
Noname manuscript No.
(will be inserted by the editor)

The Number of Boolean Functions with
Multiplicative Complexity 2

Magnus Gausdal Find · Daniel
Smith-Tone · Meltem Sönmez Turan

Received: date / Accepted: date

Abstract Multiplicative complexity is a complexity measure, which is defined
as the minimum number of AND gates required to implement a given primi-
tive by a circuit over the basis (AND, XOR, NOT), with an unlimited number
of NOT and XOR gates. Implementations of ciphers with a small number of
AND gates are preferred in protocols for fully homomorphic encryption, multi-
party computation and zero-knowledge proofs. In 2002, Fischer and Peralta [1]
showed that the number of n-variable Boolean functions with multiplicative �

2n
�−1complexity one equals 2n+1 . In this paper, we study Boolean functions 2

with multiplicative complexity 2. By characterizing the structure of these func-
tions in terms of affine equivalence relations, we provide a closed form formula
for the number of Boolean functions with multiplicative complexity 2.

Keywords Affine equivalence · Boolean functions · Cryptography · Multi-
plicative complexity · Self-mappings

Mathematics Subject Classification (2000) 94A60 · 06E30

1 Introduction

Multiplicative complexity is a complexity measure, which is defined as
the minimum number of AND gates required to implement a given primitive

Magnus Gausdal Find
National Institute of Standards and Technology

Daniel Smith-Tone
National Institute of Standards and Technology &
University of Louisville

Meltem Sönmez Turan
National Institute of Standards and Technology &
Dakota Consulting Inc.

2 Magnus Gausdal Find et al.

by a circuit over the basis (AND, XOR, NOT), with an unlimited number of
NOT and XOR gates. In recent years, the relationships between multiplicative
complexity and cryptography has been pointed out in several studies:

Multiplicative Complexity and Cryptography Many protocols for fully homo-
morphic encryption (e.g., [2]), multi-party computation (e.g., [3]) and zero-
knowledge proofs of knowledge (e.g., [4]) all operate on the circuit representa-
tion of a function in a gate by gate manner. In these and many other protocols
it is the case that processing AND gates is more expensive than processing
XOR gates. We refer to references in [5] for a comprehensive list of examples.
Courtois et al. [6] argued that minimizing the number of AND gates is impor-
tant to prevent against side channel attacks such as differential power analysis.
In Eurocrypt’15, Albrecht et al.[5] used this motivation to design the family
of block ciphers LowMC.

On the other hand, having high multiplicative complexity is essential for
security, e.g., Boyar et al. [7] showed that a cryptographic hash function must
have a certain multiplicative complexity to be collision resistant.

Multiplicative Complexity and Circuit Design Determining the multiplicative
complexity of a given function is computationally intractable, even for func-
tions with a small number of variables. For general n, it is known that under
standard cryptographic assumptions it is not possible to compute the multi-
plicative complexity in polynomial time in the length of the truth table [8]. The
multiplicative complexity of a random n-variable Boolean function is at least
2n/2 −O(n) with high probability [9]. In 2010, Boyar et al. [10] proposed a two-
stage heuristic method to minimize the gate complexity of Boolean circuits. In
the first stage, the heuristic minimizes the number of AND gates required to
implement the function, and then in the second stage, the linear components
are optimized. Using this method, they constructed efficient circuits for the
AES S-box over the basis (AND, XOR, NOT). In 2014, Turan and Peralta
[11] studied the multiplicative complexity of five variable Boolean functions
and showed that any five variable Boolean function can be implemented with
at most four AND gates. Also in 2014, Zajac and Jókay [12] showed that any
bijective 4×4 Sbox can be implemented with at most five AND gates.

