
JCISE-15-1017 1 Shakarji

DATUM PLANES BASED ON A CONSTRAINED L1 NORM

Craig M Shakarji
Member, ASME

Physical Measurement Laboratory
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
craig.shakarji@nist.gov

Vijay Srinivasan
Fellow, ASME

Engineering Laboratory
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
vijay.srinivasan@nist.gov

ABSTRACT
This paper has two major goals. First, we present an algorithm

for establishing planar datums suitable for a default in

tolerancing standards. The algorithm is based on a constrained

minimization search based on the 𝐿1 (L1) norm after forming a

convex surface from the original surface or sampled points. We

prove that the problem reduces to a simple minimization search

between the convex surface and its centroid. The data points in

the discrete case do not need to have any corresponding

weights provided with them, as appropriate weighting is part of

the algorithm itself, thereby making the algorithm largely

insensitive to nonuniformly sampled data points. Terse

Mathematica code is included for the reader. The code is

sufficient for primary and secondary planar datum fitting as

well as a 3-2-1 datum reference frame generation. The second

goal of this paper is to compare this new method with several

other possible means for establishing datum planes, ultimately

showing several appealing characteristics of the proposed

algorithm. Since both the ISO and ASME standardization

efforts are actively working to establish datum plane

definitions, the timing of such a study is opportune.

1. BACKGROUND AND INTRODUCTION
In the world of Geometric Dimensioning and Tolerancing

(GD&T), datums are used extensively to locate and orient

tolerance zones [1-7]. Datum planes in particular are common

and are established by mating planes to imperfect datum

features on parts during inspection [3] (see Fig. 1). Distances

and orientations on drawings and three-dimensional models are

established from these datum planes, relative to which tolerance

zones are located and oriented. In many cases there is a need

for more than one datum plane. In fact a full Cartesian

coordinate system in three dimensions is often established

using datums. Datum planes, in particular, are widely used for

this. The importance and prevalence of datum planes in

specifications are given in greater detail in [8] and will not be

revisited in this paper.

Fig. 1. Deriving a datum plane from a datum feature.

Given that datum planes are ubiquitous, it might be

surprising that—short of standardization—there are several

different yet reasonable approaches by which a datum plane can

be established from a datum feature [9]. Furthermore, the

International Organization for Standardization (ISO) and the

American Society of Mechanical Engineers (ASME) are

actively working to establish default datum plane definitions.

Consequently, the timing of this paper is opportune, since we

seek in its two major sections to provide (1) an improved

algorithm for establishing planar datums (Section 2 of this

paper), and (2) a comparison of the proposed algorithm with

several other possible definitions for establishing datum planes

(Section 3 of this paper).

2. THE IMPROVED ALGORITHM

2.1 Existing L1 Datum Plane Definition and Algorithm
First, we describe what is meant by a constrained 𝐿1 fit in

our context. To fit a one-sided 𝐿1 plane to a surface patch in

space, we pose the following optimization problem (with

reference to Fig. 2): Given a bounded surface 𝑆, and a direction

𝒂∗ (that points into the material), find the plane 𝑃 that

minimizes ∫ |𝑑(𝒑, 𝑃)|𝑑𝑠

𝑆
, subject to the constraint that 𝑃 lies

entirely to one side (as determined by 𝒂∗) of the surface 𝑆.

Here 𝑑(𝒑, 𝑃) denotes the signed perpendicular (to 𝑃)

distance of a point p on surface patch S from the plane P that

will be fitted. We note that ∫ 𝑑𝑠

𝑆
 is the area of the surface patch.

If the surface consists of several patches, then the integrals can

be evaluated over each patch and then summed.

mailto:craig.shakarji@nist.gov
mailto:vijay.srinivasan@nist.gov

JCISE-15-1017 2 Shakarji

Fig. 2. Fitting a plane to a surface patch.

The objective function cannot, in general, be evaluated in

closed form. So we resort to numerical integration over the

surface S. We can sample points on a surface patch after

dividing up the patch into discrete areas ΔAi and approximate

the objective function as

∫ |𝑑(𝒑, 𝑃)|𝑑𝑠 ≈ ∑|𝑑(𝒑𝑖, 𝑃)| ∙ ∆𝐴𝑖 ,

𝑁

𝑖=1

𝑆

where pi are the N sampled points, one in each subdivision.

Thus we are led to minimizing ∑ [|𝑑(𝒑𝑖 , 𝑃)| ∙ ∆𝐴𝑖]
𝑁
𝑖=1 over the

parameters of the plane P, where ΔAi's are treated as the

weights.

