the B-spline parameters are given in a separate file, knot.dat, by default. This file
can be reassigned with input parameter knot. If this file is absent, the DBSR_HF programwill create the name.knot file with parameters
specific for the given case. Separation of atomic parameters from the knot parameters allows us to keep the same grid for different
calculations. However, we cannot completely separate the atomic parameters from the spline parameters due to different models for
the nuclear potential. For this reason, the knot.dat file also includes the nuclear parameters so that the knot grid depends on the nuclear
model. The knot.dat file incorporates the parameters from the file isodata used in the GRASP complex. An example of a knot.dat
file for the Rb calculation with Fermi nuclear potential is the following:

This grid is indicated as grid_type=1 and calculatedwith the routine mkgrid_01, based on the relations (23). Users can easily introduce
their own grid type, adding the corresponding routine mkgrid_xx. The resulting grid points are also recorded to the knot.dat file. In
case of extensive BSR or DBSR calculations, the user is strongly advised to first try different sets of parameters to produce the desired
knot sequence with a minimum number of B-splines, because this parameter strongly affects the computation time for all subsequent
calculations.

In contrast to the non-relativistic case, where solutions near the origin are polynomial in nature, there is a problemwith using B-splines
to approximate the rγ−1 behavior of relativistic orbitals at small r . Here γ =


1 − (Zα)2 and approximating this behavior in a B-spline

basis with sufficient accuracy requires a very fine grid at small values of r . Thus extra care must be taken in this case, particularly for s or
p− orbitals. To some extent, this problem is eliminated when the potential is modified to account for the finite size of the nucleus. This
requires, however, that the first few grid points be placed at very small distances and well inside the nucleus.

The present program supports three nuclear models, defined by the parameter nuclear with possible values of point, Fermi or
uniform. This allows us to include the effect of the finite nuclear size by replacing the nuclear Coulomb potential, −Z/r , by the potential
with a finite charge distribution. For example, in the uniform mode, the nucleus is described by a uniform ball of charge of radius R
(parameter r_uniform in the knot.dat file). Under this assumption, the nuclear potential can be written as

Vnuc(r) =


−(Z/R) (3/2 − r2/2R2) r < R,
−Z/r r ≥ R. (24)



O. Zatsarinny, C. Froese Fischer / Computer Physics Communications 202 (2016) 287–303 293

The root-mean-square radius of a uniform charge distribution Rrms is related to its radius R through

R =

5/3Rrms. (25)

The radius Rrms of a nucleus with weight A can be provided by the user in file knot.dat or as input parameter, otherwise the radius will
be taken form the available values in compilation [17] or, if absent, will be estimated using the empirical formulas

Rrms = 0.836A1/3
+ 0.57 fm, Z ≤ 90, (26a)

Rrms = 0.770A1/3
+ 0.98 fm, Z ≥ 91, (26b)

taken from Refs. [18] and [19], respectively.
In atomic structure calculations, the above assumption of a uniform nuclear charge density is often replaced by the more realistic

assumption of a nuclear charge density given by a Fermi distribution function:

ρnuc(r) =
ρ0

1 + exp[(r − c)/a]
. (27)

In this formula, c is the 50% fall-off radius of the density, and a is related to the 90%–10% fall-off distance t = 4 ln(3)a. Again, these
parameters can be provided by users, or they will be estimated based on Rrms in the same way as in the GRASP program.

Calculations show that the results will be independent of the B-spline grid only when the initial point is placed deep inside the nucleus.
For this reason, the initial point for the uniform and Fermi distribution is chosen by the program as Rhi, where R is the radius of nucleus. In
this sense, the B-spline knot sequence depends on the nuclear model, and all related parameters are recorded in the same file, knot.dat.

As an alternative to the direct calculation of the grid points based on the given parameters in the knot.dat file, it is also possible to
read them from an external text file with the input parameters knot=<anyname>and grid_type=-1, or from an unformatted bsw-file
<name>.bsw containing orbital wavefunctions from the previous calculations with the input parameter grid_type=-2.

