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ABSTRACT
Cyber attacks inevitably generate impacts towards relevant
missions. However, concrete methods to accurately evaluate
such impacts are rare. In this paper, we propose a proba-
bilistic approach based on Bayesian networks for quantita-
tive mission impact assessment. A System Object Depen-
dency Graph (SODG) is first built to capture the intrusion
propagation process at the low operating system level. On
top of the SODG, a mission-task-asset (MTA) map can be
established to associate the system objects with correspond-
ing tasks and missions. Based on the MTA map, a Bayesian
network can be constructed to leverage the collected intru-
sion evidence and infer the probabilities of tasks and mis-
sions being tainted. An example MTA-based BN is provided
to show how our approach can enable effective quantitative
mission impact assessment.

Categories and Subject Descriptors
K.6.m [MANAGEMENT OF COMPUTING AND
INFORMATION SYSTEMS]: Miscellaneous

General Terms
Security

Keywords
Mission impact assessment; Bayesian network; System Ob-
ject Dependency Graph

1. INTRODUCTION

Defending missions in cyber space from various attacks
continues to be a challenge. An effective attack can lead
to great loss in the confidentiality, integrity, or availability
to the missions, and even cause some to abort in extreme
cases [1]. When an attack happens, one major concern to
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the security administrators is how the attack could possi-
bly impact related missions. Specifically, they may ask the
questions such as 1) How likely is a mission affected? 2)
To what extent is the mission influenced? Which tasks are
already tainted, and which are untouched?

Continuous efforts have been made to construct high-level
models that aid the mission impact analysis, but concrete
methods that achieve accurate quantitative assessment are
rare. Dai et al. [2] propose a Situation Knowledge Reference
Model (SKRM) that enables mission damage and impact
assessment. However, without rigidly specifying the cross-
layer interconnections, SKRM lacks the capability of per-
forming quantitative mission impact analysis. Jackobson [1]
constructs an impact dependency graph (IDG) for mission
situation assessment. Nevertheless, the paper doesn’t spec-
ify detailed method for generating the dependencies in the
IDG. The impact assessment provided by the IDG is not
sufficiently precise.

In this paper, we propose a probabilistic approach based
on Bayesian networks (BN) for mission impact assessment.
Our approach is to 1) build a System Object Dependency
Graph (SODG) so that the intrusion propagation process is
captured at the system object level; 2) construct a Mission-
Task-Asset (MTA) map to associate the missions and com-
posing tasks with corresponding assets, which are namely
the system objects such as processes, files, etc. The MTA
map is naturally connected to the SODG through shared sys-
tem objects; 3) establish a Bayesian network based on the
MTA map and the SODG to leverage the collected intrusion
evidence and infer the probabilities of interested events, such
as a system object or a mission task being tainted.

The approach is proposed on the basis of the following
supporting rationales. First, the SODG is a proper con-
struct connecting the attack and the missions, as shown in
Figure 1. From the attack side, an attack’s impact towards
the operating systems can be reflected on the SODG. System
objects that are manipulated directly or indirectly by attack-
ers have the possibility of being tainted. From the mission
side, a mission is fulfilled through a sequence of operations
towards system objects. These operations are caught by the
SODG. As a result, the impact of an attack to the missions
can be evaluated by leveraging the SODG as the intermedi-
ate bridge.

Second, the SODG is able to capture the intrusion prop-
agation process, which is critical for correct mission impact
assessment. An attack’s impact towards a mission may
not be explicit when they have no common associated as-
sets. The attack-associated assets refer to the system ob-
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Figure 1: The SODG as the Construct between Attack and Mission 1

jects that are directly related to the attack activities (e.g.
a modified file in a Tripwire [3] alert), while the mission-
associated assets refer to the system objects that are in-
volved in the mission commitment. The mission-associated
assets do not always share the same system objects with the
attack-associated assets, but can still be affected by the lat-
ter through intrusion propagation. In this case, the SODG
can be employed for tracking the intrusion propagation and
assessing the missions that are indirectly affected by the
attack-associated assets.

Third, a Bayesian network is able to leverage intrusion
evidence to perform probabilistic inference towards interest-
ing events. The evidence can be collected from a variety of
information sources, including system logs, security sensors
such as Snort [4] and Tcpdump [5], and even human experts.