This Paper In this work, we study the number of n-variable Boolean func-
tions with multiplicative complexity M . Schnorr [13] gave a closed form for
the number of n-variable quadratic functions with a given multiplicative com-
plexity. In [9], it is shown that the number of functions with multiplicative

+2M +2Mn+n+1complexity M is at most 2M 2 . For large values of n and M ,
this bound is essentially tight [9], but it is unclear to what extent this is true
for small constant values of M . In 2002, Fischer and Peralta [1] showed that � �

2n−1there are precisely 2n+1 Boolean functions on n variables with multi-2
plicative complexity 1. Their result was based on properties on polynomial
representations of such Boolean functions and the authors mention that this
technique is unlikely to generalize to the case of even multiplicative complexity

3 The Number of Boolean Functions with Multiplicative Complexity 2

2. In this work, we developed an alternative approach to count the number
of Boolean functions with a given multiplicative complexity. Our approach
relies on canonical circuits that compute functions of a certain multiplicative
complexity. First, we count the number of such circuits, and then by solving
a certain system of polynomial equations we obtain the number of functions
from this. From a theoretical perspective this gives an algorithm, that given
as input M , outputs a formula for the number of functions in n variables with
multiplicative complexity M . Using this approach, we reprove the result of
Fischer and Peralta [1], and extend the result to show that the number of
Boolean functions with multiplicative complexity exactly 2 equals: � �

2 2n − 8 2n − 8
2n(2n − 1)(2n − 2)(2n − 4) + + .

21 12 720

29 ·720We remark that this is asymptotically a factor of ≈ 6043 smaller than 61
the bound from [9].

The organization of the paper is as follows. Section 2 gives definitions
and some preliminary information about Boolean functions and multiplicative
complexity. Section 3 discusses affine transformations and equivalence classes.
Section 4 studies the Boolean functions with multiplicative complexity one.
Section 5 provides the equivalence classes of Boolean functions with multi-
plicative complexity 2. Section 6 concludes the paper.

2 Preliminaries

Let F2 be the binary field. An n-variable Boolean function f is a mapping
from Fn to F2. Let Bn be the set of n-variable Boolean functions. A Boolean 2
function f ∈ Bn can be represented uniquely by the list of output values for
each input Tf = (f(0, . . . , 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1)). This list is called
the truth table (representation) of f . Since the truth table has length 2n and
there are two possibilities for each, |Bn| = 22

n
. Another way of representing

a Boolean function f ∈ Bn is by the unique multilinear polynomial called the
algebraic normal form (ANF) X

uf(x1, . . . , xn) = aux , (1)
u∈Fn

2

u u1 u2 unwhere au ∈ F2 and x = x x · · · x is a monomial containing the variables 1 2 n
uxi where ui = 1. The degree of the monomial x is the number of variables

appearing in xu. The degree of a Boolean function, denoted df , is the highest
degree of monomials occurring in its ANF. Functions with degree 2 are called
quadratic and functions with degree 1 are called affine.

The multiplicative complexity of a Boolean function f is the minimum
number of AND gates (multiplications in F2) that are sufficient to evaluate
the function over the basis (AND, XOR, NOT) where all gates have fanin 2. It
is known that a function with degree d has multiplicative complexity at least
d − 1 [14]. This bound is called the degree bound.

4

2

Magnus Gausdal Find et al.

3 Affine Transformations and Equivalence Classes

Definition 1 [15] A map S : Bn → Bn is called an affine transformation if
S

g 7−→ f is defined by

f(x) = g(Ax + a) + b> x + c, for all x,

where A is a non-singular n × n matrix over F2; a, b, x are column vectors in
Fn and c ∈ F2.

An affine transformation can be characterized by the values of A, a, b, c.
Directly from the definition of an affine transformation, it follows that the
relation

R = {(f, g)| ∃ an affine transformation from f to g},
is an equivalence relation on Bn. This relation imposes equivalence classes on
Bn, and two functions in the same class are said to be affine equivalent. An
algorithm to determine whether two functions are equivalent is given in [16].

Let [f] denote the equivalence class containing the function f . For brevity,
we refer to the function f ∈ Bn by its algebraic normal form. For example we
will refer to the n-variable function f(x) = x1x2x3 as simply x1x2x3, while
[x1x2x3] refers to the equivalence class containing f .

By counting the number of choices of the A, a, b, and c from Definition 1,
we get that for all n ∈ N, the total number of distinct affine transformations
applicable to any given function f ∈ Bn is

n−1Y
τn = 22n+1 (2n − 2i).

i=0

It was shown in 1972 by Berlekamp and Welch that B5 has 48 equivalence
classes [15]. Maiorana [17] proved that B6 has 150 357 equivalence classes.
This was independently verified by Fuller [16] and Braeken et al. [18]. It was
shown by Hou [19] that B7 has 63 379 147 320 777 408 548(≈ 265.78) classes. See
Table 1 for the equivalence classes with n=2,3,4 variables.

