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Abstract Multiplicative complexity is a complexity measure, which is defined 
as the minimum number of AND gates required to implement a given primi-
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party computation and zero-knowledge proofs. In 2002, Fischer and Peralta [1] 
showed that the number of n-variable Boolean functions with multiplicative �
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for the number of Boolean functions with multiplicative complexity 2. 
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1 Introduction 

Multiplicative complexity is a complexity measure, which is defined as 
the minimum number of AND gates required to implement a given primitive 
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by a circuit over the basis (AND, XOR, NOT), with an unlimited number of 
NOT and XOR gates. In recent years, the relationships between multiplicative 
complexity and cryptography has been pointed out in several studies: 

Multiplicative Complexity and Cryptography Many protocols for fully homo-
morphic encryption (e.g., [2]), multi-party computation (e.g., [3]) and zero-
knowledge proofs of knowledge (e.g., [4]) all operate on the circuit representa-
tion of a function in a gate by gate manner. In these and many other protocols 
it is the case that processing AND gates is more expensive than processing 
XOR gates. We refer to references in [5] for a comprehensive list of examples. 
Courtois et al. [6] argued that minimizing the number of AND gates is impor-
tant to prevent against side channel attacks such as differential power analysis. 
In Eurocrypt’15, Albrecht et al.[5] used this motivation to design the family 
of block ciphers LowMC. 

On the other hand, having high multiplicative complexity is essential for 
security, e.g., Boyar et al. [7] showed that a cryptographic hash function must 
have a certain multiplicative complexity to be collision resistant. 

Multiplicative Complexity and Circuit Design Determining the multiplicative 
complexity of a given function is computationally intractable, even for func-
tions with a small number of variables. For general n, it is known that under 
standard cryptographic assumptions it is not possible to compute the multi-
plicative complexity in polynomial time in the length of the truth table [8]. The 
multiplicative complexity of a random n-variable Boolean function is at least 
2n/2 −O(n) with high probability [9]. In 2010, Boyar et al. [10] proposed a two-
stage heuristic method to minimize the gate complexity of Boolean circuits. In 
the first stage, the heuristic minimizes the number of AND gates required to 
implement the function, and then in the second stage, the linear components 
are optimized. Using this method, they constructed efficient circuits for the 
AES S-box over the basis (AND, XOR, NOT). In 2014, Turan and Peralta 
[11] studied the multiplicative complexity of five variable Boolean functions 
and showed that any five variable Boolean function can be implemented with 
at most four AND gates. Also in 2014, Zajac and Jókay [12] showed that any 
bijective 4×4 Sbox can be implemented with at most five AND gates. 

This Paper In this work, we study the number of n-variable Boolean func-
tions with multiplicative complexity M . Schnorr [13] gave a closed form for 
the number of n-variable quadratic functions with a given multiplicative com-
plexity. In [9], it is shown that the number of functions with multiplicative 

+2M +2Mn+n+1complexity M is at most 2M 2 . For large values of n and M , 
this bound is essentially tight [9], but it is unclear to what extent this is true 
for small constant values of M . In 2002, Fischer and Peralta [1] showed that � �

2n−1there are precisely 2n+1 Boolean functions on n variables with multi-2 
plicative complexity 1. Their result was based on properties on polynomial 
representations of such Boolean functions and the authors mention that this 
technique is unlikely to generalize to the case of even multiplicative complexity 
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2. In this work, we developed an alternative approach to count the number 
of Boolean functions with a given multiplicative complexity. Our approach 
relies on canonical circuits that compute functions of a certain multiplicative 
complexity. First, we count the number of such circuits, and then by solving 
a certain system of polynomial equations we obtain the number of functions 
from this. From a theoretical perspective this gives an algorithm, that given 
as input M , outputs a formula for the number of functions in n variables with 
multiplicative complexity M . Using this approach, we reprove the result of 
Fischer and Peralta [1], and extend the result to show that the number of 
Boolean functions with multiplicative complexity exactly 2 equals: � � 

2 2n − 8 2n − 8 
2n(2n − 1)(2n − 2)(2n − 4) + + . 

21 12 720 

29 ·720We remark that this is asymptotically a factor of ≈ 6043 smaller than 61 
the bound from [9]. 