The paper is organized as follows. Section 2 introduces
the System Object Dependency Graph (SODG). Section 3
presents the main principles for establishing the mission-
task-asset map. Section 4 briefly discusses the MTA-based
Bayesian networks. Section 5 describes the related work.
Section 6 concludes the whole paper.

2. THE SYSTEM OBJECT DEPENDENCY
GRAPH

In essence, a mission can be decomposed to a set of tasks,
which are then committed through a number of operating
system operations via system calls, such as read, write, ex-
ecve, fork, kill, etc. These system calls operate towards sys-
tem objects like processes, files, and sockets. For instance,
the system call read can read from a file and fork creates
a copy of a process. An intrusion usually begins with one
or more tainted system objects that are directly or indi-
rectly manipulated by attackers. For example, an execution
file containing a Trojan horse may have been installed on a
host; a service may have been compromised with a rootkit

1
The SODG is used to show how the intrusion can propagate from

the attack associated assets to the mission assocaited assets. Readers
are not expected to understand the details inside the nodes of the
SODG.

Table 1: System Call Dependency Rules

System calls Dependency
write, pwrite64, rename, mkdir, fchmod,
chmod, fchownat, etc.

process→file

stat64, read, pread64, execve, etc. file→process
vfork, fork, kill, etc. process→process
write, pwrite64, send, sendmsg, etc. process→socket
read, pread64,recv, recvmsg, etc. socket→process
sendmsg, recvmsg, etc. socket→socket

program and started sending sensitive data back to the at-
tackers’ machine; some critical data that influences the con-
trol flow could have been corrupted so that the execution
paths of a mission workflow can be changed. In subsequent
system calls, these intrusion-originating system objects will
interact with other innocent objects and get them tainted.
This is an intrusion propagation process. In this way, the
intrusion can propagate across a number of systems inside a
network. Among all the system objects tainted via intrusion
propagation, some could be the mission-associated ones so
that the related tasks will get impacted as well.

Given the system call log, a System Object Dependency
Graph (SODG) can be constructed to capture the intrusion
propagation process [8]. Each system call is first parsed into
three elements: a source object, a sink object, and a de-
pendency relation between them. This paper applies similar
rules, shown in Table 1, as in [6–8] for system call parsing.
When constructing the SODG, the parsed objects become
nodes and the dependency relations become edges. For ex-
ample, a read system call can be parsed into a process object
p, a file object f, and a dependency relation f→p, meaning
that p depends on f .

Fig. 2b shows an example SODG built from a simplified
system call log in Fig. 2a. Processes, files, and sockets are
represented with rectangles, ellipses, and diamonds respec-
tively. A process is often uniquely identified by the process
PID pid and the parent process PID ppid, and thus can be
denoted with a tuple (pid :ppid). Similarly, a file and a socket
can be denoted with tuple (inode:path) and (addr :port).

The SODG construction process for Figure 2b is as fol-
lows. First, the system call clone is parsed into a depen-
dency (6149 : 6148)→(6558 : 6149). The dependency be-



syscall:clone time:t1 pid:6149 ppid:6148 pcmd:bash

cpid:6558 cppid:6149 cpcmd:bash

syscall:write time:t2 pid:6558 ppid:6149 pcmd:sshd

ftype:SOCK addr:192.168.101.5 port:22

syscall:read time:t3 pid:6558 ppid:6149 pcmd:mount

ftype:REG path:/proc/6558/ inode:19859

syscall:write time:t4 pid:6558 ppid:6149 pcmd:sshd

ftype:REG path:/proc/6558/ inode:19859

(a) simplified system call log

(6149:6148)

(6558:6149)

（192.168.101.5:22）

(19859:/proc/6558/)

t1

t2

t3

t4

(b) SODG

Figure 2: An example SODG built from the simplified sys-
tem call log

comes an edge between the two processes. Second, the
system call write forms a dependency between a process
and a socket: (6558 : 6149)→(192.168.101.5 : 22). The
dependency becomes an edge between the process and the
socket. Third, the system call read indicates that the pro-
cess then reads a file, and thus creates a dependency (19859 :
/proc/6558/)→(6558 : 6149). Finally, the process writes
back to the same file, and forms a dependency (19859 :
/proc/6558/)←(6558 : 6149).