It should be noted that multiplicative complexity is affine invariant, i.e.,
the multiplicative complexity of a Boolean function does not change after
applying an affine transformation to the function. Hence functions in the same
equivalence class all have the same mulitiplicative complexity.

3.1 Properties of Affine Transformations

For the purposes of the rest of the paper, we represent the affine transfor-
mation from f(x) to f(Ax + a) + b>x + c using the tuple S = (A, a, b, c).
The collection of affine transformations (A, a, b, c) forms a group An under
the operation ⊗ defined by

(A1, a1, b1, c1)⊗(A2, a2, b2, c2) = (A2A1, A2a1+a2, A
>
1 b2 +b1, b

>
2 a1 +c1+c2).

5 The Number of Boolean Functions with Multiplicative Complexity 2

n Equivalence Class [f] |[f]| |Θ(f)| dimension k τn

2
[x1]
[x1x2]

8
8

24
24

1
2

192

[x1] 16 1344 1
3 [x1x2] 112 192 2 21504

[x1x2x3] 128 168 3

4

[x1]
[x1x2]
[x1x2x3]
[x1x2 + x3x4]
[x1x2x3 + x1x4]
[x1x2x3x4]
[x1x2x3x4 + x1x2]
[x1x2x3x4 + x1x2 + x3x4]

32
1120
3840
896

26880
512

17920
14336

322560
9216
2688
11520
384

20160
579
720

1
2
3
4
4
4
4
4

10321920

Table 1 Equivalence classes for n = 2, 3, 4.

Note that this group operation corresponds to applying the affine transforma-
tion (A2, a2, b2, c2), followed by (A1, a1, b1, c1).

Let f ∈ Bn and let Lf be the number of distinct input variables appearing
in the ANF of f . For example, for f(x1, . . . , x6) = x1x2x3 + x3x4, Lf is 4. It
is easy to see that (i) the dimension of [f] is at least the degree of f , and (ii)
Lf is not affine invariant.

Definition 2 The equivalence class [f] has dimension k (0 ≤ k ≤ n), if the
smallest Lg for g ∈ [f] is k, i.e., k = ming∈[f] Lg. Overloading the definition,
any function g ∈ [f] is also said to have dimension k.

For a function g ∈ Bk, the embedding of g in Bn is the function gn(x) =
g(x1, . . . , xk). When certain inputs do not affect the value of the output of a
function we denote them with ∗ or when clear from context ignore them alto-
gether. Thus gn(x) = gn(x1, . . . , xk, ∗, . . . , ∗) = g(x1, . . . , xk). We say that the
function g ∈ Bk is a k-dimensional representative of f ∈ Bn if the embedding
of g in Bn is affine equivalent to f . Note that if the dimension of [f] is k then
there exist `-dimensional representatives of f for all ` ≥ k.

Next we derive a useful computational result; namely, affine equivalence
can be tested with low-dimensional representatives.

Lemma 1 Let f, g ∈ Bn be of dimension at most k. Let fk and gk be k-
dimensional representatives of f and g, respectively. Then g ∈ [f] if and only
if gk ∈ [fk].

Proof Suppose that f and g are affine equivalent. Then there exists an affine
transformation S ∈ An such that S(f) = g. Let fn and gn be the embeddings
of fk and gk in Bn. By definition there exist affine transformations T,U ∈ An

such that T (fn) = f and U(gn) = g. Thus U−1 ⊗ S ⊗ T (fn) = gn, and so fn

and gn are affine equivalent. We may write �� � � � � � �
a1 b1U−1 ⊗ S ⊗ T =

A B
, , , c ,

C D a2 b2

6 Magnus Gausdal Find et al.

where A is k ×k, B is k ×n−k, C is n−k ×k, D is n−k ×n−k, a1 and b1 are� �>
k-dimensional, and a2 and b2 are n − k-dimensional. Let x1 = x1 · · · xk� �>
and x2 = xk+1 · · · xn . Since the variables xk+1, . . . , xn do not occur in the
ANF of gn, we find that �� � � � � ��

A B x1 a1fn +
C D x2 a2

is linear in x2. Thus �� � � � � �� �� � � � � �� � �� �A B x1 a1 A 0 x1 a1 x1fn + + fn + = 0 b0 .
C D x2 a2 C D x2 a2

2 x2 � �� �
Adding b1 b2

x1 + c to both sides of this equation we obtain on the left
x2

hand side gn and on the right hand side �� � � � � �� i � �h
A 0 x1 a1 > > x1fn + + b1 b2 + b0 + c.2C D x2 a2 x2

Since the output of fn doesn’t involve the variables xk+1, . . . , xn, we learn that
b0 = b2. Clearly A is of full rank. Then for all x = x1||x2,2 �� � � � � �� � � � �A 0 x1 a1 x1> gk(x1) = gn(x1||x2) = fn + + b1 0> + c

C D x2 a2 x2

> = fn([Ax1 + a1]||[Cx1 + Dx2]) + b1 x1 + c
> = fk(Ax1 + a1) + b1 x1 + c.

Thus fk and gk are affine equivalent.
To prove the converse, assume that fk and gk are affine equivalent. Then

there exists an affine transformation S such that S(fk) = gk. We may write
S = (A, a, b, c). Consider the affine transformation �� � � � � � �

A 0 a b
S̃ = , , , c .

0 I 0 0

It is obvious that for all x ∈ Fn with x = x1||x2 where x1 ∈ Fk
2 and x2 ∈ Fn−k

2 2
that �� � � � � �� � �

˜ A 0 x1 a � � x1S(fn)(x) = fn + + b 0 + c
0 I x2 0 x2

= fn(Ax1 + a||x2) + b> x1 + c

= fk(Ax1 + a) + b> x1 + c

= gk(x1)

= gn(x).

Thus fn and gn are affine equivalent, and by transitivity, f and g are affine
equivalent. Thus the proof is complete. ut

7 The Number of Boolean Functions with Multiplicative Complexity 2

3.2 Self-Mappings

In this section we establish a few facts on a particular kind of affine trans-
formations, called self-mappings.

Definition 3 [16] A self mapping of f ∈ Bn is an affine transformation such
that f(x) = f(Ax + a)+ b>x + c, where A is a non-singular n × n matrix over
F2; a, b, x are column vectors in Fn and c ∈ F2.2

Let f ∈ Bn, and Θ(f) be the set of self-mappings of f . We first remark
that Θ(f) is closed under the group operation ⊗, since for every x ∈ Fn and2
every pair of self-mappings (S1, S2), defined by the tuples S1 = (A1, a1, b1, c1)
and S2 = (A2, a2, b2, c2), we have:

x + b>(S1 ⊗ S2)(f)(x) = f(A2A1x + A2a1 + a2) + (A>
1 b2 + b1)

>
2 a1 + c1 + c2

= f(A2A1x + A2a1 + a2) + b>
2 A1x + b>

1 x + b>
2 a1 + c1 + c2

= f(A2(A1x + a1) + a2) + b>
2 (A1x + a1) + c2 + b>

1 x + c1.
(2)

Now since f(A2x + a2) + b>
2 x + c2 = f(x) for all x and since A1x + a1 is a

permutation, we have that

f(A2(A1x + a1) + a2) + b>
2 (A1x + a1) + c2 = f(A1x + a1), (3)

for all x. Thus from equations (2) and (3) we obtain:

(S1 ⊗ S2)(f)(x) = f(A2(A1x + a1) + a2) + b>
2 (A1x + a1) + c2 + b>

1 x + c1

= f(A1x + a1) + b>
1 x + c1

= f(x).

Since Θ(f) is finite, Θ(f) forms a subgroup of An. By the Orbit-Stabilizer
Theorem, we have

τn|[f]| = . |Θ(f)|
In the following lemma, we let σ be the number of ways of choosing k + 1

n-dimensional affine forms, t1, . . . , tk+1, over x1, . . . , xn the first k of which are
linearly independent.

