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ABSTRACT 
This paper has two major goals. First, we present an algorithm 

for establishing planar datums suitable for a default in 

tolerancing standards. The algorithm is based on a constrained 

minimization search based on the 𝐿1 (L1) norm after forming a 

convex surface from the original surface or sampled points. We 

prove that the problem reduces to a simple minimization search 

between the convex surface and its centroid. The data points in 

the discrete case do not need to have any corresponding 

weights provided with them, as appropriate weighting is part of 

the algorithm itself, thereby making the algorithm largely 

insensitive to nonuniformly sampled data points. Terse 

Mathematica code is included for the reader. The code is 

sufficient for primary and secondary planar datum fitting as 

well as a 3-2-1 datum reference frame generation. The second 

goal of this paper is to compare this new method with several 

other possible means for establishing datum planes, ultimately 

showing several appealing characteristics of the proposed 

algorithm. Since both the ISO and ASME standardization 

efforts are actively working to establish datum plane 

definitions, the timing of such a study is opportune. 

 

 

1.  BACKGROUND AND INTRODUCTION 
In the world of Geometric Dimensioning and Tolerancing 

(GD&T), datums are used extensively to locate and orient 

tolerance zones [1-7]. Datum planes in particular are common 

and are established by mating planes to imperfect datum 

features on parts during inspection [3] (see Fig. 1). Distances 

and orientations on drawings and three-dimensional models are 

established from these datum planes, relative to which tolerance 

zones are located and oriented. In many cases there is a need 

for more than one datum plane. In fact a full Cartesian 

coordinate system in three dimensions is often established 

using datums. Datum planes, in particular, are widely used for 

this. The importance and prevalence of datum planes in 

specifications are given in greater detail in [8] and will not be 

revisited in this paper.  

 

 
Fig. 1. Deriving a datum plane from a datum feature. 

 

Given that datum planes are ubiquitous, it might be 

surprising that—short of standardization—there are several 

different yet reasonable approaches by which a datum plane can 

be established from a datum feature [9]. Furthermore, the 

International Organization for Standardization (ISO) and the 

American Society of Mechanical Engineers (ASME) are 

actively working to establish default datum plane definitions. 

Consequently, the timing of this paper is opportune, since we 

seek in its two major sections to provide (1) an improved 

algorithm for establishing planar datums (Section 2 of this 

paper), and (2) a comparison of the proposed algorithm with 

several other possible definitions for establishing datum planes 

(Section 3 of this paper). 

 

 

2. THE IMPROVED ALGORITHM 
 

2.1 Existing L1 Datum Plane Definition and Algorithm 
First, we describe what is meant by a constrained 𝐿1 fit in 

our context. To fit a one-sided 𝐿1 plane to a surface patch in 

space, we pose the following optimization problem (with 

reference to Fig. 2): Given a bounded surface 𝑆, and a direction 

𝒂∗ (that points into the material), find the plane 𝑃 that 

minimizes ∫ |𝑑(𝒑, 𝑃)|𝑑𝑠
 

𝑆
, subject to the constraint that 𝑃 lies 

entirely to one side (as determined by 𝒂∗ ) of the surface 𝑆. 

Here 𝑑(𝒑, 𝑃) denotes the signed perpendicular (to 𝑃) 

distance of a point p on surface patch S from the plane P that 

will be fitted. We note that ∫ 𝑑𝑠
 

𝑆
 is the area of the surface patch. 

If the surface consists of several patches, then the integrals can 

be evaluated over each patch and then summed. 
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Fig. 2. Fitting a plane to a surface patch. 

 

The objective function cannot, in general, be evaluated in 

closed form. So we resort to numerical integration over the 

surface S. We can sample points on a surface patch after 

dividing up the patch into discrete areas ΔAi and approximate 

the objective function as 

∫ |𝑑(𝒑, 𝑃)|𝑑𝑠 ≈  ∑|𝑑(𝒑𝑖, 𝑃)| ∙ ∆𝐴𝑖  ,

𝑁

𝑖=1

 

𝑆

 

where pi are the N sampled points, one in each subdivision. 

Thus we are led to minimizing ∑ [|𝑑(𝒑𝑖 , 𝑃)| ∙ ∆𝐴𝑖 ]
𝑁
𝑖=1  over the 

parameters of the plane P, where ΔAi's are treated as the 

weights. 

In an earlier paper [8], we presented the theory and 

algorithms for datum plane establishment using a constrained 

minimization search based on the 𝐿1 norm (as just defined). In 

short, the algorithm worked as follows: Given a surface (or set 

of sampled points), the datum plane was defined as the plane 

that (1) is constrained to lie on the nonmaterial side of the 

surface (or points), and (2) minimizes the integral (or sum) of 

absolute distances between the plane and the surface (or 

points). We showed that finding such a plane actually turns out 

to be quite simple, since we proved that it is equivalent to 

finding the plane that minimizes the distance between the 

centroid of the surface (or of the weighted points) and the 

plane. This simplification led to efficient algorithms (and code 

provided) for the primary and secondary planar datums (the 

tertiary case being trivial). The reader is encouraged to fill in 

details as desired from the earlier paper itself.  

