
U.S. Government work not protected by U.S. copyright

Implementing and Managing Policy Rules
 in Attribute Based Access Control

Vincent Hu1, David F. Ferraiolo1, D. Richard Kuhn1, Raghu N. Kacker1, Yu Lei2

1 National Institute of
Standards and Technology

Gaithersburg, MD 20899, USA
{ vhu,david.ferraiolo,kuhn,raghu.kacker}@nist.gov

2Computer Science & Engineering
University of Texas at Arlington

Arlington, TX, USA
ylei@uta.edu

Abstract – Attribute Based Access Control (ABAC) is a popular
approach to enterprise-wide access control that provides
flexibility suitable for today’s dynamic distributed systems.
ABAC controls access to objects by evaluating policy rules
against the attributes of entities (subject and object),
operations, and the environment relevant to a request, but
great care must be taken in setting up and maintaining the
access control rules that allow such flexible operations.This
article summarizes important considerations in ABAC
deployment first introduced in the Guide to Attribute Based
Access Control [1].

Keywords- access control; attribute based access control;
XACML; NGAC.

I. INTRODUCTION

Access control mechanisms comprise several components
that work together to bring about policy-preserving resource
access. These components include access control data for
expressing access control policies and a set of functions for
issuing and trapping access requests, and computing and
enforcing decisions over those requests in accordance with
the policies. Most operating environments implement access
control in different ways, each with a different scope of
control (e.g., users, resources), and each with respect to
different operation types (e.g., read, send, approve, select)
and resource types (e.g., files, messages, work items,
records).

This heterogeneity introduces a number of administrative
and policy enforcement challenges. Administrators must
contend with a multitude of security domains when
managing access policies. Even if properly coordinated
across operating environments, global controls are hard to
visualize and implement in a piecemeal fashion.
Furthermore, because operating environments implement
access control in different ways, it is difficult to exchange
and share information across operating environments.
ABAC seeks to alleviate these challenges by creating a
common and centralized way of expressing various policies,
and computing and enforcing decisions, over the access
requests of data services.

Most other access control approaches are based on the
identity of a user requesting execution of a capability to

perform an operation on an object (e.g., read a file), either
directly via the user’s identity, or indirectly through
predefined attribute types such as roles or groups assigned
to that user. Practitioners have noted that these forms of
access control are often cumbersome to manage, given the
need to associate capabilities directly to users or their
attributes. Furthermore, the identity, group, and role
qualifiers of a requesting user are often insufficient in the
expression of real-world access control policies. An
alternative is to grant or deny user requests based on
arbitrary attributes of users and objects, and optionally
environmental conditions that may be globally recognized
and tailored to the policies at hand.

This approach to access control is commonly referred to as
attribute-based access control (ABAC) [1][2], and is an
inherent feature of both the eXtensible Access Control
Markup Language (XACML) [3] and Next Generation
Access Control (NGAC) [4][5] standards.

Figure 1. ABAC Overview

While largely developed in parallel, these standards were
established under different timetables and circumstances.
XACML was developed as collaboration among vendors
with a goal to separate policy expression and decision-

making from proprietary operating environments in support
of the access control policy needs of data services. XACML
first appeared in 2003, and was recently revised in 2013 by
providing support for decentralized policy management.
NGAC’s origin stems from the NIST Policy Machine
[6][7][8], a research effort that began in 2003 to develop a
general-purpose attribute-based access control framework.

From a management perspective, ABAC has advantages
over other access control approaches. ABAC avoids the
need for capabilities (operation, object pairs) to be directly
assigned to requesting users or to their roles or groups
before the request is made. Instead, when a user requests
access, the ABAC engine (see Figure 1) can make an access
control decision based on the assigned attributes of the
requesting user and the object, environmental attributes, and
a set of policies that are specified in terms of those
attributes. Under this approach, policies are managed
without direct reference to potentially numerous users and
objects, and users and objects can be provisioned without
reference to policy details.