Lemma 2 Let f ∈ Bn, and g ∈ Bk be a k-dimensional representative of f .
Let gn be the embedding of g in Bn and let ρ be the number of choices of affine
forms r1, . . . , rk+1 such that

gn(t1, . . . , tk, ∗, . . . , ∗) + tk+1 = gn(r1, . . . , rk, ∗, . . . , ∗) + rk+1 for all x ∈ Fn
2 .

σThen |[f]| = |[gn]| = .ρ

8 Magnus Gausdal Find et al.

Proof Let I be the collection of self mappings (A, a, b, c) with b = 0 and c = 0
that satisfies the system of linear equations

A · (x1, . . . , xn)T + a = (x1, . . . , xk, ∗, . . . , ∗)T .

Since I is a subgroup of Θ(gn), the cosets of I form a refinement of the
partition of An formed by the cosets of Θ(gn). Hence |An : I| = |An :
Θ(gn)||Θ(gn) : I|.

Any affine mapping in I has the form: �� � � � � � �
I 0 0 0

, , , 0 ,
A B a 0

where I is the k × k identity matrix, A is an (n − k) × k matrix, B is an
(n−k)×(n−k) matrix, and a is an n−k-dimensional column vector. Consider
an arbitrary left coset of I. That is, a left coset generated by �� � � � � � �

C D c e
S = , , , h ,

E F d f

where each of the block matrices and block vectors are of the appropriate
dimension. Any member of the left coset S ⊗ I is given by �� � � � � � �

C D
,

c
,
e

, h .
AC + BE AD + BF Ac + Bd + a f

Here, the first k rows of the first two coordinates as well as the last two
coordinates of this element are identical to S; therefore any two elements in
S ⊗ I share these k + 1 affine forms (the first k of which are necessarily
independent) in common. On the other hand, since gn is the embedding of
a k-dimensional simple representative of f , different values of the last two
coordinates of S give rise to different functions; thus, since each such coset of
I is determined by the first k rows of the first two coordinates of S along with
the last two coordinates of S, the cosets of I are uniquely determined by such
choices of k + 1 affine forms with the first k linearly independent. Therefore

|An:I| σ|An : I| = σ and |Θ(f) : I| = ρ. Thus |[f]| = |[gn]| = |Θ(f):I| = ρ . ut

A particular consequence of the lemma is the following tool for compu-
tationally determining the number of self-mappings of a Boolean function by
computing on a much smaller search space.

Corollary 1 Let f ∈ Bn be of dimension k. Let g ∈ Bk be a k-dimensional
representative of f and let gn be the embedding of g in Bn. The number of
self-mappings θ of f is

n−1Y
θ = 2n−k (2n − 2i)ρ,

i=k

where ρ is the number of choices of affine forms r1, . . . , rk+1 such that

gn(t1, . . . , tk, ∗, . . . , ∗) + tk+1 = gn(r1, . . . , rk, ∗, . . . , ∗) + rk+1 for all x ∈ Fn
2 ,

as in Lemma 2.

9 The Number of Boolean Functions with Multiplicative Complexity 2

Proof When n = k we have θ = ρ in the formula. If k < n, by Lemma 2, we
τn τnρ Qk−1

have that σ = |[gn]| = θ , and thus θ = . Since σ = 2n+k+1
i=0 (2

n − 2i),ρ σ

and since |Θ(f)| = |Θ(gn)|, we have the result. tu

We will count the number of functions with multiplicative complexity M
using the following strategy. First show that all functions on n variables with
multiplicative complexity M can be partitioned into equivalence classes, each
having a representative of a dimension independent of n. Now the size of each
of these equivalence classes (as a function of n) can be determined directly
using Corollary 1 as τn/θ. The total number of functions is then the sum of
the sizes of these equivalence classes.

4 Boolean Functions with Multiplicative Complexity One

Fischer and Peralta [1] provided the number of Boolean functions with
multiplicative complexity one. In this section, we reprove their result using an
alternative method which can easily be extended for multiplicative complexity
two.

Proposition 1 Let f be an n-variable Boolean function with multiplicative
complexity 1. f is affine equivalent to x1 · x2.

Proof Let f ∈ Bn have multiplicative complexity exactly 1. Then f is on of
the form

> >f(x) = (a x) · (b> x) + c x + d,

where a and b are distinct and nonzero. Note that when a and b do not satisfy
these conditions, the multiplicative complexity of f is 0.