The organization of the paper is as follows. Section 2 gives definitions 
and some preliminary information about Boolean functions and multiplicative 
complexity. Section 3 discusses affine transformations and equivalence classes. 
Section 4 studies the Boolean functions with multiplicative complexity one. 
Section 5 provides the equivalence classes of Boolean functions with multi-
plicative complexity 2. Section 6 concludes the paper. 

2 Preliminaries 

Let F2 be the binary field. An n-variable Boolean function f is a mapping 
from Fn to F2. Let Bn be the set of n-variable Boolean functions. A Boolean 2 
function f ∈ Bn can be represented uniquely by the list of output values for 
each input Tf = (f(0, . . . , 0), f(0, . . . , 0, 1), . . . , f(1, . . . , 1)). This list is called 
the truth table (representation) of f . Since the truth table has length 2n and 
there are two possibilities for each, |Bn| = 22

n 
. Another way of representing 

a Boolean function f ∈ Bn is by the unique multilinear polynomial called the 
algebraic normal form (ANF) X 

uf(x1, . . . , xn) = aux , (1) 
u∈Fn 

2 

u u1 u2 unwhere au ∈ F2 and x = x x · · · x is a monomial containing the variables 1 2 n 
uxi where ui = 1. The degree of the monomial x is the number of variables 

appearing in xu. The degree of a Boolean function, denoted df , is the highest 
degree of monomials occurring in its ANF. Functions with degree 2 are called 
quadratic and functions with degree 1 are called affine. 

The multiplicative complexity of a Boolean function f is the minimum 
number of AND gates (multiplications in F2) that are sufficient to evaluate 
the function over the basis (AND, XOR, NOT) where all gates have fanin 2. It 
is known that a function with degree d has multiplicative complexity at least 
d − 1 [14]. This bound is called the degree bound. 
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3 Affine Transformations and Equivalence Classes 

Definition 1 [15] A map S : Bn → Bn is called an affine transformation if 
S

g 7−→ f is defined by 

f(x) = g(Ax + a) + b> x + c, for all x, 

where A is a non-singular n × n matrix over F2; a, b, x are column vectors in 
Fn and c ∈ F2. 

An affine transformation can be characterized by the values of A, a, b, c. 
Directly from the definition of an affine transformation, it follows that the 
relation 

R = {(f, g)| ∃ an affine transformation from f to g}, 
is an equivalence relation on Bn. This relation imposes equivalence classes on 
Bn, and two functions in the same class are said to be affine equivalent. An 
algorithm to determine whether two functions are equivalent is given in [16]. 

Let [f ] denote the equivalence class containing the function f . For brevity, 
we refer to the function f ∈ Bn by its algebraic normal form. For example we 
will refer to the n-variable function f(x) = x1x2x3 as simply x1x2x3, while 
[x1x2x3] refers to the equivalence class containing f . 

By counting the number of choices of the A, a, b, and c from Definition 1, 
we get that for all n ∈ N, the total number of distinct affine transformations 
applicable to any given function f ∈ Bn is 

n−1Y 
τn = 22n+1 (2n − 2i). 

i=0 

It was shown in 1972 by Berlekamp and Welch that B5 has 48 equivalence 
classes [15]. Maiorana [17] proved that B6 has 150 357 equivalence classes. 
This was independently verified by Fuller [16] and Braeken et al. [18]. It was 
shown by Hou [19] that B7 has 63 379 147 320 777 408 548(≈ 265.78) classes. See 
Table 1 for the equivalence classes with n=2,3,4 variables. 

It should be noted that multiplicative complexity is affine invariant, i.e., 
the multiplicative complexity of a Boolean function does not change after 
applying an affine transformation to the function. Hence functions in the same 
equivalence class all have the same mulitiplicative complexity. 