In an earlier paper [8], we presented the theory and

algorithms for datum plane establishment using a constrained

minimization search based on the 𝐿1 norm (as just defined). In

short, the algorithm worked as follows: Given a surface (or set

of sampled points), the datum plane was defined as the plane

that (1) is constrained to lie on the nonmaterial side of the

surface (or points), and (2) minimizes the integral (or sum) of

absolute distances between the plane and the surface (or

points). We showed that finding such a plane actually turns out

to be quite simple, since we proved that it is equivalent to

finding the plane that minimizes the distance between the

centroid of the surface (or of the weighted points) and the

plane. This simplification led to efficient algorithms (and code

provided) for the primary and secondary planar datums (the

tertiary case being trivial). The reader is encouraged to fill in

details as desired from the earlier paper itself.

2.2 Motivation for an Improved Definition and
Algorithm

Although the original planar datum definition based on the

𝐿1 norm has many attractive properties (which will be

discussed in Section 3) it has the following three drawbacks

that are remedied in the improvement to be given in the next

subsection of this paper:

1) The need for weights: In the discrete case, having a set

of sampled points on the datum feature was not enough to

compute the datum plane. The appropriate weights

corresponding to the points were needed as well. (Without

weighting, the computed centroid could shift with nonuniform

sampling.) If one imagined that the weights (being the relative

areas around each sampled point) could be calculated as part of

the algorithm itself, the nominal model of the datum feature

would still be required. To see why this is true, imagine a datum

feature that is a rectangular surface with a bore and/or slot (see

Fig. 3). To compute weights, one would have to know where

the hole or slot appears in the rectangle to keep from

overweighting certain points. If one tried to remedy this by

always using equally spaced points, problems then arise as to

how to actually obtain equal spacing when the datum feature is

irregularly shaped or includes bores.

Fig. 3. An example case to show the need for part

information when assigning weights.

2) Irrelevant part features: It could be argued that the bore

and the slot in Fig. 3 should not affect the datum plane. The

improved definition presented later in this paper solves this.

3) The applicability to broken surfaces: In a case like the

one illustrated in Fig. 4, the intent seems to be that all three

sections of the broken surface should contact the datum plane.

If (as illustrated) one surface section were relatively large, then

the existing 𝐿1 based datum definition may very well not

contact the other two, small surface sections. Again, the

improved definition presented later in this paper solves this.

Fig. 4. An example datum feature comprised of three

disjoint surfaces.

JCISE-15-1017 3 Shakarji

2.3 The Improved L1 Definition and Algorithm
The new datum plane definition is again based on a

constrained 𝐿1 minimization search, but now consists of two

major steps: (1) Find the appropriate convex surface from the

given surface or data points, and (2) Compute the constrained

(one-sided) 𝐿1 planar fit to that convex surface. The previous

algorithm did not compute the convex surface first, but applied

the 𝐿1 minimization directly to the original surface. Computing

the convex surface first resolves all three of the issues

presented in Section 2.2.

The first step of the definition, more specifically, is to

compute the convex surface that is the part of the convex hull

exterior to the material. If a part is positioned so that the

material is “up” then the convex surface sought would be the

“underbelly” or the “lower convex envelope” of the convex

hull. Figure 5 illustrates the concept in the case of discrete

points.

Fig. 5. An example of the lower convex envelope

derived from the data points (shown in 2D for simplicity).

This envelope can also be thought of as the result of

applying a morphological filter to the data, using a sphere of

infinite radius (see [10]). The new surface reflects all the

possible contacts between the original surface (or set of points)

and a perfect plane. The development of such a surface is also

documented in ISO 5459 [6], though that document then goes

on to employ a constrained 𝐿∞ fit. Furthermore, convex hull

algorithms that can facilitate the computation of such a surface

are mature, well documented, and widely available in

commercial software.

Having thus created the convex surface, the second major

step in the algorithm is to compute the constrained (one-sided)

𝐿1 planar fit to that new, convex surface. When the convex

surface is generated from a set of discrete points, it can be

represented by a union of triangles (as is generally done in

widely available convex hull algorithms). Assuming such a

convex hull algorithm is available, we can apply the theorems

in [8] to now document the algorithm, which is robust, easy to

conceptualize, and simple to code. The 3D datum plane

algorithm is:

Given:

1) Data points 𝒙1, 𝒙2, 𝒙3, ⋯ , 𝒙𝑁, where each 𝒙𝑖 =

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), and

2) A direction, 𝒂∗ that indicates the direction into the

material,

then the datum plane is established using the following steps:

1) Compute the convex hull of the data points and

represent it by the union of triangles. (Each triangle

will have three of the data points for its vertices.)

2) Select those triangles that are exterior to the material

(i.e., the triangles that comprise the lower convex

envelope). This can be accomplished by computing the

normal to each triangle (pointing into the hull) and

comparing its direction to 𝒂∗. (The sign of the dot

product can easily be used here).