4.3. Angular coefficients

In DBSR_HF, the orbitals are optimized so that an energy functional defined as a linear combination of energies in the form of Eq. (4)
has a stationary energy value. This is an extension of the usual HF definition. The program has different options for defining the energy
functional governed by the input parameter term. When term=AV, the energy functional is a linear combination of the average energies
of a list of configurations specified in relativistic notation, either in the command line (single configuration) or in a <name>.conf file
(multiple configurations). When term=LS, the process is similar, but these configuration may be specified in the shorter non-relativistic
notation which the program will expand into all possible configurations in a relativistic notation. In this case, all these configurations are
included in the optimization process and none can be omitted. When term=jj, the energy functional is a weighted linear combination
of matrix elements of the Dirac–Coulomb Hamiltonian, ⟨Φ|HDC

|Φ⟩, of the coupled configuration state functions (CSFs) Φ given in the
<name>.c file in the format used by GRASP.

To construct the Dirac–Hartree–Fock equations, we need the angular coefficients fk(a, b) and gk(a, b) in the energy expression (8). In
the average-energy approximation, term=AV, these coefficients, for a single configuration, are defined by the following expression [20]:

EAv =


a

qa⟨a|hD|a⟩ +


a

1
2
qa(qa − 1)R0(aa, aa)

−


a

1
2
qa(qa − 1)

[ja]
[ja] − 1

2la
k=2

< ja∥C(k)
∥ja >2 Rk(aa, aa)

+


a,b>a

qaqbR0(ab, ab)

−


a,b>a

qaqb
k=la+lb
k=|la−lb|

< ja∥C(k)
∥jb >2 Rk(ab, ba), (28)

where the reduced matrix element ⟨ja∥C(k)
∥jb⟩ is not zero when la + lb + k is even and has the form

⟨ja∥C(k)
∥jb⟩ = (−1)ja+1/2


[ja][jb]


ja k jb
1/2 0 −1/2


. (29)

In the case of the specific configuration states in the jj-coupling the coefficients fk(a, b) and gk(a, b) are obtained using the general module
jj_energy_coef, which is part of the DBSR complex and will not be discussed here. For the given list of jj-coupled configurations,
the Dirac–Hartree–Fock equations are designed to minimize the weighted sum of all the average energies of the configurations in the list.
When term=AV or term=LS, the default weights for the average energy expressions are their statistical weights, whereaswhen term=jj,
the weights of all coupled CSFs in the file <name>.c are equal. The weight coefficients may also be defined by the input parameter eal,
in the same way as in the GRASP program (see also Sections 5 and 6) except that configuration interactions are not included in the energy
functional.

https://www.researchgate.net/publication/223390158_The_Lamb_Shift_in_Hydrogen-Like_Atoms?el=1_x_8&enrichId=rgreq-83b8f0f2-ff84-4d38-b367-5c06559bf9d1&enrichSource=Y292ZXJQYWdlOzI4OTcwNjUxNztBUzozNDA0NjU5NzE5NDEzNzdAMTQ1ODE4NDgyMTE0NQ==
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4.4. Initial estimations

Initial estimations for the radial functions are obtained either from screened hydrogen functions or from reading the file specified by
the inp=<filename> parameter. This file should contain the B-spline expansions for the large and small components, P andQ , obtained
from a previous calculation. These files may have the default extension .bsw and contain, alongwith the radial functions, also the B-spline
grid used in their calculation. Should this B-spline grid not coincide with the grid used in the current calculations, the corresponding B-
spline expansions will be converted to the current grid. If the input file has the extension .w, it will mean that the radial functions are
written in the GRASP format and will be converted to the B-spline representation.