3.1 Properties of Affine Transformations 

For the purposes of the rest of the paper, we represent the affine transfor-
mation from f(x) to f(Ax + a) + b>x + c using the tuple S = (A, a, b, c). 
The collection of affine transformations (A, a, b, c) forms a group An under 
the operation ⊗ defined by 

(A1, a1, b1, c1)⊗(A2, a2, b2, c2) = (A2A1, A2a1+a2, A
> 
1 b2 +b1, b

> 
2 a1 +c1+c2). 
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n Equivalence Class [f ] |[f ]| |Θ(f )| dimension k τn 

2 
[x1] 
[x1x2] 

8 
8 

24 
24 

1 
2 

192 

[x1] 16 1344 1 
3 [x1x2] 112 192 2 21504 

[x1x2x3] 128 168 3 

4 

[x1] 
[x1x2] 
[x1x2x3] 
[x1x2 + x3x4] 
[x1x2x3 + x1x4] 
[x1x2x3x4] 
[x1x2x3x4 + x1x2] 
[x1x2x3x4 + x1x2 + x3x4] 

32 
1120 
3840 
896 

26880 
512 

17920 
14336 

322560 
9216 
2688 
11520 
384 

20160 
579 
720 

1 
2 
3 
4 
4 
4 
4 
4 

10321920 

Table 1 Equivalence classes for n = 2, 3, 4. 

Note that this group operation corresponds to applying the affine transforma-
tion (A2, a2, b2, c2), followed by (A1, a1, b1, c1). 

Let f ∈ Bn and let Lf be the number of distinct input variables appearing 
in the ANF of f . For example, for f(x1, . . . , x6) = x1x2x3 + x3x4, Lf is 4. It 
is easy to see that (i) the dimension of [f ] is at least the degree of f , and (ii) 
Lf is not affine invariant. 

Definition 2 The equivalence class [f ] has dimension k (0 ≤ k ≤ n), if the 
smallest Lg for g ∈ [f ] is k, i.e., k = ming∈[f ] Lg. Overloading the definition, 
any function g ∈ [f ] is also said to have dimension k. 

For a function g ∈ Bk, the embedding of g in Bn is the function gn(x) = 
g(x1, . . . , xk). When certain inputs do not affect the value of the output of a 
function we denote them with ∗ or when clear from context ignore them alto-
gether. Thus gn(x) = gn(x1, . . . , xk, ∗, . . . , ∗) = g(x1, . . . , xk). We say that the 
function g ∈ Bk is a k-dimensional representative of f ∈ Bn if the embedding 
of g in Bn is affine equivalent to f . Note that if the dimension of [f ] is k then 
there exist `-dimensional representatives of f for all ` ≥ k. 

Next we derive a useful computational result; namely, affine equivalence 
can be tested with low-dimensional representatives. 

Lemma 1 Let f, g ∈ Bn be of dimension at most k. Let fk and gk be k-
dimensional representatives of f and g, respectively. Then g ∈ [f ] if and only 
if gk ∈ [fk]. 

Proof Suppose that f and g are affine equivalent. Then there exists an affine 
transformation S ∈ An such that S(f) = g. Let fn and gn be the embeddings 
of fk and gk in Bn. By definition there exist affine transformations T,U ∈ An 

such that T (fn) = f and U(gn) = g. Thus U−1 ⊗ S ⊗ T (fn) = gn, and so fn 

and gn are affine equivalent. We may write �� � � � � � � 
a1 b1U−1 ⊗ S ⊗ T = 

A B 
, , , c ,

C D a2 b2 
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where A is k ×k, B is k ×n−k, C is n−k ×k, D is n−k ×n−k, a1 and b1 are� �> 
k-dimensional, and a2 and b2 are n − k-dimensional. Let x1 = x1 · · · xk� �> 
and x2 = xk+1 · · · xn . Since the variables xk+1, . . . , xn do not occur in the 
ANF of gn, we find that �� � � � � �� 

A B x1 a1fn + 
C D x2 a2 

is linear in x2. Thus �� � � � � �� �� � � � � �� � �� �A B x1 a1 A 0 x1 a1 x1fn + + fn + = 0 b0 . 
C D x2 a2 C D x2 a2

2 x2 � �� � 
Adding b1 b2 

x1 + c to both sides of this equation we obtain on the left 
x2 

hand side gn and on the right hand side �� � � � � �� i � �h
A 0 x1 a1 > > x1fn + + b1 b2 + b0 + c.2C D x2 a2 x2 

Since the output of fn doesn’t involve the variables xk+1, . . . , xn, we learn that 
b0 = b2. Clearly A is of full rank. Then for all x = x1||x2,2 �� � � � � �� � � � �A 0 x1 a1 x1> gk(x1) = gn(x1||x2) = fn + + b1 0> + c 

C D x2 a2 x2 

> = fn([Ax1 + a1]||[Cx1 + Dx2]) + b1 x1 + c 
> = fk(Ax1 + a1) + b1 x1 + c. 