3) Compute the centroid, �̅�, of the convex surface of Step

2. The centroid of each triangular region can be

trivially computed as the average of the vertices. The

area of each triangle can also be easily computed. The

vector sum of the triangle centroids when weighted by

their relative areas is the centroid of the lower convex

envelope. Given 𝑁 triangles each having area 𝐴𝑖, then

each relative weight is 𝑤𝑖 = 𝐴𝑖 ∑ 𝐴𝑖
𝑁
𝑖=1 .⁄

4) Evaluate the distance from the centroid of Step 3 with

each plane containing a triangle of the surface of Step

2.

5) Choose the plane that produces the minimal distance.

The solution plane is coincident with a face of the

convex hull, thus a simple search through the faces

will produce the correct datum plane.

A word should be said about the reference direction, 𝒂∗.

The direction usually does not need to be known very

accurately, since it is only used to distinguish the top side of the

convex surface from the bottom. So determining 𝒂∗ from a

probing direction or from a nominal vector is often sufficient.

But for completeness, we define 𝒂∗ as the direction normal to

the least-squares plane of the original surface and pointing into

(as opposed to outside) the material. See [11] for an appropriate

least-squares algorithm, if needed.

A secondary datum plane can be generated by the

following similar steps:

1) Project the data points from the secondary datum

feature into the primary datum plane.

2) Compute the 2D convex hull of the projected data

points and represent it by the union of line segments.

(Each line segment will have two of the projected data

points for its endpoints.)

3) Select those line segments that are exterior to the

material (i.e., the line segments that comprise the

lower convex envelope). This can be accomplished by

computing the normal to each line segment (pointing

into the hull) and comparing its direction to a*. (The

sign of the dot product can easily be used here). In this

JCISE-15-1017 4 Shakarji

step, a*, is a vector in the primary datum plane that

indicates the direction into the material. As explained

above, a* usually does not need to be known very

accurately, but for completeness, we define a* as the

direction normal to the least-squares line of the

contour obtained by projecting the secondary datum

feature after that surface has been projected into the

primary datum plane (and the normal pointing into as

opposed to outside the material).

4) Compute the centroid, �̅�, of the convex (piecewise

linear) contour of Step 3. The centroid (midpoint) of

each line segment can be trivially computed as the

average of the endpoints. The length of each line

segment can also be easily computed. The sum of the

line segment centroids when weighted by their relative

lengths is the centroid of the lower convex envelope.

Given 𝑁 line segments each having length ∆𝑖, then

each relative weight is 𝑤𝑖 = ∆𝑖 ∑ ∆𝑖
𝑁
𝑖=1 .⁄

5) Evaluate the distance from the centroid of Step 4 with

each line containing a line segment of the surface of

Step 3.

6) Choose the line that produces the minimal distance.

The solution plane is the plane containing this line and

perpendicular to the primary datum plane.

Mathematica codes for the 3D and 2D cases (without the

projection step) are given later and are pleasingly compact and

efficient. The case of the tertiary datum plane is trivial.

Two theorems are relevant to the 3D algorithm (the 2D

case is similar to the 3D case). The first was easily proved in

[8] namely,

Theorem 1. Assume that we are given a direction 𝒂∗ and a

bounded surface 𝑆 of finite area comprised of points with

(�̂�, �̂�, �̂�) coordinates and having centroid 𝒙 =

(
∫ 𝑥 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

,
∫ �̂� 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

,
∫ �̂� 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

). Then a plane that lies to one side of 𝑆 (as

determined by 𝒂∗) and that minimizes |𝑑(𝒙, 𝑃)| is also a

constrained plane that minimizes ∫ |𝑑(𝒑, 𝑃)|𝑑𝑠

𝑆
.

Proof: A constrained plane that minimizes |𝑑(𝒙, 𝑃)| is a

plane, 𝑃∗, determined by a point on the plane 𝒙 = (𝑥, 𝑦, 𝑧) and

the direction of the plane 𝒂 = (𝑎, 𝑏, 𝑐) such that |𝒂 ∙ (𝒙 − 𝒙)| is

minimized. But by definition 𝒙 = (
∫ 𝑥 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

,
∫ �̂� 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

,
∫ �̂� 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

), so that

𝑃∗ minimizes |𝑎 (
∫ 𝑥 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

− 𝑥) + 𝑏 (
∫ �̂� 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

− 𝑦) + 𝑐 (
∫ �̂� 𝑑𝑠

𝑆

∫ 𝑑𝑠

𝑆

−

𝑧)|. Multiplying by the total area, ∫ 𝑑𝑠

𝑆
, which is positive, we

get that 𝑃∗ must also minimize |𝑎 ∫ (�̂� − 𝑥) 𝑑𝑠

𝑆
+ 𝑏 ∫ (�̂� −

𝑆

𝑦) 𝑑𝑠 + 𝑐 ∫ (�̂� − 𝑧) 𝑑𝑠

𝑆
|, which is ∫ |𝑑(𝒑, 𝑃)|𝑑𝑠

𝑆
, completing

the proof. ∎

The second relevant theorem, which is similar to Theorem

3 of [8] is:

Theorem 2. Given a convex envelope consisting of a union

of a finite number of triangles, and direction 𝒂∗, then any

supporting plane that lies to one side of the points (as

determined by 𝒂∗) and minimizing the weighted 𝐿1 objective, is

a plane that is coincident with one of the planar (triangular)

faces of the convex envelope.