After the SODG is constructed, forward and backward
tracking can be performed to identify the potentially tainted
objects. Since an attack can often cause security sensors to
raise alerts, the system objects involved in these alerts can
be used as the trigger points that start the tracking process.
For example, if Tripwire raises an alert that a file is modified
abnormally, then the file can be used as a trigger point. On
the SODG, the file is marked as tainted. Starting from this
file, forward and backward tracking can be performed to
generate an intrusion propagation path [8]. The objects on
this path are very likely to be tainted.

3. MISSION-TASK-ASSET MAP

Constructing Mission-Task-Asset (MTA) map is to relate
the system objects with the tasks and missions. An intuitive
solution is to decompose the missions into tasks, and further
associate the tasks with system objects. However, this top-
down decomposing approach requires the prior knowledge
of a mission workflow. In cases when attackers are able to
insert malicious tasks into the workflow, these inserted tasks
could be missed by the MTA map.

In this paper, we propose a bottom-up extraction approach
that extracts the tasks from the SODG, and then relates the

t1

t2 t3
t4

t5 t6

t7
t8

t9

Mission 1 Mission 2
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Mission
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 Pattern 
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Figure 3: Mission-Task-Asset Map 2

tasks with specific missions, as shown in Figure 3. Since the
SODG captures what actually happens in the network, ex-
traction from the SODG accurately reflects which tasks are
actually committed. Considering the manageable number
of missions and tasks an enterprise network could deal with,
relating tasks with missions is not a real issue. The key dif-
ficulty lies in how to extract tasks from the SODG due to
its daunting size. However, the extraction is ensured to be
feasible by the following principles.

First, a mission task can be viewed as an instantiation
of several services that have dependency relations. In en-
terprise networks, the normal function of a service may de-
pend on one or more other services. These services and
applications often interact and work together to accomplish
specific tasks. For example, a user’s login request requires
web service from a web server, which further relies on au
authentication service to verify the user’s legitimacy. The
authentication will then depend on the database service to
access the users’ account information. In this example, a
single task “user login” can be viewed as the instantiation of
combined web service, authentication service, and database
service. Therefore, if such dependency relations among ser-
vices can be discovered and represented with specific graphs,
then a task can be viewed as the instantiation of a service
dependency graph.

Second, through service discovery, the service dependency
graphs (SDGs) can be established at the system object level.
Service discovery has been studied intensively in previous
work [9–12]. Dai [13] proposed to infer the service depen-
dency through identifying OS-level causal paths. Therefore,
the service dependencies can be represented with OS-level
dependency graphs, such as the SODGs. Each service de-
pendency graph has a pattern that can be used to identify
the corresponding SDG. The patterns could be defined from
the perspective of both text and graph-topology. For ex-
ample, a file node with name config and an out degree of n
can be one feature for a specific pattern, indicating that file
config is accessed n times. Since servers in an enterprise net-
work often fulfill routine responsibilities, the common pat-
terns can be extracted to form an SDG pattern repository.

2
Again, readers are not expected to understand the details inside the

nodes of the SODG.



Third, the system assets can be linked to tasks automat-
ically by matching the SODG against the SDG patterns.
Although the SODG is usually not human-readable, it can
be annotated with specific SDGs through pattern match-
ing. For example, if the pattern for combined web service,
authentication service, and database service appears in the
SODG for several times, then as the instantiations of these
services, several “user login” tasks can be linked to the sys-
tem objects involved in these patterns.

4. BAYESIAN NETWORKS

To perform probabilistic mission impact assessment, the
Bayesian networks can be constructed based on the estab-
lished MTA maps. The Bayesian network is a type of Di-
rected Acyclic Graph that can be used to model the cause
and effect relations. In a BN, the nodes represent the vari-
ables of interest, and the edges represent the causality re-
lations between nodes. The strength of such causality re-
lations can be specified with conditional probability tables
(CPT). When evidence is provided, a properly constructed
BN can infer the probabilities of interesting variables.

In this paper, we propose to construct an MTA-based BN,
whose input is the intrusion evidence collected from various
security sensors, and output is the probabilities of interest-
ing security events, such as a system object or a task being
tainted. The graphical feature of MTA enables and facili-
tates the construction of MTA-based BN. With CPT tables
specified and the evidence incorporated, the MTA-based BN
is able to infer the probabilities of tasks and missions being
tainted, and thus evaluate the impact of attacks towards
interesting missions.