Thus fk and gk are affine equivalent. 
To prove the converse, assume that fk and gk are affine equivalent. Then 

there exists an affine transformation S such that S(fk) = gk. We may write 
S = (A, a, b, c). Consider the affine transformation �� � � � � � � 

A 0 a b
S̃ = , , , c . 

0 I 0 0 

It is obvious that for all x ∈ Fn with x = x1||x2 where x1 ∈ Fk 
2 and x2 ∈ Fn−k 

2 2 
that �� � � � � �� � � 

˜ A 0 x1 a � � x1S(fn)(x) = fn + + b 0 + c 
0 I x2 0 x2 

= fn(Ax1 + a||x2) + b> x1 + c 

= fk(Ax1 + a) + b> x1 + c 

= gk(x1) 

= gn(x). 

Thus fn and gn are affine equivalent, and by transitivity, f and g are affine 
equivalent. Thus the proof is complete. ut 
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3.2 Self-Mappings 

In this section we establish a few facts on a particular kind of affine trans-
formations, called self-mappings. 

Definition 3 [16] A self mapping of f ∈ Bn is an affine transformation such 
that f(x) = f(Ax + a)+ b>x + c, where A is a non-singular n × n matrix over 
F2; a, b, x are column vectors in Fn and c ∈ F2.2 

Let f ∈ Bn, and Θ(f) be the set of self-mappings of f . We first remark 
that Θ(f) is closed under the group operation ⊗, since for every x ∈ Fn and2 
every pair of self-mappings (S1, S2), defined by the tuples S1 = (A1, a1, b1, c1) 
and S2 = (A2, a2, b2, c2), we have: 

x + b>(S1 ⊗ S2)(f)(x) = f(A2A1x + A2a1 + a2) + (A> 
1 b2 + b1)

> 
2 a1 + c1 + c2 

= f(A2A1x + A2a1 + a2) + b> 
2 A1x + b> 

1 x + b> 
2 a1 + c1 + c2 

= f(A2(A1x + a1) + a2) + b> 
2 (A1x + a1) + c2 + b> 

1 x + c1. 
(2) 

Now since f(A2x + a2) + b> 
2 x + c2 = f(x) for all x and since A1x + a1 is a 

permutation, we have that 

f(A2(A1x + a1) + a2) + b> 
2 (A1x + a1) + c2 = f(A1x + a1), (3) 

for all x. Thus from equations (2) and (3) we obtain: 

(S1 ⊗ S2)(f)(x) = f(A2(A1x + a1) + a2) + b> 
2 (A1x + a1) + c2 + b> 

1 x + c1 

= f(A1x + a1) + b> 
1 x + c1 

= f(x). 

Since Θ(f) is finite, Θ(f) forms a subgroup of An. By the Orbit-Stabilizer 
Theorem, we have 

τn|[f ]| = . |Θ(f)| 
In the following lemma, we let σ be the number of ways of choosing k + 1 

n-dimensional affine forms, t1, . . . , tk+1, over x1, . . . , xn the first k of which are 
linearly independent. 

Lemma 2 Let f ∈ Bn, and g ∈ Bk be a k-dimensional representative of f . 
Let gn be the embedding of g in Bn and let ρ be the number of choices of affine 
forms r1, . . . , rk+1 such that 

gn(t1, . . . , tk, ∗, . . . , ∗) + tk+1 = gn(r1, . . . , rk, ∗, . . . , ∗) + rk+1 for all x ∈ Fn 
2 . 

σThen |[f ]| = |[gn]| = .ρ 
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Proof Let I be the collection of self mappings (A, a, b, c) with b = 0 and c = 0 
that satisfies the system of linear equations 

A · (x1, . . . , xn)T + a = (x1, . . . , xk, ∗, . . . , ∗)T . 

Since I is a subgroup of Θ(gn), the cosets of I form a refinement of the 
partition of An formed by the cosets of Θ(gn). Hence |An : I| = |An : 
Θ(gn)||Θ(gn) : I|. 