In its most basic form, ABAC relies upon the evaluation of
attributes of the subject, attributes of the object, environment
conditions, and the formal relationship or access control rule
or policy defining the allowable operations for subject-
object attribute combinations. All ABAC solutions contain
these basic core capabilities to evaluate attributes and
enforce rules or relationships between those attributes.
While XACML explicitly defines rules as a basic policy
building block, the NGAC approach uses relations that
imply rules in formulating policy. For readability, this paper
generically uses the term rules to refer to either approach.

Even within a small isolated system, ABAC relies upon the
assignment of attributes to subjects and objects, and the
development of policy implemented in terms of attributes.
Each object within the system must be assigned specific
object attributes that characterize the object. Some attributes
pertain to the entire instance of an object, such as the owner.
Other attributes may only apply to parts of the object. For
example, a document object could be owned by
Organization A, have a section with intellectual property
from Organization B, and be part of a program run by
Organization C. As another example, consider a document
residing in a directory within a file management system.
This document has a title, an author, a date of creation, and a
date of last edit—all object attributes that are determined by
the creator, author, or editor of the document. Additional
object attributes may be assigned such as owning
organization, intellectual property characteristics, export
control classification, or security classification. Each time a
new document is created or modified, these object attributes
must be captured. These object attributes are often
embedded within the document itself, but they may be

captured in a separate table, incorporated by reference, or
managed by a separate application.

Each subject that uses the system must be assigned specific
attributes. Consider the example of a user accessing a file
management system. The user is established as a subject
within the system by an administrator and characteristics
about that user are captured as subject attributes. This
subject may have a name, a role, and an organization
affiliation. Other subject attributes may include US
citizenship status, nationality, and security clearance. These
subject attributes are assigned and managed by an authority
within the organization that maintains the subject identity
information for the file management system. As new users
arrive, old users leave, and characteristics of subjects
change, these subject attributes may need to be updated.

Every object within the system must be included in at least
one policy that defines the access rules for the allowable
subjects, operations, and environment conditions to the
object. Policies are normally derived from documented or
procedural rules that describe the business processes and
allowable actions within the organization. For example, in a
hospital setting, a rule may state that only authorized
medical personnel shall be able to access a patient’s medical
record. In a system with this policy, a MedicalRecordRule may
ensure that a document object with a RecordType attribute of
PatientMedicalRecord will cause a subject with a
PersonnelType attribute value of NonMedicalSupportStaff
trying to perform the Read operation to be denied access and
the operation disallowed. This is only one approach to
implementing the connection between attributes and rules,
and organizations may implement similar policies in
different ways.

Rules binding subject attributes, object attributes, and
environment conditions indirectly specify privileges (i.e.,
which subjects can perform which operations on which
objects in what environment condition). Allowable operation
rules can be expressed through many forms of computational
language such as:

• A Boolean combination of attributes and conditions
that satisfy the authorization for a specific
operation (XACML)

• A set of relations associating subject attributes,
object attributes, and environment conditions and
allowable operations (NGAC)

Once object attributes, subject attributes, and policies are
established, objects can be protected using ABAC. Access
control mechanisms mediate access to the objects by limiting
access to allowable operations by allowable subjects. The
access control mechanism (ACM) assembles the policy,
subject attributes, object attributes, and environment
conditions, then renders and enforces a decision based on

the logic provided in the policy. Access control mechanisms
must be able to manage the process required to make and
enforce the decision, including determining what policies
and attributes are relevant, and where to retrieve attributes.
The ACM must then perform the computation necessary to
render a decision.

The policies that can be implemented in an ABAC model
are limited only to the degree imposed by the computational
language or set of relations, and the richness of the available
attributes. This flexibility enables the greatest breadth of
subjects to access the greatest breadth of objects without
having to specify individual relationships between each
subject and each object. For example, a subject is assigned a
set of subject attributes upon employment (e.g., Nancy
Smith is a Nurse Practitioner in the Cardiology
Department). An object is assigned its object attributes upon
creation (e.g., a folder with Medical Records of Heart
Patients). A designated authority creates rules to govern the
set of allowable operations (e.g., all Nurse Practitioners in
the Cardiology Department can View the Medical Records
of Heart Patients). Adding to the flexibility, attributes and
their values may then be modified throughout the lifecycle
of subjects, objects, and attributes.