Define the function g ∈ Bn by

g(x1, . . . , xn) = x1 · x2.

We want to show that f and g are affine equivalent. It suffices to show that
there exists an invertible A such that

>f(x) = g(Ax) + c x + d.

One can let the first row of A be a>, the second row be b>. The last n − 2
vectors can be chosen arbitrarily under the condition that they together with
a, b form a basis of Fn

2 . This is possible since a, b are distinct and therefore
linearly independent. ut

Thus it suffices to count the number of functions in the equivalence class
from Proposition 1. To this end, we use Lemma 2.

Theorem 1 The number of n-variable Boolean functions with multiplicative
complexity 1 is exactly

2n+1(2n − 1)(2n − 2)/6.

10 Magnus Gausdal Find et al.

Proof First we count the number of circuits with exactly one AND gate, then,
compute the number of functions with multiplicative complexity 1. Written as
a formula, such a circuit is of the form

C(x) = t1(x) · t2(x) + t3(x),

where t1, t2 and t3 are affine forms on F2. Since t1, t2 must be linearly inde-
pendent, the number of such circuits is 4 · 2n · (2n − 1) · 2n+1. Now we want
to use Corollary 1. For this, we determine ρ, number of such triples of affine
forms satisfying the above equation. An exhaustive search (we used a com-
puter program but the system is small enough that one can do this by hand)
found that ρ = 24. We get that the size of the equivalence class x1x2, the
number of functions with multiplicative complexity 1 is

4 · 2n · (2n − 1) · 2n+1

,
24

which is what we wanted. ut

5 Boolean Functions with Multiplicative Complexity Two

In this section, we generalize the proof technique from the previous section
to count the number of functions with multiplicative complexity 2. We start by
showing that there exist exactly three equivalence classes with multiplicative
complexity 2.

Theorem 2 Let f be an n-variable Boolean function with multiplicative com-
plexity 2. Then f is affine equivalent to exactly one of the following three
functions:

1. x1x2x3

2. x1x2x3 + x1x4

3. x1x2 + x3x4

Proof First we show that each function with multiplicative complexity 2 falls
in one of three classes. Consider a circuit, C, containing exactly two AND
gates computing a function with multiplicative complexity two. Suppose first
that there is no directed path from either of the AND gate to the other. In
this case there exists affine forms r1, , . . . , r5 such that the circuit computes
the function

C(x) = r1(x) · r2(x) + r3(x) · r4(x) + r5(x).

This function is affine equivalent to x1x2 + x3x4 via an affine transformation
similar to the one demonstrated in the proof of Theorem 1.

Now suppose that there exist a directed path from one of the AND gates
to the other. Call the functions computed by the two AND gates fA1 , fA2 ,
respectively. Suppose the topologically minimal AND gate computes the func-
tion fA1 (x) = r1(x)r2(x) for suitably chosen affine forms r1, r2.

11 The Number of Boolean Functions with Multiplicative Complexity 2

We now claim that there exist affine forms r3, r4, r5 such that the circuit
computes the function

(r1 · r2 + r3) · r4 + r5.

First, we can assume that fA1 occurs only in one of the two inputs of fA2 . To
see this, notice that

(fA1 + r3) · (fA1 + r4) = (fA1 + r3) · (r4 + r3 + 1).

Therefore the topologically last AND gate, fA2 , computes the function

fA2 = (fA1 + r3) · r4.

So we have that the output of the circuit is either fA2 + r5, or fA2 + fA1 + r5.
for some affine function L5.

We claim that the output can be assumed to be on the first form. Suppose
A2 = (A1 + r3) · r4, and let A0

0

0
2 = (A1 + r3) · (r4 + 1), r

5 = (A1 + r3) · (1 + r4) + r3 + r5 = A2 + A1 + r5.

= r5 + r35

A2 + r 0

This proves the claim. Now suppose that r3 ∈ spanF2
{r1, r2, r4}, and let

r3 = c1r1 + c2r2 + c4r4.

By adding constants to r1, r2 we can assume that c1 = c2 = 0. That is we have
that the function computed is:

(r1r2 + c4r4)r4 + r5,

again we can assume that c4 = 0 since otherwise

(r1r2 + r4)r4 + r5 = r1r2r4 + r4 + r5.