To build the MTA-based BN, the dependency relations ex-
isting in the MTA map need to be well modeled. Each MTA
map implies certain dependency relations among the mis-
sions, tasks, and system objects. Such dependency relations
can be represented with certain mission dependency graphs
by interpreting the MTA maps. In the mission dependency
graph, the status of a mission depends on the status of the
composing tasks, while the status of a task depends on the
status of the relevant system objects. We provide two ex-
ample mission dependency graphs based on the same MTA
map to illustrate how the dependency relations can be in-
terpreted.

Figure 4 is an example of benign mission dependency
graph by interpreting an MTA map. In this graph, a mission
is composed of several tasks. For each mission to be benign,
all of its composing tasks should be benign. In addition,
all the tasks should be committed in the correct sequence.
Similarly, each task is also composed of several system level
operations. To ensure the task is benign, the related system
objects should be benign and the operations should be per-
formed in the right sequence. Therefore, all of the parent
nodes have the “AND” relation for the child node to be true.
In Figure 4, Node 5“Task 1 is benign”should have 4 precon-
ditions satisfied in order to be true: Node 1, F1 is benign;
Node 2, P1 is benign; Node 3, F2 is benign; Node 4, “Pro-
cess P1 reads File F1” happens before “Process P1 writes
File F2”, meaning that the read operation is executed be-
fore the write operation. In this example, in order for Node
5 to become true, all the relevant system objects are benign
and all the system operations are performed in the right se-

1: F1 is benign

2: P1 is benign

3: F2 is benign

4: F1-> P1 is before P1->F2

5: Task 1 is benign

6: P1 is benign

7: F2 is benign

8: Task 2 is benign

10: Mission 1 is benign

9: Task 1 is before Task 2

AND

AND 

AND 

Figure 4: An Example of Benign Mission Dependency Graph

1: F1 is tainted

2: P1 is tainted

3: F2 is tainted

4: F1-> P1 is NOT before P1->F2

5: Task 1 is tainted

6: P1 is tainted

7: F2 is tainted

8: Task 2 is tainted

10: Mission 1 is tainted

9: Task 1 is NOT before Task 2

OR

OR 

OR 

Figure 5: An Example of Tainted Mission Dependency
Graph

quence. The relationship between these conditions (Node 1
to 4) is “AND”.

Figure 5 is an example of a tainted mission dependency
graph by interpreting the same MTA map as in Figure 4.
In this graph, if any of the system objects are tainted or
the system operations are not performed in the right order,
the associated task can be marked as tainted. Similarly, if
any of the tasks are tainted or not committed in the correct
sequence, the associated mission is tainted. Therefore, all
the parent nodes have the “OR” relation for the child node
to be true, meaning any of the preconditions being true could
cause the post-condition effective. For example, even if only
F1 in Node 1 is tainted while F2 and P1 are still benign,
Task 1 will get tainted, which will further impacts Mission
1.

To model the above “AND” and “OR” relations, a MTA-
based BN can be constructed as shown in Figure 6. Instead
of specifying the taint status of objects, tasks, and missions
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4: F1-> P1 is before P1->F2

5: Task 1 
6: P1

7: F2

8: Task 2

10: Mission 1

9: Task 1 is before Task 2

Figure 6: An Example of MTA-based BN

in the nodes directly, the MTA-based BN specify the states
in the CPT tables. For example, the CPT table for Mission
1 in Figure 6 is shown in Table 2. In this table, Mission
1, Task 1, and Task 2 have possible states of “tainted” and
“not tainted”. The operation sequence“Task 1 is before Task
2” in Node 9 has the states of “true” and “false”. Other
potential states, such as “clear but in danger”, or “not sure”,
etc, could also be assigned for system objects depending on
specific situations.