4.5. SCF procedure

The central routine of the program is the Solve_HF subroutine, which runs the SCF procedure for solving the DHF equations (7).
When several radial functions with the same orbital symmetry are present, the solutions of the DHF equations not only are stationary

with respect to single excitations to unoccupied radial functions, they also are stationary with respect to orthonormal transformations.
Such transformations represent the rotation of orbitals, and for two given orbitals a and b, the transformation can be described in terms
of a single parameter ε as

P̃(a, r)
P̃(b, r)


=


1 −ε
ε 1

 
P(a, r)
P(b, r)


1 + ε2. (30)

The effect of a rotation on the energy can be expanded in powers of ε

E(ε) = E(0) + gε + g ′ε2
+ higher-order terms. (31)

Then the stationary condition,

∂E/∂ε ∼= g + 2g ′ε = 0, (32)

leads to ε = −g/(2g ′). The coefficients g and g ′ can be expressed through the Slater integrals in the energy expression as given in [4] for the
non-relativistic case. The default input parameter is rotate=0, in which case rotations are omitted, a choice that may slow convergence
to a stationary solution. Otherwise, a rotation is performed as a preliminary step before applying the orthogonal projection operator to the
Hamiltonianmatrix (22).When orbital a is constrained to be orthogonal to a fixed orbital b, the projection operator can be applied directly.
The rotation analysis can be omitted when the orthogonality is between orbitals of filled shells of the same symmetry. As discussed in [3],
the energy in this case is invariant under rotation and g and g ′ are both zero.

The SCF procedure in the B-spline basis is reduced to setting up each of the interaction matrices (19), applying the projection operators
(if needed for orbital orthogonalization), and diagonalization of the generalized eigenvalue problem (13). In principal, we can generate
the total Hamiltonian matrix for all orbitals and obtain their wavefunctions in one diagonalization, however, due to different convergence
rates of orbitals, such a procedure was found not to be efficient. Diagonalization is performed by a call to the LAPACK routine DSYGV [21]
that returns the entire spectrum of Dirac–Hartree–Fock Hamiltonian energies, including both the positive and negative energies. The
present program selects the needed solutions from the middle of the full spectrum, namely the lowest eigenvalue in the positive part of
the spectrum, taking into account the orthogonality constraints.

4.6. Breit interaction and QED corrections

The Breit interaction describes the relativistic corrections to the electronic motion due to magnetic and retardation effects. These
are important corrections and they should be included into accurate atomic-structure calculations. An effective operator for the Breit
interaction can be derived fromquantumelectro-dynamics (QED) in perturbation theorywith respect to the number of virtually exchanged
photons [20], and in Coulomb gauge, and in the long-wavelength approximation, the Breit operator reads as

HB = −
1

2r12


α1 · α2 +

(α1 · r12)(α2 · r12)
r212


, (33)

where α are the Dirac matrices. Similar to the Coulomb interaction, the matrix elements of these operator between atomic wavefunctions
can be expressed through the relativistic two-electron integrals

Sk(abcd) =


∞

0


∞

0
Pa(r1)Qc(r1)

rk1
rk+1
2

ε(r2 − r1)Pb(r2)Qd(r2)dr1dr2, (34a)

where

ε(r2 − r1) =


1 if r2 > r1
0 if r1 > r2

. (34b)

The corresponding angular coefficients are closely related and can be obtained from the fk(a, b) and gk(a, b) coefficients (4) for Coulomb
interaction [20], although different decompositions of the operators lead to different angular momenta and parity selection rules.

In the present program, there are two options to include the Breit interaction, based on the input parameter mbreit: the default value
of 0 omits the Breit correction. For mbreit = 1, the Breit correction is added to the total energy in the final stage, whereas for mbreit

https://www.researchgate.net/publication/220257893_A_B-spline_Hartree-Fock_program?el=1_x_8&enrichId=rgreq-83b8f0f2-ff84-4d38-b367-5c06559bf9d1&enrichSource=Y292ZXJQYWdlOzI4OTcwNjUxNztBUzozNDA0NjU5NzE5NDEzNzdAMTQ1ODE4NDgyMTE0NQ==
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= 2, the Breit interaction is included in the setup of the Hamiltonian matrix (19) and thereby may influence the resulting one-electron
orbitals. The latter procedure, however, considerably increases the computational time.