 

2.2 Motivation for an Improved Definition and 
Algorithm 

Although the original planar datum definition based on the 

𝐿1 norm has many attractive properties (which will be 

discussed in Section 3) it has the following three drawbacks 

that are remedied in the improvement to be given in the next 

subsection of this paper: 

 

1) The need for weights: In the discrete case, having a set 

of sampled points on the datum feature was not enough to 

compute the datum plane. The appropriate weights 

corresponding to the points were needed as well. (Without 

weighting, the computed centroid could shift with nonuniform 

sampling.) If one imagined that the weights (being the relative 

areas around each sampled point) could be calculated as part of 

the algorithm itself, the nominal model of the datum feature 

would still be required. To see why this is true, imagine a datum 

feature that is a rectangular surface with a bore and/or slot (see 

Fig. 3). To compute weights, one would have to know where 

the hole or slot appears in the rectangle to keep from 

overweighting certain points. If one tried to remedy this by 

always using equally spaced points, problems then arise as to 

how to actually obtain equal spacing when the datum feature is 

irregularly shaped or includes bores. 

 
Fig. 3. An example case to show the need for part 

information when assigning weights. 

 

2) Irrelevant part features: It could be argued that the bore 

and the slot in Fig. 3 should not affect the datum plane. The 

improved definition presented later in this paper solves this. 

 

3) The applicability to broken surfaces: In a case like the 

one illustrated in Fig. 4, the intent seems to be that all three 

sections of the broken surface should contact the datum plane. 

If (as illustrated) one surface section were relatively large, then 

the existing 𝐿1 based datum definition may very well not 

contact the other two, small surface sections. Again, the 

improved definition presented later in this paper solves this. 

 

 

 
Fig. 4. An example datum feature comprised of three 

disjoint surfaces.  
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2.3 The Improved L1 Definition and Algorithm 
The new datum plane definition is again based on a 

constrained 𝐿1 minimization search, but now consists of two 

major steps: (1) Find the appropriate convex surface from the 

given surface or data points, and (2) Compute the constrained 

(one-sided) 𝐿1 planar fit to that convex surface. The previous 

algorithm did not compute the convex surface first, but applied 

the 𝐿1 minimization directly to the original surface. Computing 

the convex surface first resolves all three of the issues 

presented in Section 2.2. 

The first step of the definition, more specifically, is to 

compute the convex surface that is the part of the convex hull 

exterior to the material. If a part is positioned so that the 

material is “up” then the convex surface sought would be the 

“underbelly” or the “lower convex envelope” of the convex 

hull. Figure 5 illustrates the concept in the case of discrete 

points. 

 

 

 
Fig. 5. An example of the lower convex envelope 

derived from the data points (shown in 2D for simplicity). 

 

This envelope can also be thought of as the result of 

applying a morphological filter to the data, using a sphere of 

infinite radius (see [10]). The new surface reflects all the 

possible contacts between the original surface (or set of points) 

and a perfect plane. The development of such a surface is also 

documented in ISO 5459 [6], though that document then goes 

on to employ a constrained 𝐿∞ fit. Furthermore, convex hull 

algorithms that can facilitate the computation of such a surface 

are mature, well documented, and widely available in 

commercial software. 

 

Having thus created the convex surface, the second major 

step in the algorithm is to compute the constrained (one-sided) 

𝐿1 planar fit to that new, convex surface. When the convex 

surface is generated from a set of discrete points, it can be 

represented by a union of triangles (as is generally done in 

widely available convex hull algorithms). Assuming such a 

convex hull algorithm is available, we can apply the theorems 

in [8] to now document the algorithm, which is robust, easy to 

conceptualize, and simple to code. The 3D datum plane 

algorithm is: 

 

Given:  

1) Data points 𝒙1,  𝒙2,  𝒙3, ⋯ ,  𝒙𝑁, where each 𝒙𝑖 =

(𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖), and 

2) A direction, 𝒂∗ that indicates the direction into the 

material, 

then the datum plane is established using the following steps: 

 

1) Compute the convex hull of the data points and 

represent it by the union of triangles. (Each triangle 

will have three of the data points for its vertices.) 

2) Select those triangles that are exterior to the material 

(i.e., the triangles that comprise the lower convex 

envelope). This can be accomplished by computing the 

normal to each triangle (pointing into the hull) and 

comparing its direction to  𝒂∗. (The sign of the dot 

product can easily be used here). 

3) Compute the centroid, �̅�, of the convex surface of Step 

2. The centroid of each triangular region can be 

trivially computed as the average of the vertices. The 

area of each triangle can also be easily computed. The 

vector sum of the triangle centroids when weighted by 

their relative areas is the centroid of the lower convex 

envelope. Given 𝑁 triangles each having area 𝐴𝑖, then 

each relative weight is 𝑤𝑖 = 𝐴𝑖 ∑ 𝐴𝑖
𝑁
𝑖=1 .⁄  

4) Evaluate the distance from the centroid of Step 3 with 

each plane containing a triangle of the surface of Step 

2.  