We observe that the affine functions r1, r2, r4 must be linearly independent
(otherwise the function has multiplicative complexity at most 1). We conclude
that this function is affine equivelant to x1x2x3.

Now suppose that r3 is linearly independent of r1, r2, r4. In this case the
function computed is

r1r2r4 + r3r4 + r5,

for linearly independent functions r1, r2, r3, r4. This function is clearly linearly
equivalent to the function x1x2x3 + x1x4.

Finally we notice that these three functions indeed belong to three distinct
equivalence classes. The function (3) has degree two, and is therefore not
affine equivalent to a function of degree 3. Furthermore, by Lemma 1 a simple
calculation shows that [x1x2x3] has dimension 3 whereas [x1x2x3 + x1x4] has
dimension 4. Thus these equivalence classes are distinct. ut

The result readily implies that there are three different circuit types computing
functions with multiplicative complexity 2. These are shown in Figure 1.

12 Magnus Gausdal Find et al.

r1 r2

r3
r4

⊕

∧

∧

r1 r2

r3

r4

r5

∧

⊕

∧

⊕

r1 r2 r3 r4

r5

∧

⊕

∧

⊕

Type I Type II Type III

Fig. 1 The three different circuit types for the three equivalence classes.ri denotes an
affine form on the input variables. Every function with multiplicative complexity 2 can be
computed by exactly one of the three displayed circuits.

Theorem 3 The number of n-variable Boolean functions with multiplicative
complexity 2 is exactly � �

2 2n − 8 2n − 8
2n(2n − 1)(2n − 2)(2n − 4) · + + .

21 12 720

Proof By Theorem 2 it suffices to count the number of functions in each of
the following three equivalence classes. By the proof of Theorem 2 there is a
natural type of circuit associated with each equivalence class.

1. [x1x2x3]
2. [x1x2x3 + x1x4]
3. [x1x2 + x3x4]

We will count the number of functions in each class in a way similar in
spirit, but slightly more complicated than what was done in the proof of The-
orem 1: We will count the number of circuit layouts for each type. Then we
will compute the value of ρ from Corollary 1 to obtain the actual number of
functions.

Type 1: We want to determine the value ρ from Corollary 1. That is, count
the number of choices of affine forms (r1, r2, r3, r4) such that for all x

t1(x) · t2(x) · t3(x) + t4(x) = r1(x) · r2(x) · r3(x) + r4(x). (4)

By affine equivalence, the number of solutions (r1, r2, r3, r4) does not de-
pend on the actual choice of (t1, t2, t3, t4). By going through all the possibly
choices one can verify that the number of solutions 168 times. By Corollary 1,
the number of functions in this equivalence class is

(2n − 1)(2n − 2)(2n − 4)2n+1

.
21

http:classes.ri

13 The Number of Boolean Functions with Multiplicative Complexity 2

Type 2: Again here we can count the number of ways of choosing (r1, . . . , r5)
in such that for all x

r1(x)r2(x)r3(x) + r1(x)r4(x) + r5(x) = t1(x)t2(x)t3(x) + t1(x)t4(x) + t5(x).

Using a computer search one can verify that this number is 384, so by Corol-
lary 1 the number of functions computable by this type of circuit is.

2n(2n − 1)(2n − 2)(2n − 4)(2n − 8)
.

12

Type 3: Again, a computer search can verify that for this type we have that
ρ = 23040. That is, the number of distinct functions computable by circuits
of this type is

(2n − 1)(2n − 2)(2n − 4)(2n − 8)2n

.
720

We conclude that the total number of functions in Bn with multiplicative
precisely 2 is: � �

2 2n − 8 2n − 8
2n(2n − 1)(2n − 2)(2n − 4) · + +

21 12 720

ut

6 Conclusion

One can count the number of Boolean functions with multiplicative com-
plexity M by exhaustively listing the equivalence classes with multiplicative
complexity M and finding the size of each class. However, already when mul-
tiplicative complexity is three, it is hard to list the equivalence classes exhaus-
tively. For functions on n = 4, one can show that [x1x2x3x4],[x1x2x3x4 +x1x2]
and [x1x2x3x4 + x1x2 + x3x4] are the only equivalence classes with multiplica-
tive complexity 3. For n = 5, the exhaustive list of classes with multiplicative
complexity 3 is not known. Turan and Peralta [11] showed that the number
of such classes is between 16 and 24. For n = 6, there are 2497 equivalence
classes having degree at most 4. This provides an upper bound on the number
of equivalence classes that can be computed by circuits with three AND gates,
since some of these might have multiplicative complexity 4 or more.