Any affine mapping in I has the form: �� � � � � � � 
I 0 0 0 

, , , 0 ,
A B a 0 

where I is the k × k identity matrix, A is an (n − k) × k matrix, B is an 
(n−k)×(n−k) matrix, and a is an n−k-dimensional column vector. Consider 
an arbitrary left coset of I. That is, a left coset generated by �� � � � � � � 

C D c e 
S = , , , h ,

E F d f 

where each of the block matrices and block vectors are of the appropriate 
dimension. Any member of the left coset S ⊗ I is given by �� � � � � � � 

C D 
, 

c 
, 
e 

, h . 
AC + BE AD + BF Ac + Bd + a f 

Here, the first k rows of the first two coordinates as well as the last two 
coordinates of this element are identical to S; therefore any two elements in 
S ⊗ I share these k + 1 affine forms (the first k of which are necessarily 
independent) in common. On the other hand, since gn is the embedding of 
a k-dimensional simple representative of f , different values of the last two 
coordinates of S give rise to different functions; thus, since each such coset of 
I is determined by the first k rows of the first two coordinates of S along with 
the last two coordinates of S, the cosets of I are uniquely determined by such 
choices of k + 1 affine forms with the first k linearly independent. Therefore 

|An:I| σ|An : I| = σ and |Θ(f) : I| = ρ. Thus |[f ]| = |[gn]| = |Θ(f ):I| = ρ . ut 

A particular consequence of the lemma is the following tool for compu-
tationally determining the number of self-mappings of a Boolean function by 
computing on a much smaller search space. 

Corollary 1 Let f ∈ Bn be of dimension k. Let g ∈ Bk be a k-dimensional 
representative of f and let gn be the embedding of g in Bn. The number of 
self-mappings θ of f is 

n−1Y 
θ = 2n−k (2n − 2i)ρ, 

i=k 

where ρ is the number of choices of affine forms r1, . . . , rk+1 such that 

gn(t1, . . . , tk, ∗, . . . , ∗) + tk+1 = gn(r1, . . . , rk, ∗, . . . , ∗) + rk+1 for all x ∈ Fn 
2 , 

as in Lemma 2. 



9 The Number of Boolean Functions with Multiplicative Complexity 2 

Proof When n = k we have θ = ρ in the formula. If k < n, by Lemma 2, we 
τn τnρ Qk−1

have that σ = |[gn]| = θ , and thus θ = . Since σ = 2n+k+1 
i=0 (2

n − 2i),ρ σ 

and since |Θ(f)| = |Θ(gn)|, we have the result. tu

We will count the number of functions with multiplicative complexity M 
using the following strategy. First show that all functions on n variables with 
multiplicative complexity M can be partitioned into equivalence classes, each 
having a representative of a dimension independent of n. Now the size of each 
of these equivalence classes (as a function of n) can be determined directly 
using Corollary 1 as τn/θ. The total number of functions is then the sum of 
the sizes of these equivalence classes. 

4 Boolean Functions with Multiplicative Complexity One 

Fischer and Peralta [1] provided the number of Boolean functions with 
multiplicative complexity one. In this section, we reprove their result using an 
alternative method which can easily be extended for multiplicative complexity 
two. 

Proposition 1 Let f be an n-variable Boolean function with multiplicative 
complexity 1. f is affine equivalent to x1 · x2. 

Proof Let f ∈ Bn have multiplicative complexity exactly 1. Then f is on of 
the form 

> >f(x) = (a x) · (b> x) + c x + d, 

where a and b are distinct and nonzero. Note that when a and b do not satisfy 
these conditions, the multiplicative complexity of f is 0. 

Define the function g ∈ Bn by 

g(x1, . . . , xn) = x1 · x2. 

We want to show that f and g are affine equivalent. It suffices to show that 
there exists an invertible A such that 

>f(x) = g(Ax) + c x + d. 

One can let the first row of A be a>, the second row be b>. The last n − 2 
vectors can be chosen arbitrarily under the condition that they together with 
a, b form a basis of Fn 

2 . This is possible since a, b are distinct and therefore 
linearly independent. ut 

Thus it suffices to count the number of functions in the equivalence class 
from Proposition 1. To this end, we use Lemma 2. 