5) Choose the plane that produces the minimal distance. 

The solution plane is coincident with a face of the 

convex hull, thus a simple search through the faces 

will produce the correct datum plane. 

A word should be said about the reference direction, 𝒂∗. 

The direction usually does not need to be known very 

accurately, since it is only used to distinguish the top side of the 

convex surface from the bottom. So determining 𝒂∗ from a 

probing direction or from a nominal vector is often sufficient. 

But for completeness, we define 𝒂∗ as the direction normal to 

the least-squares plane of the original surface and pointing into 

(as opposed to outside) the material. See [11] for an appropriate 

least-squares algorithm, if needed. 

A secondary datum plane can be generated by the 

following similar steps: 

1) Project the data points from the secondary datum 

feature into the primary datum plane. 

2) Compute the 2D convex hull of the projected data 

points and represent it by the union of line segments. 

(Each line segment will have two of the projected data 

points for its endpoints.) 

3) Select those line segments that are exterior to the 

material (i.e., the line segments that comprise the 

lower convex envelope). This can be accomplished by 

computing the normal to each line segment (pointing 

into the hull) and comparing its direction to a*. (The 

sign of the dot product can easily be used here). In this 
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step, a*, is a vector in the primary datum plane that 

indicates the direction into the material. As explained 

above, a* usually does not need to be known very 

accurately, but for completeness, we define a* as the 

direction normal to the least-squares line of the 

contour obtained by projecting the secondary datum 

feature after that surface has been projected into the 

primary datum plane (and the normal pointing into as 

opposed to outside the material). 

4) Compute the centroid, �̅�, of the convex (piecewise 

linear) contour of Step 3. The centroid (midpoint) of 

each line segment can be trivially computed as the 

average of the endpoints. The length of each line 

segment can also be easily computed. The sum of the 

line segment centroids when weighted by their relative 

lengths is the centroid of the lower convex envelope. 

Given 𝑁 line segments each having length ∆𝑖, then 

each relative weight is 𝑤𝑖 = ∆𝑖 ∑ ∆𝑖
𝑁
𝑖=1 .⁄  

5) Evaluate the distance from the centroid of Step 4 with 

each line containing a line segment of the surface of 

Step 3. 

6) Choose the line that produces the minimal distance. 

The solution plane is the plane containing this line and 

perpendicular to the primary datum plane. 

Mathematica codes for the 3D and 2D cases (without the 

projection step) are given later and are pleasingly compact and 

efficient. The case of the tertiary datum plane is trivial. 

Two theorems are relevant to the 3D algorithm (the 2D 

case is similar to the 3D case). The first was easily proved in 

[8] namely, 

Theorem 1. Assume that we are given a direction 𝒂∗ and a 

bounded surface 𝑆 of finite area comprised of points with 

(�̂�, �̂�, �̂�) coordinates and having centroid  𝒙 =

(
∫ 𝑥 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

,
∫ �̂� 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

,
∫ �̂� 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

). Then a plane that lies to one side of 𝑆 (as 

determined by 𝒂∗) and that minimizes |𝑑( 𝒙, 𝑃)| is also a 

constrained plane that minimizes ∫ |𝑑(𝒑, 𝑃)|𝑑𝑠 
 

𝑆
. 

 

Proof: A constrained plane that minimizes  |𝑑( 𝒙, 𝑃)| is a 

plane, 𝑃∗, determined by a point on the plane 𝒙 = (𝑥, 𝑦, 𝑧) and 

the direction of the plane 𝒂 = (𝑎, 𝑏, 𝑐) such that |𝒂 ∙ (𝒙 − 𝒙)| is 

minimized. But by definition 𝒙 = (
∫ 𝑥 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

,
∫ �̂� 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

,
∫ �̂� 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

), so that 

𝑃∗ minimizes |𝑎 (
∫ 𝑥 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

− 𝑥) + 𝑏 (
∫ �̂� 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

− 𝑦) + 𝑐 (
∫ �̂� 𝑑𝑠

 
𝑆

∫ 𝑑𝑠
 

𝑆

−

𝑧)|. Multiplying by the total area, ∫ 𝑑𝑠
 

𝑆
, which is positive, we 

get that 𝑃∗ must also minimize |𝑎 ∫ (�̂� − 𝑥) 𝑑𝑠
 

𝑆
+ 𝑏 ∫ (�̂� −

 

𝑆

𝑦) 𝑑𝑠 + 𝑐 ∫ (�̂� − 𝑧) 𝑑𝑠
 

𝑆
|, which is ∫ |𝑑(𝒑, 𝑃)|𝑑𝑠 

 

𝑆
, completing 

the proof. ∎ 

 

The second relevant theorem, which is similar to Theorem 

3 of [8] is: 

Theorem 2. Given a convex envelope consisting of a union 

of a finite number of triangles, and direction 𝒂∗, then any 

supporting plane that lies to one side of the points (as 

determined by 𝒂∗) and minimizing the weighted 𝐿1 objective, is 

a plane that is coincident with one of the planar (triangular) 

faces of the convex envelope. 