The QED corrections are calculated in the same approximations as in the GRASP [14] and RELCI [22] programs, directly using the
corresponding modules from these programs. The dominant corrections arise from the self-energy of the electrons and the polarization of
the vacuum due to the nuclear field. The effect of the vacuum polarization can be represented in terms of the Uehling potential [23,24] and
has been included in relativistic structure calculations formany years. This correction is included according to the parametermode_VP (see
Section 6). The computation of the self-energy requires a considerably larger effort. The self-energy contributions are usually estimated
from tabulations that are available for the hydrogen-like ions [25,26]. Different methods have been proposed to determine an effective
nuclear charge, in order to interpolate these data for individual subshells of amany-electron system. TheGRASPpackage, e.g., approximates
the screening coefficient by taking the overlap integral of the wavefunction and a hydrogenic wavefunction in the region r < 0.0219 a0.
The MDFGME code [27] uses theWeltonmethod without further details. Recently Lowe et al. [28] discussedWelton’s concept of electron-
self-energy [28] with respect to GRASP calculations. They suggest implementing a screening factor

ESE =
⟨φ|∇

2V (x)|φ⟩

⟨φH |∇2V (x)|φH⟩
EH
SE (35)

for electron moving in a potential V (x). Here superscript H refers to the hydrogen self-energy EH
SE and orbital φH . This implementation

provides results similar to those of MDFGME. We include both methods for estimating ESE and the user is able to select a screening
approximation from the following options: mode_SE = 0, no correction; mode_SE = 1, no screening; mode_SE = 2, Welton concept;
mode_SE = 3, GRASP mode, default.

In the present method, the self-energy contributions are not part of any effective Hamiltonian and, hence, cannot be incorporated into
the optimization of radial orbitals. They are added to the total level energies according to the occupation of the individual subshells. We
shouldmention that a newmodel-operator approach to the Lamb shift calculations [29,30]was suggested recently. This operator, hQED, can
be used to calculate Lamb shift in many-electron atomic systems either by evaluating the matrix element of hQED with the many-electron
wave function, or by adding hQED to theDirac–Coulomb–Breit Hamiltonian. This approach has not been implemented in the present version
of the code. However, we plan to do so in the future.

4.7. Output of results

The essential information about the calculation is summarized in the <name>.log file, which contains the parameters of the
computational model, B-spline parameters, the final results of the SCF iteration process, convergence estimates, and final energies in
atomic units (au) and (eV). Below is a typical example of final results for Rb calculations with Breit and QED corrections.
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The output includes atom, term, nuclear charge, closed shells, configuration, followed by orbital properties, where e(nl) is the diagonal
energyparameter of the orbital,dmp is themaximumchange in the orbital in the last iteration,ns is the size of the spline expansion after the
tail cut-off,<r> is the mean radius of the orbital (in atomic units), and max_r is the maximum extent in the radius of the orbital after the
tail cut-off. Note thatmax_r for the 5s-orbital is the last point of the spline grid in this example. This is followedby convergence information
and the total energy based on the Dirac–Coulomb Hamiltonian. Also given are the Breit corrections in the long-wave approximation (low
frequency limit), and two leading QED corrections, the self-energy and vacuum polarization, computed as expected values of the related
operators.