Theorem 1 The number of n-variable Boolean functions with multiplicative 
complexity 1 is exactly 

2n+1(2n − 1)(2n − 2)/6. 
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Proof First we count the number of circuits with exactly one AND gate, then, 
compute the number of functions with multiplicative complexity 1. Written as 
a formula, such a circuit is of the form 

C(x) = t1(x) · t2(x) + t3(x), 

where t1, t2 and t3 are affine forms on F2. Since t1, t2 must be linearly inde-
pendent, the number of such circuits is 4 · 2n · (2n − 1) · 2n+1. Now we want 
to use Corollary 1. For this, we determine ρ, number of such triples of affine 
forms satisfying the above equation. An exhaustive search (we used a com-
puter program but the system is small enough that one can do this by hand) 
found that ρ = 24. We get that the size of the equivalence class x1x2, the 
number of functions with multiplicative complexity 1 is 

4 · 2n · (2n − 1) · 2n+1 

,
24 

which is what we wanted. ut 

5 Boolean Functions with Multiplicative Complexity Two 

In this section, we generalize the proof technique from the previous section 
to count the number of functions with multiplicative complexity 2. We start by 
showing that there exist exactly three equivalence classes with multiplicative 
complexity 2. 

Theorem 2 Let f be an n-variable Boolean function with multiplicative com-
plexity 2. Then f is affine equivalent to exactly one of the following three 
functions: 

1. x1x2x3 

2. x1x2x3 + x1x4 

3. x1x2 + x3x4 

Proof First we show that each function with multiplicative complexity 2 falls 
in one of three classes. Consider a circuit, C, containing exactly two AND 
gates computing a function with multiplicative complexity two. Suppose first 
that there is no directed path from either of the AND gate to the other. In 
this case there exists affine forms r1, , . . . , r5 such that the circuit computes 
the function 

C(x) = r1(x) · r2(x) + r3(x) · r4(x) + r5(x). 

This function is affine equivalent to x1x2 + x3x4 via an affine transformation 
similar to the one demonstrated in the proof of Theorem 1. 

Now suppose that there exist a directed path from one of the AND gates 
to the other. Call the functions computed by the two AND gates fA1 , fA2 , 
respectively. Suppose the topologically minimal AND gate computes the func-
tion fA1 (x) = r1(x)r2(x) for suitably chosen affine forms r1, r2. 
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We now claim that there exist affine forms r3, r4, r5 such that the circuit 
computes the function 

(r1 · r2 + r3) · r4 + r5. 

First, we can assume that fA1 occurs only in one of the two inputs of fA2 . To 
see this, notice that 

(fA1 + r3) · (fA1 + r4) = (fA1 + r3) · (r4 + r3 + 1). 

Therefore the topologically last AND gate, fA2 , computes the function 

fA2 = (fA1 + r3) · r4. 

So we have that the output of the circuit is either fA2 + r5, or fA2 + fA1 + r5. 
for some affine function L5. 

We claim that the output can be assumed to be on the first form. Suppose 
A2 = (A1 + r3) · r4, and let A0 

0 

0 
2 = (A1 + r3) · (r4 + 1), r

5 = (A1 + r3) · (1 + r4) + r3 + r5 = A2 + A1 + r5. 

= r5 + r35 

A2 + r 0 

This proves the claim. Now suppose that r3 ∈ spanF2 
{r1, r2, r4}, and let 

r3 = c1r1 + c2r2 + c4r4. 

By adding constants to r1, r2 we can assume that c1 = c2 = 0. That is we have 
that the function computed is: 

(r1r2 + c4r4)r4 + r5, 

again we can assume that c4 = 0 since otherwise 

(r1r2 + r4)r4 + r5 = r1r2r4 + r4 + r5. 

We observe that the affine functions r1, r2, r4 must be linearly independent 
(otherwise the function has multiplicative complexity at most 1). We conclude 
that this function is affine equivelant to x1x2x3. 

Now suppose that r3 is linearly independent of r1, r2, r4. In this case the 
function computed is 

r1r2r4 + r3r4 + r5, 

for linearly independent functions r1, r2, r3, r4. This function is clearly linearly 
equivalent to the function x1x2x3 + x1x4. 