Proof: The proof of this theorem involves several steps 

and relies on the well-known fact that the weighted centroid 𝒙 

must lie within the convex hull, and thus the material side of 

the convex envelope (since any weighted combination of the 

points is contained in the convex hull provided every weight 

lies in (0, 1] and provided the weights sum to one (see, for 

instance, [12, 13]). The theorem and proof share some similar 

approaches with the task of computing the width of a set of data 

points [14]. 

Step 1: A minimizing plane contains at least one of the 

given points that is on the convex surface. Suppose not. That is, 

suppose a plane, 𝑃,  lying to the one side of the surface, 

minimizes the objective, but does not contact any of the surface 

points. It is immediately clear then that it does not contact any 

of the vertices of the triangles. Since there are a finite number 

of triangles, there must be a positive distance 𝑑 that is the 

minimum distance from the plane to any of the vertices of the 

triangles. If 𝒙∗ is the (or a) closest vertex, then a new plane, 𝑃∗, 

could be constructed that is parallel to 𝑃 but at a distance 𝑑
2⁄  

from 𝒙∗. This plane 𝑃∗ also lies to the one side of the points (as 

determined by 𝐚∗) but has a smaller weighted 𝐿1 objective, 

because it is closer to the weighted centroid, 𝒙, since 𝒙 must 

also lie to the same side of 𝑃 and 𝑃∗ (since it is contained in the 

convex hull). This contradicts the supposition that 𝑃 minimized 

the objective function, proving Step 1. 

Step 2: A minimizing plane contains one of the edges of 

the convex envelope boundary (implying that it contains at least 

two of the given points). Suppose not. That is, suppose a plane, 

𝑃,  lying to one side of the points, minimizes the objective 

function, but does not contain any of the edges of the triangles 

that make up the convex surface. From Step 1, 𝑃 contacts one 

of the vertices. There are a finite number of edges of triangles 

emanating from that point. Let 𝜃 > 0 denote the minimum 

angle between 𝑃 and the edges emanating from the contact 

point. Construct a line from the contact point to 𝒙. A new plane, 

𝑃∗, can be constructed by rotating 𝑃 by an angle 𝜃
2⁄  in a 

direction making it closer to 𝒙, meaning it has a smaller 

weighted objective. (The rotation should be about the direction 

that is the cross product between the normal of 𝑃 and the 

direction formed by the contact point and 𝒙. In the case that the 

two directions are coincident, a rotation of 𝜃
2⁄  about any 

direction would suffice.) This rotation decreases the objective 

function by a factor of 1 − cos (
𝜃

2
). But this contradicts the 

supposition that 𝑃 minimized the objective function, proving 

Step 2. 
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Step 3: A minimizing plane coincides with one of the 

triangular faces of the convex surface. Suppose not. That is, 

suppose a plane, 𝑃,  lying to one side of the points, minimizes 

the objective function, but does not contain any triangular face 

of the convex surface. From Step 2, 𝑃 contains one of the edges 

of a triangle. There are generally two triangular faces 

emanating from that edge. (The case where there is one face—

meaning 𝑃  contains an edge of a boundary triangle of the edge 

of the convex envelope—can be handled with similar 

reasoning.) Let 𝜃 > 0 denote the minimum angle between 𝑃 

and those two faces. A new plane, 𝑃∗, can be constructed by 

rotating about the direction of the shared edge by an angle 𝜃
2⁄  

that is closer to 𝒙, meaning it has a smaller weighted objective. 

(Depending on the location of 𝒙, rotating one way or the 

other—possibly both—will decrease the distance from the 

plane to 𝒙). The minimal decrease by the rotation changes the 

objective function by a factor of 1 − cos (
𝜃

2
). This contradicts 

the supposition that 𝑃 minimized the objective function, 

proving Step 3 and, in fact, the theorem.  ∎  

 

Theorem 2 allows the algorithm to simply compute the 

centroid of the convex surface and search through all the 

triangular faces of the convex surface for the one closest to the 

centroid. 

 

2.4 Mathematica Codes 
Mathematica1 (version 8) code for the cases of fitting of a 

plane to data in three dimensions is presented first. The 

function name should be understood as l1PlaneDatum3d = 

“ℓ1 Planar Datum in three dimensions.” In this code, pts 

contains the list of all the three-coordinate points and the 

reference direction is indicated by refdir (a three-

dimensional vector). The function returns a list of six numbers. 

The first three define a point on the plane. The next three define 

the direction normal to the plane. If one thinks of refdir as 

defining “up,” then the plane returned will be “under” the data 

points. The code makes use of a function called 

computetrianglearea, which computes the area of a 

triangle in a special way to reduce the impact of finite 

precision. Code for that function is given in Appendix A of this 

paper. A check can be added for the case that the points form a 

perfect plane. This check (which is not needed for the 2D case) 

can be performed by simply looking at the residuals from a 

least-squares plane fit as described in [11]. If the residuals are 

essentially zero, then the least-squares plane is the datum plane.  