5. Examples

To begin the calculations for a given atom, it is enough to run the program with one command-line argument, indicating the
corresponding atomic symbol. For example, the command

> dbsr_hf Rb mbreit=1

will run the calculations for the ground configuration of the rubidium atom with the inclusion of the Breit and QED corrections. All other
parameters have their default values (see Section 6). The <name> for this calculation is Rb and so the orbital radial functions will be
recorded in the file Rb.bsw, the B-spline parameters — in the file Rb.knot, the default parameters — in the file Rb.inp, and information
about convergence of the self-consistent procedure and final energies — in the file Rb.log. Examples of these files were presented earlier.
If needed, the user may change any parameter in the Rb.inp and Rb.knot files and rerun the case with the same name: dbsr_hf
Rb. In this case, the above files will be treated as input files. The output also contains files Rb.conf and Rb.c, with description of
configuration and possible atomic state functions, respectively. These files simplify further consideration of individual atomic states if
need.

In the above example, the name of the case coincides with an atomic symbol, but it is not a mandatory option. The command

> dbsr_hf Rb_5s atom=Rb

would provide the results for the ground state configuration of Rb, with all input–output files beginning with Rb_5s. If we need
configurations other than the ground configuration, the configuration should be indicated explicitly as an argument:

> dbsr_hf Rb_5p atom=Rb conf=5p(1) term=AV

> dbsr_hf Rb_5p- atom=Rb conf=5p-(1) term=AV

Note that all orbitals will be optimized separately for each excited configuration. To keep core orbitals the same, we may add parameters
varied=5p and inp=Rb_5s.bsw, thereby optimizing on the 5p orbital using core orbitals from the previous calculations with name
Rb_5s.

The above example is given with the term=AV, a mode where the wavefunction is determined for the given relativistic configuration
in the average-energy approximation. If more configurations need to be optimized simultaneously, the user should add them to the
<name>.conf file. When the file <name>.conf is provided and term=AV, this file is considered as the input file for the given case
and the program will optimize one-electron orbitals for the energy expression that is the weighted sum of the average energies of the
configurations listed in this file.Weights can be given in the file or theywill be defined by the parametereal: if eal = 1, each configuration
provides an equal contribution, if eal = 5, their contributions are proportional to their statistical weights. The latter are defined as a
number of Slater determinants in the configuration expansion (at mode term=AV or LS), or as (2J + 1) value for the atomic state with
total momentum J (at mode term=jj). This approach is similar to the extended average level (EAL) calculation in GRASP. Note that an
EAL calculation does not include any interaction between configurations.

Consider as an example the 2s2 and 2s2p configurations in Be, given in the file Be.conf:

In this case the command

> dbsr_hf Be term= AV eal=1
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will lead to simultaneous optimization of orbitals in the given configurations with the results:

In cases with multiply occupied open shells, a non-relativistic configuration may correspond to several relativistic shells, and
consequently several relativistic configurations. For nitrogen, e.g., we have one non-relativistic configuration 2p(3) and three relativistic
configurations: 2p-(2)2p(1), 2p-(1)2p(1) and 2p(3). In this case, it is convenient to use the default option term=LS:

> dbsr_hf N term=LS

In this mode, the input configuration is supposed to be given in the non-relativistic notation and the program generates all needed
relativistic configurations. The one-electron orbitals with this option will be optimized for an energy expression that is a statistically
weighted sum of the individual average energy expressions for each configuration. The printout includes the configuration energies, along
with statistically weighted average energy:
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In this mode, the program also outputs the file N.conf:

This file contains the list of all relativistic configurations included in the calculation and their weights (statistical weights in the given
example). The term=LS option can be used for any nonrelativistic configuration. For example, command

> dbsr_hf B core=1s conf=2p(3) term=LS

will provide the results for all relativistic configurations connected with the excited 1s22p3 configuration in boron, similar to the nitrogen
example above. The term=LS option can also be applied to multiple nonrelativistic configurations provided by the user in the file
<name>.LS.