In addition, the numbers in Table 2 modeled the “AND”
and “OR” relations. For example, to get “mission 1 = not
tainted” the probability of 1, all the three conditions “Task
1 is tainted”, “Task 2 is tainted”, and “Task 1 is before Task
2” have to be false. As long as any of these three condi-
tions are true, the probability for “mission 1 = tainted” will
become 1. If the three conditions have different impact on
the mission’s taint status, the numbers in the CPT table
can be modified accordingly to reflect such difference. For
example, in Table 3, “Task 1 is tainted” has greater impact
on missions than the other two conditions. When “Task 1
is tainted”, the probability for the mission being tainted is
bigger than 0.9, no matter if the other conditions are true
or false. When Task 1 is not tainted, the probability for the
mission being tainted is very low, even if task 2 is tainted
or the operation sequence is incorrect. The CPT table can
also be modified to accommodate other noise factors that
cannot be completely taken into consideration. For exam-
ple, in Table 3, even if all the three conditions are true, the
probability of mission 1 being tainted may not be 1, but a
number very close to 1, such as 0.99.

After the BN is constructed, the taint status of system
objects is input into BN as evidence. The BN then com-
putes the probabilities of missions being infected based on
the given evidence.

5. RELATED WORK

Mission Impact Assessment. Some high level frame-
works and models have been established in recent studies
to enable qualitative evaluation towards cyber attacks’ im-
pact on missions. Alberts et al. [15] proposed a Mission As-

surance Analysis Protocol (MAAP) to determine how the
current conditions can affect a project. Watters et al. [16]
proposed a Risk-to-Mission Assessment Process to map the
network nodes to the business objectives. Musman et al. [14]
clarified the cyber mission impact assessment framework and
related the business processes with technology capacities.
Dai et al. [2] proposed a Situation Knowledge Reference
Model (SKRM) that enables capabilities such as asset clas-
sification, mission damage and impact assessment. [1] is one
of the few works that explore quantitative mission impact
assessment. It presented an impact-oriented cyber attack
model, where an attack has an impact factor and the asset
is measured with operational capacity. The assets’ opera-
tional capacity will be affected by the attack’s impact factor.
The paper then briefly introduced the impact dependency
graph (IDG), but didn’t provide details for the construction
method.

Bayesian Network. Bayesian networks have been em-
ployed in a number of studies for cyber security defense. [17]
presented a BN modeling approach which modeled three un-
certainty types in the security analysis process. The BN was
constructed on top of the logical attack graphs [18, 19]. [20]
proposed to construct a cross-layer Bayesian network to in-
fer stealthy bridges existing between the enterprise network
islands in cloud. [21] described a mission-impact-based ap-
proach to correlate the security alarms collected from differ-
ent sensors using Bayesian networks. An incident rank tree
was built to calculate the rank of each security alert, which
combines the incident’s impact towards the mission, and the
success probability of the activity reported in the alert. Our
work also applies Bayesian networks, but targets a different
problem.

6. CONCLUSION

This paper proposed a probabilistic approach to evaluate
the impacts towards missions caused by attacks. To asso-
ciate attacks with system assets, a System Object Depen-
dency Graph (SODG) can be built to reflect the influence
of attacks towards system objects and capture the intrusion
propagation to other objects as well. To further relate the
assets with missions, we proposed to buid a mission-task-
asset (MTA) map based on the SODG so that the attacks’
impact towards system objects can propagate to the related
missions. We provided an example Bayesian network that is
constructed on top of the MTA to show how our approach
can be applied to infer the probabilities of missions being
tainted.
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Table 2: CPT of Mission 1 in the Figure 6

Mission1
Task 1=Tainted Task 1=Untainted

Task 2=Tainted Task 2=Untainted Task 2=Tainted Task 2=Untainted

C = True C = False C = True C = False C = True C = False C = True C = False

Tainted 1 1 1 1 1 1 1 0

Untainted 0 0 0 0 0 0 0 1

Note: C represents the condition “Task 1 is committed before Task 2”

Table 3: Modified CPT of Mission 1 in the Figure 6

Mission1
Task 1=Tainted Task 1=Untainted

Task 2=Tainted Task 2=Untainted Task 2=Tainted Task 2=Untainted

C = True C = False C = True C = False C = True C = False C = True C = False

Tainted 0.99 0.9 0.9 0.9 0.2 0.2 0.2 0.01

Untainted 0.01 0.1 0.1 0.10 0.8 0.8 0.8 0.99

Note: C represents the condition “Task 1 is committed before Task 2”

Institute of Standards and Technology, nor does it imply
that the identified products are necessarily the best avail-
able for the purpose.
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