 
Needs["TetGenLink`"]; 

l1PlaneDatum3d[pts_, refdir_] := Module[{hullpts, 

hullsurface, surface, trianglecentroids, 

triangleareas, centroid, normals, distances, 

                                                           
1 Certain commercial software packages are identified in this paper in 

order to specify the experimental procedures and code adequately. Such 

identification is not intended to imply recommendation or endorsement by the 

National Institute of Standards and Technology, nor is it intended to imply that 
the software tools identified are necessarily the best available for the purpose. 

mindistanceindex},{hullpts, hullsurface} = 

TetGenConvexHull[pts]; 

surface = Select[hullsurface, Cross[hullpts[[#[[2]]]] 

- hullpts[[#[[1]]]], hullpts[[#[[3]]]] 

- hullpts[[#[[1]]]]].refdir > 0 &];  

trianglecentroids = 

Table[Sum[hullpts[[surface[[i]]]][[j]]/3,{j, 3}], 

{i,Length[surface]}]; 

triangleareas = 

Table[computetrianglearea[hullpts[[surface[[i]]]]

], {i,Length[surface]}]; 

centroid = 

triangleareas.trianglecentroids/Total[triangleare

as]; 

normals = Table[Cross[hullpts[[surface[[i]][[2]]]] - 

hullpts[[surface[[i]][[1]]]],hullpts[[surface[[i]

][[3]]]] - hullpts[[surface[[i]][[1]]]]],{i, 

Length[surface]}]; 

normals = Table[normals[[i]]/Norm[normals[[i]]],{i, 

Length[normals]}]; 

distances = Table[normals[[i]].(centroid - 

trianglecentroids[[i]]), {i, Length[normals]}]; 

mindistanceindex = Ordering[distances, 1]; 

Flatten[{trianglecentroids[[mindistanceindex]], 

normals[[mindistanceindex]]}] ]; 

 

Mathematica (version 8) code for the cases of fitting of a 

plane to data in two dimensions is presented next. The function 

name should be understood as l1PlaneDatum2d = “ℓ1 

Planar Datum in two dimensions.” It should be understood that 

this is a case of a constrained planar datum, which, when 

constrained to two dimensions is actually a line. In this code, 

pts contains the list of all the two-coordinate points and the 

reference direction is indicated by refdir (a vector of 

dimension two). The function returns a list of four numbers. 

The first two define a point on the line. The next two define the 

direction normal to the line. If one thinks of refdir as 

defining “up,” then the line returned will be “under” the data 

points. 

 
Needs["ComputationalGeometry`"]; 

l1PlaneDatum2d[pts_, refdir_] := Module[{indices, 

newpts, midpoints, vectors, alldata, lowerdata, 

lengths, centroid, normals, distances, 

mindistanceindex}, 

indices = ConvexHull[pts]; 

newpts = pts[[indices]]; 

newpts = Append[newpts, newpts[[1]]]; 

midpoints = Table[(newpts[[i + 1]] + newpts[[i]])/2, 

{i, Length[newpts] - 1}]; 

vectors = Table[newpts[[i + 1]] - newpts[[i]],{i, 

Length[newpts] - 1}]; 

newpts = Drop[newpts, -1]; 

normals = Table[{-vectors[[i]][[2]], 

vectors[[i]][[1]]}, {i, Length[vectors]}]; 

normals = Table[normals[[i]]/Norm[normals[[i]]],{i, 

Length[normals]}]; 

alldata = Transpose[{vectors, midpoints, normals}]; 

lowerdata = Select[alldata, #[[3]].refdir > 0 &]; 

{vectors, midpoints, normals} = Transpose[lowerdata]; 

lengths = Table[Norm[vectors[[i]]],{i, 

Length[vectors]}]; 

centroid = lengths.midpoints/Total[lengths]; 

distances = Table[normals[[i]].(centroid-

midpoints[[i]]), {i, Length[normals]}]; 

mindistanceindex = Ordering[distances, 1]; 
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Flatten[{midpoints[[mindistanceindex[[1]]]], 

normals[[mindistanceindex[[1]]]]}]]; 

 

 

3. A COMPARISON OF SEVERAL POSSIBLE DATUM 
PLANE DEFINITIONS 

For the sake of a reasonable scope, we will simply consider 

defining a primary datum plane to a planar feature. Indeed, 

secondary and tertiary datum planes are important as well, but 

the reader can extend the implications of this work to the 

additional cases without much difficulty. We consider the 

following eight possible means to define a primary datum plane 

given a planar datum feature—all of which have been proposed 

at some level in standards development. (Abbreviated names 

are given to each for convenient use throughout this paper.) 

 

 

3.1 The Planar Datum Definitions 
 

1) 𝐿1 constrained convex envelope: This is the definition 

presented in Section 2 of this paper.  