Another option is term=jj, where the user has full control over the set of coupled configuration states (CSFs) and their weights. In
this case, atomic states under consideration should be given in the input<name>.c file, in the format accepted in GRASP. This file should
be created by the user, but the program itself may create this file whenever there exists a file <name>.conf. For example, after the run
dbsr_hf N term=LS, the program also creates a file N.c:

Now it is possible to run

> dbsr_hf N term=jj

The output file N.log in this case will contain energies for all atomic configuration states involved along with the orbital
parameters:
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Note that output now contains not the single-configuration energies but the atomic state energies obtained by diagonalization of the
atomic Hamiltonian on the basis of all states included in the <name>.c file. These energies can be directly compared with experiment
or other calculations. The configuration-mixing coefficients are recorded in the file <name>.j.

The option term=jj is the most general and the most difficult to program since it includes coupling information for multiple open
shells. To perform such calculations, the program contains amodule for the calculation of angular coefficients for any atomic configuration
state, containing one-electron orbitals with angular momentum j up to 9/2. The present module is a simplified version for orthogonal
orbitals of our general program DBSR_BREIT,which is a part of the DBSR complex and includes themore general case of non-orthogonal
orbitals.

All the above examples concern the atomic state. In case of ions, we should separately define the atom (i.e. the nuclear properties) and
the ionic configurations. That can be achieved for the ground configuration of an ion specified by the input parameter ion or through the
files <name>.conf or <name>.c in more complicated cases. As an example, let us consider Li-like uranium:

> dbsr_hf Li_092 atom=U ion=Li mbreit=1

In this case,<name> = Li_092 and all output files will have this namewith the corresponding extensions. Note that the program assigns
the same ground configuration (taken from the neutral atom) for all ions in the isoelectronic series. Actually, the ground configurationmay
change with increasing the ionic charge and for many ions the ground state is still unknown.
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As the last example, consider the option for including the Breit interaction in the orbital optimization:

> dbsr_hf Li_092 atom=U ion=Li mbreit=2

6. List of input parameters

Input data can be provided in the input file <name>.inp or in the command line as keyword=value (the data from the command
line overrides the data from the input file <name>.inp). Below we describe input parameters with their default values indicated in
brackets. The zero value for many parameters implies a negative answer. name is the only mandatory parameter. The command line (or
input file) may contain any subset of input parameters, the rest will be replaced by their default values.

name name of the case; it is the first argument in the command line and is given
without a keyword.

atom symbolic name of the atom under consideration; can be used as the name of
the case.

an atomic number, integer, can be used instead of the symbolic name of the atom.
ion symbolic name of the ion under consideration; used to find the ground

configuration and core.
ai atomic number for the ion, integer, can be used instead of the symbolic name

of the ion.
z nuclear charge; can be real number (fraction) if needed for some special cases.
awt atomic weight, by default is chosen for the most abundant or most stable

isotope from the compilation [17].
rms the root-mean-square radius of nuclear, defined from its atomic weight or

taken from the compilation [17].
core list of closed shells; used only for a more compact description of the

configuration; can be specified as [He], [Be], [Ne], [Mg], [Ar], [Zn], [Kr], [Cd],
[Xe], [Hg], or [Rn].

conf electron configuration under consideration in the temm=AV or term=LS
modes; not used if the description of configurations comes from the
<name>.conf file. Under Unix environment, the configurations in the
command line should be included into apostrophes (e.g., conf=′2p(3)′).

term [LS] term=AV—optimization of a single relativistic configuration (given by the
input parameter conf) or a set of configurations (given in the file
<name>.conf) in the average-energy approximation.
term=LS—optimization of a single non-relativistic configuration (given by the
input parameter conf) or a set of non-relativistic configurations (given in the
file<name>.LS); otherwise, it is supposed the ground configuration of the
atom. In this option, all relevant relativistic configurations will be generated
by the program.
term=jj—optimization of all atomic states given in the <name>.c file in the
GRASP format.
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mbreit [0] inclusion of the Breit and QED corrections:
= 0—no corrections;
= 1—as the first-order corrections to the final energies;
= 2—Breit interaction is included into orbital optimization and QED as the
first order correction.