Provisioning attributes to subjects and objects governed by a
policy that specifies what operations can take place enables
an unlimited number of subjects to perform operations on
the object—all without prior knowledge of the specific
subject by the object-owner or rule-maker. As new subjects
join the organization, rules and objects do not need to be
modified. As long as the subject is assigned the attributes
necessary for access to the required objects (e.g., all Nurse
Practioners in the Cardiology Department are assigned
those attributes), no modifications to existing rules or object
attributes are required. This benefit is often referred to as
accommodating the external (unexpected) user and is one of
the primary benefits of employing ABAC.

Contrary to XACML’s ABAC approach, under the
definition of ABAC presented here, operations do not have
“attributes”. As defined attributes contain information
given by a name-value pair. For example, “read = all” (or
“all = read”) is not appropriate. Operations can have many
types or classes, which are not “attributes” but a fixed set of
values. It would be possible to make operation itself an
“attribute name”, such as “operation = read”, but this would
then be the only attribute for operation, which would be
redundant.

To meet accountability requirements, there will be a need to
track accesses of objects to specific subjects linked to
specific users. Accountability could be lost if access
decisions are based on attributes, if subject or user IDs are
not tracked to specific access requests and decisions.

While ABAC is an enabler of information sharing, when
deployed across an enterprise, the set of components
required to implement ABAC gets more complex. At the
enterprise level the increased scale requires complex and
sometimes independently established management
capabilities necessary to ensure consistent sharing and use of
policies and attributes and the controlled distribution and
employment of access control mechanisms throughout the
enterprise.

Some enterprises have existing capabilities that can be
leveraged to implement ABAC. For example, most
enterprises have some form of identity and credential
management to manage population of subject attributes,
such as name, unique identifier, role, clearance, etc.
Similarly, many enterprises may have some organizational
policy or guidelines to establish rules authorizing subjects’
access to enterprise objects. However, these rules are usually
not written in a machine-enforceable format that can be
integrated consistently across all applications. ABAC
policies must be made available in machine-enforceable
format, and stored in repositories and published for access
control mechanism consumption. These digital policies
include subject and object attributes, with environment
conditions, required to render access control decisions. The
enterprise subject attributes must be created, stored, and
shared across organizations within the enterprise through a
subject attribute management capability. Likewise,
enterprise object attributes must be established and bound to
objects through an object attribute management capability.
At this point, the ABAC-enabled access control mechanisms
must be deployed. The remainder of this paper provides
more detail on each of these major components of enterprise
ABAC.

II. MAPPING FROM NATURAL LANGUAGE POLICY
TO ABAC RULES

Natural Language Policies (NLPs) are high-level
requirements that specify how information access is
managed and who, under what circumstances, may access
what information. NLPs are expressed in human
understandable terms and may not be directly implementable
in an access control mechanism. NLPs may be ambiguous and
thus hard to derive in formally actionable elements, so the
enterprise policy may be difficult to encode in machine-
enforceable form. While NLPs can be application-specific
and thus taken into consideration by the application system,
NLPs are just as likely to pertain to subject actions that span
multiple applications. For instance, NLPs may pertain to
object usage within or across organizational units or may be
based on need-to-know, competence, authority, obligation,
or conflict-of-interest factors. Such policies may span
multiple computing platforms and applications.

Given that relevant NLPs exist for each organization in an
enterprise, the next step is to translate those into a common
set of rules that can be enforced equally and consistently
within the ACMs across the enterprise. In order to
accomplish this, it is necessary to identify all required
subject/object attribute combinations and allowable
operations. Often these values will vary from organization to
organization and may require some form of consensus or
mapping to each organization’s existing attributes to
accommodate enterprise interoperability. The agreed-upon
list of subject and object attributes, the allowable operations,
and all mappings from existing organization-specific
attributes are then translated into machine-enforceable
format. NLPs must be codified into Digital Policy (DP)
algorithms or mechanisms. For efficiency of performance
and simplicity in specification, an NLP may require
decomposition and translation into different DPs that suit
the infrastructure of operation units in the enterprise.