This mathematical definition actually has an easy-to-

conceptualize physical understanding. Minimizing the 𝐿1 norm 

between a plane and a surface is equivalent to simply setting 

the surface on a level plane and allowing gravity to bring the 

two into contact. In this definition, such contact is made—not 

with the original surface—but with the convex envelope about 

the surface. 

 

2) 𝐿1 constrained: Find the plane that lies to one side (the 

nonmaterial side) of the surface that minimizes the 𝐿1 norm 

between the plane and the datum feature. 

This is similar to (1) above, but does not create the convex 

envelope first. This is the method described in [8]. 

 

3) 𝐿2 unconstrained: Find the plane fit to the planar feature 

in a least-squares sense (see [11]). 

 

4) 𝐿2 shifted: Find the plane as in (3) above, but translate 

the plane such that it contacts the datum feature but does not 

pass through any material. (In other words, shift to the “high 

point” of the surface—or, as they are pictured here—the “low 

point” of the surface.) 

 

5) 𝐿2 constrained: Find the plane that is constrained to lie 

on the nonmaterial side of the datum feature and that minimizes 

the 𝐿2 norm (least-squares) of their separation. 

 

6) 𝐿2 constrained convex envelope: Find the plane that is 

constrained to lie on the nonmaterial side of the datum feature 

and that minimizes 𝐿2 norm (least-squares) of the separation 

between the plane and the convex envelope of the datum 

feature. 

 

7) 𝐿∞ constrained: Find the plane that is constrained to lie 

on the nonmaterial side of the datum feature and that minimizes 

the maximal separation between the plane and the datum 

feature. 

 

8) 𝐿∞ constrained convex envelope: Find the plane that is 

constrained to lie on the nonmaterial side of the datum feature 

and that minimizes the maximal separation between the plane 

and the convex envelope of the datum feature. 

 

3.2 Criteria for Comparison 
While there are an infinite number of datum features to 

which a datum plane could be mated, we found that using only 

three example cases (actually shown and performed in 2D), we 

could largely distinguish the behavior of various definitions. 

Using these, combined with other desirable properties, we 

can evaluate the various planar datum definitions. A benefit of 

these criteria is that it is a framework for the reader to use for 

evaluation. While we give our evaluations of “good,” “fair,” 

and “poor,” the reader is free to alter any evaluations.  

 

3.2.1 Asymmetric convex datum feature 
When the datum feature is a convex shape as shown in Fig. 

6, all the definitions yield a similar (negative) slope except the 

𝐿∞ based definitions, which are horizontal. This is especially 

troubling when one considers that the same undesired effect of 

the 𝐿∞ based definition would occur if the datum feature were a 

flat plane with just a corner bent up. (The bent corner—ever so 

small—would nonetheless have significant impact on the slope 

of the mating datum plane in the 𝐿∞ cases.) Thus a “poor” 

evaluation is assigned to those definitions in this case. Also, the 

𝐿2 unconstrained datum passes through the material (not shown 

in the figure), which should be assigned a “poor” evaluation, 

since planar datums are often associated with assembly that 

cannot have interference of material. The same issue of 

interference will result in a “poor” evaluation for the 𝐿2 

unconstrained definition in the next two cases as well. See 

Table 1. 

In the figures for the test cases, the desired datum plane is 

shown by a dotted line (and is in fact the 𝐿1-based fit in each of 

the three cases shown). Behavior of other datum plane definitions 

is depicted in dashed line(s). A few (not all) other (i.e., dashed) 

lines are shown in each figure for clarity. 

 

 
Fig. 6. Example case showing the 𝑳∞ based definitions 

yielding an undesired slope of zero.  
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Table 1. Asymmetric convex case evaluation 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Good 

𝐿2 unconstrained Poor 

𝐿2 shifted Good 

𝐿2 constrained Good 

𝐿2 constrained convex envelope Good 

𝐿∞ constrained Poor 

𝐿∞ constrained convex envelope Poor 

 

 

3.2.2 Asymmetric concave datum feature 
As seen in Table 2, when the datum feature is a convex 

shape as shown in Fig. 7, all the definitions yield an expected 

horizontal plane except the 𝐿2 unconstrained and 𝐿2 shifted 

definitions, which yield an undesired negative slope. 

 

  

 
 

Fig. 7. Example case showing some 𝑳𝟐 based definitions 
that have an undesired negative slope.  

 

 

 
Table 2. Asymmetric concave case evaluation 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Good 

𝐿2 unconstrained Poor 

𝐿2 shifted Poor 

𝐿2 constrained Good 

𝐿2 constrained convex envelope Good 

𝐿∞ constrained Good 

𝐿∞ constrained convex envelope Good 

 

3.2.3 Convex and concave (wavy) datum feature 
When the datum feature is a wavy shape as shown in 

Fig. 8, the 𝐿1 based planes contact the surface at the left side 

and near the minimum as shown. The 𝐿∞ constrained convex 

envelope is exactly horizontal. The other fits fall somewhere in 

between. (Depending on the size of the concave section, the 𝐿2 

constrained datum plane may or may not be coincident with the 

𝐿1 based planes.) One interesting note here: the implementation 

of the lower convex envelope actually produces an inferior 

plane in this case for the 𝐿2 and 𝐿∞ definitions. The 𝐿1 plane is 

unchanged in this example case. See Table 3. 