mode_SE [3] self-energy correction mode:
= 0— no correction;
= 1—pure hydrogen-based results;
= 2—Welton concept;
= 3—GRASP mode.

mode_VP [1] vacuum-polarization correction mode:
= 0—no correction;
= 1—the Uehling potential mode.

eal [5] indicates the mode for the statistical weights:
= 1—equally weighted;
= 5—statistically weighed;
= 9— defined by the user in the <name>.conf or <name>.c files (in format of
expansion coefficients).

varied [all] list of one-electron orbitals included in the SCF optimization; accepted value:
all, none, a list of orbitals separated by commas, or =number, where
number indicates the number of orbitals involved in the SCF procedure (from
the end of the list).

scf_tol [1.0E−10] energy convergence tolerance.
orb_tol [1.0E−7] orbital convergence tolerance.
end_tol [1.0E−6] orbital tail cut-off.
max_it [25] maximum number of iterations.
rotate [0] rotations during optimization (0/1 →no/yes).
out_w [0] create <name>.w file with radial functions in GRASP format (0/1 →no/yes).
out_plot [0] create <name>.plot file with radial functions ready for plotting (0/1

→no/yes).
out_nl [0] create <name>.nl file with all solutions for outer electron in the frozen-core

approximation (0/1 →no/yes).
debug [0] additional debug output (0/1 →no/yes).

Default values for atomic parameters are defined in the program file dbsr_zcom.f90 in themodule atoms_par. Included are the atomic
weight, an, the 2-character symbol for the atom, the core, the ground configuration, conf, and the weight, awt, for the most abundant or
most stable isotopes. The module includes values for atomic numbers 1–104. The values may easily be edited or the range extended by
adding data for higher atomic numbers. This file also contains a module for physical constants used in the program.

7. Data files

The program employs the name-driven file convention. All filenames have the structure <name>.<extension>, where <name>
(the value of name) identifies the specific calculation. The list of data files and their description is given in Table 1. There is also an option
for user-defined filenames that is defined by the corresponding keywords in the command line and can be useful in some specific cases.
For example, the input wavefunctions from GRASP calculations can be introduced through the instruction inp=<case>.w. To keep the
knot grid consistent with the previous calculations it is enough to indicate the corresponding knot file through the parameter knot, or
rename it as the default knot.dat file. In this case, all associated calculations for the given atom or ion will be carried out with the same
grid.

All input files are optional and the programwill use the default input parameters if needed. Note also that the input files can bemodified
by the program by adding the absent information, additional comments, or replacing some parameters. The latter may happen if the
parameters from the command line do not agree with the parameters in the files.
Format of the name.bsw file:
First record contains the B-spline grid parameters:

grid_type—type of grid
ns—number of B-splines
ks—order of B-splines
t—knot sequence
ksp—order of B-splines for the large component
ksq—order of B-splines for the small component

Then for each one-electron orbital i:

ebs—orbital spectroscopic symbol
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Table 1
Input/output files.

name.inp dat= . . . File type: formatted sequential input.
Usually created by the program and modified by user if needed.
Description: input parameters for the given run.

name.log log= . . . File type: formatted sequential output.
Description: Summary of the running information.

name.knot knot= . . . File type: formatted sequential input/output.
Provided by the user or created by the program if absent.
Description: defines the B-spline grid.

name.conf confs= . . . File type: formatted sequential input.
Written by the user or created by the program for term=LS.
Description: input configurations in the GRASP format (without coupling information) or a single non-relativistic
configuration.

name.c c= . . . File type: formatted sequential input.
Created by the user (one may use GRASP tools csl or jjgen) or created by the program for term=AV or term=LS.
Description: input configuration states in the GRASP format.

name.j j= . . . File type: formatted sequential output.
Created by the program for term=jj.
Description: state mixing coefficients.

name.bsw inp= . . . File type: unformatted sequential input.
Provided by the user or can be created by the program in prior runs.
Description: one-electron orbitals in B-spline representation; if the specified filename has an extension .w, the file
is supposed to be generated by the GRASP code.