Multiple DPs may require Metapolicies (MPs), or policies
dictating the use and management of DPs to handle DP
hierarchical authorities, DP deconfliction, and DP storage
and updates. MPs are used for managing DPs. Depending on
the level of complexities, hierarchical MPs may be required
based on the structures for the priority and combination
strategies specified by NLP.

Once DPs and MPs are developed they need to be managed,
stored, validated, updated, prioritized, deconflicted, shared,
retired, and enforced. Each of these operations requires a set
of capabilities that will often be distributed across the
enterprise and is collectively termed Digital Policy
Management (DPM). There may be multiple policy
authorities and hierarchies within organizations that have
variations on enterprise policy. The rules for how DPs and
MPs are managed may be determined by a central authority.

Proper DP definition and development are critical to the
identification of subject and object attributes that are needed
to render an access control decision. Remember that a DP
statement is comprised of the subject and object attribute
pairings as well as environment conditions needed to satisfy
a set of allowable operations. Once the full set of subject and
object attributes needed to satisfy the entire set of allowable
operations for a given set of enterprise objects is identified,
this set of attributes comprises the entire set of attributes
needed to be defined, assigned, shared, and evaluated for
enterprise ABAC access decisions. For this reason,
identifying the NLP and DP must be accomplished by the
support of attributes when implementing an enterprise
ABAC capability.

III. ATTRIBUTE MANAGEMENT
Next, consider the lists of attributes developed while
examining the NLPs and DPs. Without a sufficient set of

object and subject attributes, ABAC does not work.
Attributes need to be named, defined, given a set of
allowable values, assigned a schema, and associated to
subjects and objects. Subject attributes need to be
established, issued, stored, and managed under a governance
policy. Object attributes must be assigned to the objects.
Attributes shared across organizations should be located,
retrieved, published, validated, updated, modified, and
revoked.

Subject attributes are provisioned by attribute authorities—
typically authoritative for the type of attribute that is
provided and managed through an attribute administration
point. Often, there are multiple authorities, each with
authority over different attributes. For example, Security
might be the authority for Clearance attributes, while Human
Resources might be the authority for Name attributes.
Subject attributes that need to be shared to allow subjects
from one organization to access objects in another
organization must be consistent, comparable, or mapped to
allow equivalent policies to be enforced. For example, a
member of Organization A with the role Job Lead wants to
access information in Organization B, except Organization
B uses the term Task Lead to denote the equivalent role. This
problem also applies to mapping between an enterprise
attribute schema and an application-specific schema,
particularly ones built before the enterprise schema is
defined and/or COTS products that come with their own
built-in schema. Organizations must normalize subject
attribute names and values, or maintain a mapping of
equivalent terms for all organizations. This should be
managed by a central authority.

Object attributes need to be established, maintained, and
assigned to objects as objects are created or modified. While
it may not be necessary to have a common set of object
attributes in use across the enterprise, object attributes
should be consistently employed to fulfill enterprise policy
requirements, and available sets of object attributes should
be published for those wishing to mark, tag, or otherwise
apply object attributes to their objects. At times, it might be
necessary to ensure that object attributes are not tampered
with or altered to satisfy an access request. Objects can be
cryptographically bound to their object attributes to identify
whether objects or their corresponding attributes have been
inappropriately modified. Mechanisms must be deployed to
ensure that all objects created are assigned the appropriate
set of object attributes to satisfy the policy being employed
by the ACM. It may be necessary to have an Enterprise
Object Attribute Manager to coordinate these requirements.