 
 

Fig. 8. Example of a wavy datum feature showing various 
datum definitions.  

 
Table 3. Asymmetric concave case evaluation 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Good 

𝐿2 unconstrained Poor 

𝐿2 shifted Fair 

𝐿2 constrained Fair 

𝐿2 constrained convex envelope Poor 

𝐿∞ constrained Fair 

𝐿∞ constrained convex envelope Poor 

 

3.2.4 Correspondence to the established practice of 
mating the physical part on a surface plate. 

Constrained 𝐿1 planar fitting has the effect of mating a 

planar datum feature to a plane in a manner that all points on 

the datum feature are “pulled” to the datum plane with equal 

force. (See [10] for a more detailed explanation of the 𝐿1 norm 

in fitting.) This is the same as the physical effect of gravity 

pulling a datum feature surface to a “perfect” plane 

approximated by a surface plate (all points on the datum feature 

surface are pulled equally). 

Furthermore, a primary datum feature will contact a 

surface plate at (at least) three points (unless a rocking 

condition exists, a case described in [4]). Likewise a secondary 

datum feature will contact its datum simulator at two points in 

general, and the tertiary at one. This 3-2-1 behavior is exactly 

mimicked by the constrained 𝐿1 planar datum definitions, but 

this is not shared by any of the other planar datum definitions 

as seen in Table 4. See [8] for a complete 3-2-1 description 

related to 𝐿1 planar datum definitions. 

 
Table 4. Physical surface plate correspondence 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Good 

𝐿2 unconstrained Poor 

𝐿2 shifted Poor 

𝐿2 constrained Poor 

𝐿2 constrained convex envelope Poor 

𝐿∞ constrained Poor 

𝐿∞ constrained convex envelope Poor 
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3.2.5 Ability to establish the datum plane using both 
coordinate metrology and physical mating processes 

It would be advantageous if a default planar datum 

definition could be realized with both coordinate metrology and 

using physical mating of parts. All the definitions can be 

realized using coordinate metrology, reducing the question to 

be which definitions can be realized physically. Both of the 𝐿1 

definitions can be realized physically, since the mating can 

occur by simply applying a downward force on the part above 

the location of the centroid (The centroid in both cases can be 

found easily using physical processes). 

Also, the 𝐿∞ constrained convex envelope definition can 

be realized physically by using shims to ensure the maximum 

separation between the edges of the datum feature and the 

surface plate is as small as possible. (This is easy to picture in 

2D, since the separation at each end has to be of the same size. 

The extension to 3D would have at least three such critical 

locations.) 

The 𝐿∞ constrained definition requires information that is 

hidden to the user (in the middle section of the part that is 

mated to the surface plate) making it difficult or impossible to 

realize in practice. The 𝐿2 based definitions are easily solved on 

a computer but are simply not attainable to someone having 

only physical, shop-floor resources. See Table 5. 

 
Table 5. Ability to realize datum plane using surface plate or 

coordinate metrology 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Good 

𝐿2 unconstrained Poor 

𝐿2 shifted Poor 

𝐿2 constrained Poor 

𝐿2 constrained convex envelope Poor 

𝐿∞ constrained Poor 

𝐿∞ constrained convex envelope Good 

 

 

3.2.6 Ability to use only sampled points to obtain the 
datum plane, without requiring weights or part information 

Several of the methods in coordinate metrology, when 

implemented correctly, require weighted information when 

point sampling is not uniform (see, for example, [8, 11]). An 

algorithm that generates its own weights typically would need 

part information (though there are workarounds with varying 

success depending on the sampling density). The references [8, 

11] show why the  𝐿1 constrained and all the 𝐿2 based 

definitions need weighting information. Since the 𝐿∞ fits are 

determined by a few extreme points, the effect of the other 

points do not alter the fit, making weighting not important. We 

have shown in Section 2, that the 𝐿1 constrained convex 

envelope definition can be realized without needing weights or 

part information, as the correct weights arise automatically 

within the algorithm. See Table 6. 

 

Table 6. The need for weights to accompany sampled 
points 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Poor 

𝐿2 unconstrained Poor 

𝐿2 shifted Poor 

𝐿2 constrained Poor 

𝐿2 constrained convex envelope Poor 

𝐿∞ constrained Good 

𝐿∞ constrained convex envelope Good 

 

 

3.2.7 Uniqueness of the datum plane 
It has been pointed out in [8] that the 𝐿1 based can lead to a 

rare case of nonuniqueness. An example case is a perfect “V” 

shaped datum feature. If there is any asymmetry in that shape, 

though, the 𝐿1 based definitions produce unique datum planes. 

However, not only are these cases rare due to the symmetry 

required, they correspond to the reality of having 

nonuniqueness in physical situations of mating datum features 

with surface plates. See Table 7. 