References

1. Michael J. Fischer and René Peralta. Counting predicates of conjunctive complexity
one. Yale Technical Report 1222, February 2002.

2. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, Innovations in
Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012, pages
309–325. ACM, 2012.

14 Magnus Gausdal Find et al.

3. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M.
Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland,
July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory of Pro-
gramming & Track C: Security and Cryptography Foundations, volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

4. Joan Boyar, Ivan Damg̊ard, and René Peralta. Short non-interactive cryptographic
proofs. J. Cryptology, 13(4):449–472, 2000.

5. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in Computer
Science, pages 430–454. Springer, 2015.

6. Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving circuit optimisation
problems in cryptography and cryptanalysis, 2011.

7. Joan Boyar, Magnus Find, and René Peralta. Four measures of nonlinearity. In Paul G.
Spirakis and Maria J. Serna, editors, CIAC, volume 7878 of Lecture Notes in Computer
Science, pages 61–72. Springer, 2013.

8. Magnus Gausdal Find. On the complexity of computing two nonlinearity measures. In
Edward A. Hirsch, Sergei O. Kuznetsov, Jean-´ Eric Pin, and Nikolay K. Vereshchagin,
editors, Computer Science - Theory and Applications - 9th International Computer Sci-
ence Symposium in Russia, CSR 2014, Moscow, Russia, June 7-11, 2014. Proceedings,
volume 8476 of Lecture Notes in Computer Science, pages 167–175. Springer, 2014.

9. Joan Boyar, René Peralta, and Denis Pochuev. On the multiplicative complexity of
Boolean functions over the basis (∧, ⊕, 1). Theor. Comput. Sci., 235(1):43–57, 2000.

10. Joan Boyar and René Peralta. A new combinational logic minimization technique with
applications to cryptology. In Paola Festa, editor, SEA, volume 6049 of Lecture Notes
in Computer Science, pages 178–189. Springer, 2010.

11. Meltem Sönmez Turan and René Peralta. The multiplicative complexity of boolean
functions on four and five variables. In Thomas Eisenbarth and Erdinç Oztürk, editors, ¨

Lightweight Cryptography for Security and Privacy - Third International Workshop,
LightSec 2014, Istanbul, Turkey, September 1-2, 2014, Revised Selected Papers, volume
8898 of Lecture Notes in Computer Science, pages 21–33. Springer, 2014.

12. Pavol Zajac and Matus Jokay. Multiplicative complexity of bijective 4 x 4 s-boxes.
Cryptography and Communications, 6(3):255–277, 2014.

13. Roland Mirwald and Claus-Peter Schnorr. The multiplicative complexity of quadratic
Boolean forms. Theor. Comput. Sci., 102(2):307–328, 1992.

14. Claus-Peter Schnorr. The multiplicative complexity of Boolean functions. In AAECC,
pages 45–58, 1988.

15. Elwyn R. Berlekamp and Lloyd R. Welch. Weight distributions of the cosets of the (32,
6) Reed-Muller code. IEEE Transactions on Information Theory, 18(1):203–207, 1972.

16. Joanne Elizabeth Fuller. Analysis of affine equivalent boolean functions for cryptogra-
phy. PhD thesis, Queensland University of Technology, 2003.

17. James A. Maiorana. A classification of the cosets of the Reed-Muller code R(1,6).
Mathematics of Computation, 57(195):403–414, 1991.

18. An Braeken, Yuri L. Borissov, Svetla Nikova, and Bart Preneel. Classification of Boolean
functions of 6 variables or less with respect to some cryptographic properties. In Lúıs
Caires, Giuseppe F. Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung,
editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 324–334.
Springer, 2005.

19. Xiang-Dong Hou. AGL (m, 2) acting on R (r, m)/R (s, m). Journal of Algebra,
171(3):927–938, 1995.