In the course of managing attributes, the concept of
“metaattributes”—or characteristics of attributes— arises.
Metaattributes apply to subjects, objects, and environment
conditions as extended attribute information useful for
enforcing more detailed policy that incorporates information

about the attributes and for managing the volumes of data
needed for enterprise attribute management. For example,
metaattributes giving the source and origination date of
attribute values may be used in ensuring that attribute values
meet the organization’s required level of assurance.

IV. ACCESS CONTROL MECHANISM DISTRIBUTION
Finally, consider the distribution and management of ACMs
throughout the enterprise. Depending on the needs of the
users, size of the enterprise, distribution of the resources,
and sensitivity of the objects that need to be accessed or
shared, the distribution of ACMs can be critical to the
success of an ABAC implementation. The functional
components of an ACM may be physically and logically
separated and distributed within an enterprise rather than
centralized as described in the system-level view of ABAC.

Within the ACM are several functional “points” that are the
service node for retrieval and management of the policy,
along with some logical components for handling the
context or workflow of policy and attribute retrieval and
assessment. These include the Policy Enforcement Point
(PEP), the Policy Decision Point (PDP), the Policy
Information Point (PIP), and the Policy Administration Point
(PAP). When these components are in an environment, they
must function together to provide access control decisions
and policy enforcement.

A PDP performs an evaluation on DPs and MPs in order to
produce an access control decision. The PEP enforces
decisions made by the PDP. PDP and PEP functionality can
be distributed or centralized, and may be physically and
logically separated from each other. For example, an
enterprise could establish a centrally controlled enterprise
decision service that evaluates attributes and policy, and
renders decisions that are then passed to the PEP. This
allows for central management and control of subject
attributes and policy. Alternatively, local organizations
within the enterprise may implement separate PDPs which
draw on a centralized DP store. The design and distribution
of ACM components requires a management function to
ensure coordination of ABAC capabilities.

To compute access decisions, the PDP must have information
about the attributes. This information is provided by the
PIP. Before these policies can be enforced, they must be
thoroughly tested and evaluated to ensure they meet the
intended need.

Some systems may include an additional component within
the ACM, a Context Handler that manages the order of
policy and attribute retrieval. This can be important when
time critical or disconnected access control decisions must
be made. For example, attributes may be retrieved in
advance of an access request, or cached to avoid the delay

inherent in retrieval at the time of the access request. The
Context Handler also coordinates with PIPs to add attribute
values to the request context, and converts authorization
decisions in the canonical form (e.g., XACML) [2] to the
native response format.

V. ENTERPRISE CONSIDERATIONS
Access control policies are expressed in terms of attributes.
Consequently all required attributes must be established,
defined, and constrained by allowable values required by the
appropriate policies. The schema for these attributes and
allowable attribute values must be published to all
participants to help enable object owners with rule and
relationship development. Once attributes and allowable
values are established, methods for provisioning attributes
and appropriate attribute values to subjects and objects need
to be established as well as an architecture for any attribute
repositories, retrieval services, or integrity checking
services. Interfaces and mechanisms must be developed or
adopted to enable sharing of these attributes.

Subject Attributes Many human subject attributes are
typically provisioned upon employment with the
organization and may be provisioned by several different
authorities (human resources, security, organization
leadership, etc.) For these, approaches to obtaining
authoritative data are well known. As an example, only
security authorities should be able to provision and assert
clearance attributes and attribute values based on
authoritative personnel clearance information; an individual
should not be able to alter his or her own clearance attribute
value. Other subject attributes may involve the subject’s
current tasking, physical location, and the device from which
a request is sent; processes need to be developed to assess
and assure the quality of such subject attribute data.

Authoritative subject attribute provisioning capabilities
should be appropriately dependable in regards to quality,
assurance, privacy, and service expectations. These
expectations may be defined in an Attribute Practice
Statement (APS). An APS provides a listing of the attributes
that will be used throughout the enterprise, and may identify
authoritative attribute sources for the enterprise. Still further
network infrastructure capabilities (including the ability to
maintain attribute confidentiality, integrity, and availability)
are required to share and replicate authoritative subject
attribute data within and across organizations.