 
Table 7. The Uniqueness of the datum plane 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Fair 

𝐿1 constrained Fair 

𝐿2 unconstrained Good 

𝐿2 shifted Good 

𝐿2 constrained Good 

𝐿2 constrained convex envelope Good 

𝐿∞ constrained Good 

𝐿∞ constrained convex envelope Good 

 

 

3.2.8 Applicability to handle broken surfaces. 
While all the definitions under consideration give a result 

when applied to a datum feature that is a broken surface, it is 

possible that the intent would be missed. For instance in 

Section 2, a case was described where the intent was that each 

of the three parts of the datum feature would contact the datum 

plane. The methods that first create the convex envelope are 

better at attaining this intent. The evaluations in Table 8 are 

based on the likelihood that the datum plane would contact 

points in all three regions of a 3-region broken surface. 

 
Table 8. The ability to follow intent with broken surfaces 

Datum Definition Evaluation 

𝐿1 constrained convex envelope Good 

𝐿1 constrained Fair 

𝐿2 unconstrained Poor 

𝐿2 shifted Poor 

𝐿2 constrained Fair 

𝐿2 constrained convex envelope Good 

𝐿∞ constrained Poor 

𝐿∞ constrained convex envelope Poor 
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3.3 Results of Comparison 
Only the improved version of the 𝐿1 fit presented in Section 2 

of this paper (the 𝐿1 constrained convex envelope) was 

considered “good” across all eight of the criteria for 

consideration except one. The one exception was uniqueness 

where it was “fair” and those rare cases of nonuniqueness 

reflect the actual physical reality of the mating. 

 

 

4. TIME COMPLEXITY OF ALGORITHMS 
The 3D version of the algorithm relies on computing the 

convex hull of a given set of points, which turns out to be the 

dominant step in terms of computing time. Thus the computing 

time will largely be determined by the choice of convex hull 

algorithm. Quickhull [15] is a well-known, efficient convex 

hull algorithm that typically requires 𝑂(𝑛 log 𝑛) operations on 

average, where 𝑛 is the number of points. However, depending 

on the particular data set, Quickhull can require 𝑂(𝑛2) 

operations in the worst case. 

The remaining steps in the algorithm require 𝑂(𝑛) 

operations, and are thus (for large 𝑛) not the dominant steps in 

computing time. 

 

5. CONCLUSIONS 
An improved definition for datum planes has been 

proposed for primary and secondary datums along with 

corresponding algorithms and codes. (The tertiary case is 

trivial.) The definition has been compared with seven other 

definitions under some consideration for the default planar 

datum definition. The candidate definitions were compared 

over eight realistic criteria and from our best evaluation, the 

method we present seems to have the strongest case. A reader is 

free to use the criteria laid out in this paper but with subjective 

changes to the “good,” “fair,” and “poor” evaluations to those 

given here.  
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APPENDIX A: STABLE CODE FOR COMPUTING THE 
AREA OF A TRIANGLE 

The following Mathematica function computes the area of 

a triangle given coordinates of its vertices. It is reliable even for 

triangles with one or two small angles. 

 
computetrianglearea[pt1_, pt2_, pt3_] :=   

Module[{sidelengths, a, b, c, t1, t2, t3, t4}, 

sidelengths = {Norm[pt2 - pt1], Norm[pt3 - pt2], 

Norm[pt1 - pt3]}; 

sidelengths = Sort[sidelengths]; 

a = sidelengths[[1]]; 

b = sidelengths[[2]]; 

c = sidelengths[[3]]; 

t1 = b + c; 

t1 = a + t1; 

t2 = a - b; 

t2 = c - t2; 

t3 = a - b; 

t3 = c + t3; 

t4 = b - c; 

t4 = a + t4; 

Sqrt[t1*t2*t3*t4]/4 

]; 
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Figure captions: 

 
Fig. 1. Deriving a datum plane from a datum feature. 

 
Fig. 2. Fitting a plane to a surface patch. 

 
Fig. 3. An example case to show the need for part information when assigning weights. 

 
Fig. 4. An example datum feature comprised of three disjoint surfaces. 
 
Fig. 5. An example of the lower convex envelope derived from the data points (shown in 2D for simplicity). 
 
Fig. 6. Example case showing the 𝑳∞ based definitions yielding an undesired slope of zero. 
 
Fig. 7. Example case showing some 𝑳𝟐 based definitions that have an undesired negative slope. 
 
Fig. 8. Example of a wavy datum feature showing various datum definitions. 

 

Table captions: 

 
Table 1. Asymmetric convex case evaluation 

Table 2. Asymmetric concave case evaluation 

Table 3. Asymmetric concave case evaluation 

Table 4. Physical surface plate correspondence 

Table 5. Ability to realize datum plane using surface plate or coordinate metrology 

Table 6. The need for weights to accompany sampled points 

Table 7. The Uniqueness of the datum plane 

Table 8. The ability to follow intent with broken surfaces 

 