Finally we notice that these three functions indeed belong to three distinct 
equivalence classes. The function (3) has degree two, and is therefore not 
affine equivalent to a function of degree 3. Furthermore, by Lemma 1 a simple 
calculation shows that [x1x2x3] has dimension 3 whereas [x1x2x3 + x1x4] has 
dimension 4. Thus these equivalence classes are distinct. ut 

The result readily implies that there are three different circuit types computing 
functions with multiplicative complexity 2. These are shown in Figure 1. 
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r1 r2

r3
r4

⊕

∧

∧

r1 r2

r3

r4

r5

∧

⊕

∧

⊕

r1 r2 r3 r4

r5

∧

⊕

∧

⊕

Type I Type II Type III 

Fig. 1 The three different circuit types for the three equivalence classes.ri denotes an 
affine form on the input variables. Every function with multiplicative complexity 2 can be 
computed by exactly one of the three displayed circuits. 

Theorem 3 The number of n-variable Boolean functions with multiplicative 
complexity 2 is exactly � � 

2 2n − 8 2n − 8 
2n(2n − 1)(2n − 2)(2n − 4) · + + . 

21 12 720 

Proof By Theorem 2 it suffices to count the number of functions in each of 
the following three equivalence classes. By the proof of Theorem 2 there is a 
natural type of circuit associated with each equivalence class. 

1. [x1x2x3] 
2. [x1x2x3 + x1x4] 
3. [x1x2 + x3x4] 

We will count the number of functions in each class in a way similar in 
spirit, but slightly more complicated than what was done in the proof of The-
orem 1: We will count the number of circuit layouts for each type. Then we 
will compute the value of ρ from Corollary 1 to obtain the actual number of 
functions. 

Type 1: We want to determine the value ρ from Corollary 1. That is, count 
the number of choices of affine forms (r1, r2, r3, r4) such that for all x 

t1(x) · t2(x) · t3(x) + t4(x) = r1(x) · r2(x) · r3(x) + r4(x). (4) 

By affine equivalence, the number of solutions (r1, r2, r3, r4) does not de-
pend on the actual choice of (t1, t2, t3, t4). By going through all the possibly 
choices one can verify that the number of solutions 168 times. By Corollary 1, 
the number of functions in this equivalence class is 

(2n − 1)(2n − 2)(2n − 4)2n+1 

. 
21 

http:classes.ri
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Type 2: Again here we can count the number of ways of choosing (r1, . . . , r5) 
in such that for all x 

r1(x)r2(x)r3(x) + r1(x)r4(x) + r5(x) = t1(x)t2(x)t3(x) + t1(x)t4(x) + t5(x). 

Using a computer search one can verify that this number is 384, so by Corol-
lary 1 the number of functions computable by this type of circuit is. 

2n(2n − 1)(2n − 2)(2n − 4)(2n − 8) 
. 

12 

Type 3: Again, a computer search can verify that for this type we have that 
ρ = 23040. That is, the number of distinct functions computable by circuits 
of this type is 

(2n − 1)(2n − 2)(2n − 4)(2n − 8)2n 

. 
720 

We conclude that the total number of functions in Bn with multiplicative 
precisely 2 is: � � 

2 2n − 8 2n − 8 
2n(2n − 1)(2n − 2)(2n − 4) · + + 

21 12 720 

ut 

6 Conclusion 

One can count the number of Boolean functions with multiplicative com-
plexity M by exhaustively listing the equivalence classes with multiplicative 
complexity M and finding the size of each class. However, already when mul-
tiplicative complexity is three, it is hard to list the equivalence classes exhaus-
tively. For functions on n = 4, one can show that [x1x2x3x4],[x1x2x3x4 +x1x2] 
and [x1x2x3x4 + x1x2 + x3x4] are the only equivalence classes with multiplica-
tive complexity 3. For n = 5, the exhaustive list of classes with multiplicative 
complexity 3 is not known. Turan and Peralta [11] showed that the number 
of such classes is between 16 and 24. For n = 6, there are 2497 equivalence 
classes having degree at most 4. This provides an upper bound on the number 
of equivalence classes that can be computed by circuits with three AND gates, 
since some of these might have multiplicative complexity 4 or more. 
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10. Joan Boyar and René Peralta. A new combinational logic minimization technique with 
applications to cryptology. In Paola Festa, editor, SEA, volume 6049 of Lecture Notes 
in Computer Science, pages 178–189. Springer, 2010. 
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