Object Attributes Object attributes are typically provisioned
upon object creation and may be bound to the object or
externally stored and referenced. It is to be expected that
access control authorities cannot closely monitor all events.
Frequently, this information is driven by non-security
processes and requirements. Good attribute data that support

good access decisions are essential, and measures must be
taken to ensure that object attributes are assigned and
validated by processes that the object owner or administrator
considers appropriate for the application and authoritative.
For example, object attributes must not be modifiable by the
subject to manipulate the outcome of the access control
decision. The object attributes must be made available for
retrieval by access control mechanisms for access control
decisions. Additional considerations for creating object
attributes include:

• In general, users will not know the attributes of an
object (e.g., to which sensitive compartment a
given user is authorized). This should be accounted
for in ACMs, so that users only see the attributes
that are applicable to them.

• As with subject attributes, a schema is required for
object attributes defining attribute names and
allowed values.

• Attributes need to be kept consistent in DP, MP,
and NLP.

There have been numerous efforts within the Federal
Government and commercial industry to create object
attribute tagging tools that provide not only data tagging, but
also cryptographic binding of the attributes to the object and
validation of the object attribute fields to satisfy access
control decision requirements.

Environment Condition Environment condition refers to
context information that generally is not associated with any
specific subject or object but is required in the decision
process. They are different from subject and object
attributes in that they are not administratively created and
managed, but instead are intrinsic and must be detectable by
the ABAC system. Environment conditions such as the
current date, time, location, threat, and system status,
usually are evaluated against current matching environment
variables when authorizing an access request. Environment
conditions allow ABAC policies to specify exceptional or
dynamic access control rules that cannot be described by
subject/object attributes only. When composing ABAC
rules with environment conditions, it is important to make
sure that the environment condition variables and their
values are globally accessible, tamper proof, and relevant
for the environments where they are used.

Access Control Rules In ABAC, all access control rules
must include some combination of attributes and allowable
operations. They may also include conditions, hierarchical
inheritance, and complex logic. Together these provide a
rich array of options when implementing ABAC. Rule sets
and the application of rule sets to objects must be governed
and managed appropriately. Rules must accurately and
completely reflect the NLP, and be authoritatively developed

(some by organizations, some by resource owners), applied,
maintained, shared, and asserted. ABAC allows multiple
rules from multiple stakeholders. New techniques are
needed to coordinate and obtain the proper balance of
sharing and protection. In some settings, one might limit the
visibility of which rules apply to which objects to limit the
likelihood of unauthorized subjects manipulating attributes
to obtain authorization. In other circumstances, subjects that
are denied access should have a method to verify or rectify
the circumstances that caused the denial. Some organizations
may wish to track the denials to see if the rules were
appropriate. Similarly, rule definition and employment
mechanisms and processes should include a robust rule
deconfliction (resolution for the different decisions of rules)
capability to determine rule conflicts and resolution
processes.

Access Control Mechanism and Context Handling The
distribution and orchestration of ACM must be
predetermined to avoid conflicts and weaknesses in object
protection. For example, if an identical object is held by two
different organizations, an unauthorized subject should not
be able to access the version held by the organization with
lesser restrictions. ACMs should be managed, maintained,
and employed in a consistent manner to ensure
interoperability and comprehensive security.

The order in which the ACM retrieves information,
evaluates for a decision, and enforces the decision can differ
greatly based on the specific requirements of the
implementation, and may even take into account
environment conditions during access control decision
rendering. This is referred to as Context Handling and
simply refers to the workflow the ACM undertakes when
gathering the data needed for a decision.

Additionally, where and how policy, attribute, and decision
information are stored and exchanged throughout the
enterprise is an important consideration, for performance
and scalability purposes.

VI. IMPLEMENTATION AND ASSESSMENT PHASE
In the implementation and assessment phase, the
organization installs or implements the system, configures
and enables system security features, tests the functionality
of these features, and finally, obtains a formal authorization
to operate the system. Most of the considerations during this
phase are focused on optimizing performance and ensuring
security features work as expected.