name.bsw out= . . . File type: unformatted sequential output.
Description: one-electron orbitals in B-spline representation.
Created by program.

name.w w= File type: unformatted sequential output.
Description: one-electron orbitals in the GRASP format.
Created by program when parameter out_w > 0.

name.nl nl= File type: unformatted sequential output.
Description: one-electron orbitals in B-spline representation for all possible solutions for the outer electron; can be
used as a basis for the other calculations, e.g., in perturbation methods.
Created by program when parameter out_nl > 0.

name.plot plot= File type: formatted sequential output.
Description: one-electron orbitals in table form. Created by the program when parameter out_plot > 0.

mbs—number of splines in the orbital expansion
e—one-electron energy parameter
3. P(1:mbs)—B-spline coefficients for the large component
4. Q(1:mbs)—B-spline coefficients for the small component.

8. Program installation and testing

The DBSR_HF program is a part of the DBSR complex and extensively uses common routines from the DBSR libraries: ZCONFJJ,
DBS, ZCOM. ZCONFJJ deals with the state description and calculation of the angular coefficients, DBS contains subroutines for different
operations with B-splines, including two-electron integrals, and ZCOM contains commonly used subroutines, such as those that read
arguments or order arrays. For convenience of independent use, the DBSR_HF program is submitted as a stand-alone program, which
contains specific subroutines with names beginning with hf_ and routines from the libraries, collected in separate files, dbsr_zconfjj.f90,
dbsr_dbs.f90, and dbsr_zcom.f90. The DBSR_HF program also uses the linear algebra LAPACK and BLAS libraries which are widely used
in different applications and freely available at the site: http://www.netlib.org/lapack/. It is recommended that users employ the LAPACK
and BLAS libraries optimized for the given computer. Makefile contains all needed information for the compilation.

The program is modular in design and some features can be easily modified. In particular, the default input parameters and default
file names are defined in the module dbsr_hf in the file hf_MOD_dbsr_hf.f90. As mentioned earlier, the user may wish to include a new
subroutine to generate a grid optimized for a particular application in the file dbsr_lib_dbs.f90.

The program was thoroughly tested for different atoms and ions by comparing with GRASP [15] and MDFGME [27] results. Close
agreementwas found both for the total Coulomb energy and the Breit and QED corrections.We should note however that total energies for
heavy atoms noticeably depend on the nuclear model. All the above examples use the Fermi nuclear charge distribution, and the resulting
total energies may strongly depends on the root-mean-square nuclear radius used.

No special tests are provided with the present write-up. To check the program, the user is suggested to repeat the examples given in
the text. If the run for a specific case is failed, it is advised to delete all files with the given <name>, otherwise they may contain wrong
information which will confuse the program for the runs with the same <name>.

9. Conclusions

The single-configuration Dirac–Hartree–Fock approximation may be considered a good starting point for the study of various atomic
processes with heavy atoms and ions. We tested the program for neutral atoms up to Z = 104 and obtained good convergence in all cases.
The DHFwavefunctions can be used as an initial approximation for more elaborate calculations in multiconfiguration Dirac–Hartree–Fock
approach, or as basis wavefunctions for the CI calculations. Due to the simple and flexible input–output interface, the program can be used
in different small projects, e.g., in education. Because the results on one grid may be mapped onto a refined grid, it is possible to quickly
obtain rough estimates of solutions and, as needed, refine the calculations for greater accuracy. Though larger B-spline expansions are

http://www.netlib.org/lapack/
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needed, the present program can also easily obtain solutions for high n Rydberg states, or provide solutions at positive energies, which
simulate the continuum spectrum. Such continuumpseudostates have foundwide application in dealingwith physical processes explicitly
involving the atomic continuum. Further developments are under way for the multiconfiguration Dirac–Hartree–Fock method.
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