Attribute Caching When an ABAC solution moves from the
prototype or pilot to deployment, attribute caching may be
considered to enhance performance. Performance of the
ABAC solution can be negatively affected if each access

decision requires an across-the-network attribute request.
This is especially apparent in low-bandwidth, high-latency
environments.

In addition to performance issues regarding attribute
caching, the organization may evaluate a tradeoff regarding
the freshness of attributes and the impact upon security.
Attributes that are not refreshed as often will ultimately be
less secure than attributes that are refreshed in real time. For
example, a subject’s access privileges may have changed
since the last refresh, but those updates will not be reflected
in their available access privileges until the next refresh.

Environments with sporadic connectivity will need to cache
attributes at the local level. The security ramifications of
using cached attributes locally need to be determined within
the implementing organization at a policy level, and
addressed with appropriate technical controls. In these
disconnected environments, administrators may employ risk-
based analysis as a basis for access decisions, as some
attributes at the local (disconnected) level may change or be
removed before the system refreshes its attributes. The local
(and disconnected system’s) possible use of stale cached
attributes could introduce a level of risk to the system,
because the local system is not making use of the most
recently available attributes. Therefore, a risk-based analysis
may be warranted as to whether or not to deploy this type of
solution.

An example is a deployed ship with only intermittent, non-
ideal connections to enterprise network fabrics. Because the
deployed user population will have only minor changes
throughout their transit, supporting the “unanticipated”
system user is less of a concern. In this case, a bulk
download and local storage of subject attributes may be
sufficient for most local access control decisions. Therefore,
subject attribute data could be stored locally on the ship
throughout a deployment, and local applications and services
could use the data from the local store without the need to
reach to an authoritative enterprise attribute source. While
this is one example of a solution to an austere environment
problem, it should not be inferred that this is the only
solution.

Attribute Source Minimization Minimizing the number of
attribute sources used in authorization decisions may
improve performance and simplify the overall security
management of the ABAC solution. Organizations planning
to deploy an ABAC solution may benefit from establishing a
close working relationship among all of the organization’s
stakeholders who will be involved in the solution’s
deployment.

Interface Specifications To help ensure consistently reliable
access to ABAC services, all organizations that participate
in information sharing through enterprise ABAC capabilities

should fully understand the interface, interaction, and
precondition requirements for all types of requests,
including attribute and DP requests. It is also important to
ensure that as changes occur in the infrastructure and
interface requirements, all relying parties are provided
notification of updates so they can plan to modify their
components accordingly.

VII. OPERATIONS AND MAINTENANCE PHASE
In the operations and maintenance phase, systems and
products are in place and operating, enhancements and/or
modifications to the system are developed and tested, and
hardware and/or software is added or replaced. During this
phase, the organization should monitor performance of the
system to ensure that it is consistent with preestablished user
and security requirements, and needed system modifications
are incorporated.

Availability of Quality Data As the information needed to
render access control decisions, and in some cases the
decisions themselves, is externalized from the objects and
consumers, access to information and services will become
more dependent on an outside service’s ability to provide
timely and accurate data. It is important that the
infrastructure be robust, well-tested, resilient, and scalable
to mission needs. This is important to support attribute
services, attribute stores, policy stores, policy and attribute
generation and validation components, decision engines, and
metaattribute repositories and conduits through which this
information must pass. If outsourced, service agreements
should detail availability, response time, and data quality
and integrity requirements. For example, failover,
redundancy, and continuity of operations must be considered
for data and services that are considered mission critical.
Maintaining high availability of quality data requires that
addition, updating, and deleting of attribute values is
performed by trained, authorized individuals, and regularly
audited.

Formal agreements between providers and consumers of
attributes and services should meet an appropriate standard of
service, quality, availability, protection, and usage. Various
laws and regulations establish responsibilities, liabilities, and
penalties related to the appropriate protection of information.
The agreements should capture these requirements as well as
those related to responsibility for data.

Agreements establishing an appropriate level of trust
between organizations are important. These agreements
would serve to formalize that trust relationship with a series
of requirements and, possibly, penalties for
nonconformance. Inter-organization agreements for attribute
services and authoritative and accountable attribute sources
can also serve to translate organizational policy into
operational procedures. The purpose, usage, participants,

responsibilities, and administration of these services are
described in these formal agreements.

VIII. SUMMARY AND CONCLUSIONS

 Attribute Based Access Control facilitates standards-based,
policy-preserving user executions of data service
capabilities (data service operations on data service
resources). Data services can take on many forms, including
applications such as time and attendance reporting, payroll
processing, and health benefits management as well as
system level utilities such as file management. In lieu of a
standards based approach, control over access capabilities is
achieved by an access control mechanism implemented in
an underlying and often proprietary operating environment.
The complexities of implementing any access control
method require care in initial analysis and design. This
article introduced some of the important issues in the use
and deployment of ABAC. Readers may find a more
complete treatment of these issues in the Guide to Attribute
Based Access Control [1].

Acknowledgment: This article was derived from the Guide to
Attribute Based Access Control, NIST SP800-162 [1]. We are
grateful to Adam Schnitzer, Ken Sandlin, Robert Miller, and Karen
Scarfone for their contributions to the publication.

Disclaimer: Products may be identified in this document, but
identification does not imply recommendation or endorsement by

NIST, nor that the products identified are necessarily the best
available for the purpose.

REFERENCES
[1] Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller,

R., & Scarfone, K. (2014). Guide to attribute based access control
(ABAC) definition and considerations. NIST Special Publication,
800-162, January 2014.

[2] V. Hu, D. Ferraiolo, R. Kuhn, “Attribute Based Access Control”,
IEEE Computer,

[3] The eXtensible Access Control Markup Language (XACML),
Version 3.0, OASIS Standard, January 22, 2013, <URL:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

[4] Information technology - Next Generation Access Control -
Functional Architecture (NGAC-FA), INCITS 499-2013, American
National Standard for Information Technology, American National
Standards Institute, March 2013.

[5] Working DRAFT Information technology - Next Generation Access
Control –Generic Operations and Data Structures (NGAC-GOADS)),
INCITS 499-2013, American National Standard for Information
Technology, American National Standards Institute, April 2014.

[6] D.F. Ferraiolo, .I. Gavrila, V.C. Hu, and D.R. Kuhn, “Composing and
Combining Policies Under the Policy Machine,” Tenth ACM
Symposium on Access Control Models and Technologies (SACMAT
‘05), Stockholm, Sweden, 2005, pp. 11-20.
https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf [accessed 3/6/14].

[7] D.F. Ferraiolo, V. Atluria, and S.I. Gavrila, “The Policy Machine: A
Novel Architecture and Framework for Access Control Policy
Specification and Enforcement,” Journal of Systems Architecture,
vol. 57, no. 4, pp. 412-424, April 2011.
http://dx.doi.org/10.1016/j.sysarc.2010.04.005

[8] D. Ferraiolo, S. Gavrila, W. Jansen, NIST IR 7987, “Policy Machine:
Features, Architecture, and Specification ” May 2014

https://csrc.nist.gov/staff/Kuhn/sacmat05.pdf
http://dx.doi.org/10.1016/j.sysarc.2010.04.005
http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7987.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7987.pdf

	Implementing and Managing Policy Rules in Attribute Based Access Control
	Abstract – Attribute Based Access Control (ABAC) is a popular approach to enterprise-wide access control that provides flexibility suitable for today’s dynamic distributed systems. ABAC controls access to objects by evaluating policy rules against th...
	I. Introduction
	II. Mapping from Natural Language Policy to ABAC Rules
	III. Attribute Management
	IV. Access Control Mechanism Distribution
	V. Enterprise Considerations
	VI. Implementation and Assessment Phase
	VII. Operations and Maintenance Phase
	VIII. Summary and Conclusions
	References