Proof: The proof of this theorem involves several steps

and relies on the well-known fact that the weighted centroid 𝒙

must lie within the convex hull, and thus the material side of

the convex envelope (since any weighted combination of the

points is contained in the convex hull provided every weight

lies in (0, 1] and provided the weights sum to one (see, for

instance, [12, 13]). The theorem and proof share some similar

approaches with the task of computing the width of a set of data

points [14].

Step 1: A minimizing plane contains at least one of the

given points that is on the convex surface. Suppose not. That is,

suppose a plane, 𝑃, lying to the one side of the surface,

minimizes the objective, but does not contact any of the surface

points. It is immediately clear then that it does not contact any

of the vertices of the triangles. Since there are a finite number

of triangles, there must be a positive distance 𝑑 that is the

minimum distance from the plane to any of the vertices of the

triangles. If 𝒙∗ is the (or a) closest vertex, then a new plane, 𝑃∗,

could be constructed that is parallel to 𝑃 but at a distance 𝑑
2⁄

from 𝒙∗. This plane 𝑃∗ also lies to the one side of the points (as

determined by 𝐚∗) but has a smaller weighted 𝐿1 objective,

because it is closer to the weighted centroid, 𝒙, since 𝒙 must

also lie to the same side of 𝑃 and 𝑃∗ (since it is contained in the

convex hull). This contradicts the supposition that 𝑃 minimized

the objective function, proving Step 1.

Step 2: A minimizing plane contains one of the edges of

the convex envelope boundary (implying that it contains at least

two of the given points). Suppose not. That is, suppose a plane,

𝑃, lying to one side of the points, minimizes the objective

function, but does not contain any of the edges of the triangles

that make up the convex surface. From Step 1, 𝑃 contacts one

of the vertices. There are a finite number of edges of triangles

emanating from that point. Let 𝜃 > 0 denote the minimum

angle between 𝑃 and the edges emanating from the contact

point. Construct a line from the contact point to 𝒙. A new plane,

𝑃∗, can be constructed by rotating 𝑃 by an angle 𝜃
2⁄ in a

direction making it closer to 𝒙, meaning it has a smaller

weighted objective. (The rotation should be about the direction

that is the cross product between the normal of 𝑃 and the

direction formed by the contact point and 𝒙. In the case that the

two directions are coincident, a rotation of 𝜃
2⁄ about any

direction would suffice.) This rotation decreases the objective

function by a factor of 1 − cos (
𝜃

2
). But this contradicts the

supposition that 𝑃 minimized the objective function, proving

Step 2.

JCISE-15-1017 5 Shakarji

Step 3: A minimizing plane coincides with one of the

triangular faces of the convex surface. Suppose not. That is,

suppose a plane, 𝑃, lying to one side of the points, minimizes

the objective function, but does not contain any triangular face

of the convex surface. From Step 2, 𝑃 contains one of the edges

of a triangle. There are generally two triangular faces

emanating from that edge. (The case where there is one face—

meaning 𝑃 contains an edge of a boundary triangle of the edge

of the convex envelope—can be handled with similar

reasoning.) Let 𝜃 > 0 denote the minimum angle between 𝑃

and those two faces. A new plane, 𝑃∗, can be constructed by

rotating about the direction of the shared edge by an angle 𝜃
2⁄

that is closer to 𝒙, meaning it has a smaller weighted objective.

(Depending on the location of 𝒙, rotating one way or the

other—possibly both—will decrease the distance from the

plane to 𝒙). The minimal decrease by the rotation changes the

objective function by a factor of 1 − cos (
𝜃

2
). This contradicts

the supposition that 𝑃 minimized the objective function,

proving Step 3 and, in fact, the theorem. ∎

Theorem 2 allows the algorithm to simply compute the

centroid of the convex surface and search through all the

triangular faces of the convex surface for the one closest to the

centroid.

2.4 Mathematica Codes
Mathematica1 (version 8) code for the cases of fitting of a

plane to data in three dimensions is presented first. The

function name should be understood as l1PlaneDatum3d =

“ℓ1 Planar Datum in three dimensions.” In this code, pts

contains the list of all the three-coordinate points and the

reference direction is indicated by refdir (a three-

dimensional vector). The function returns a list of six numbers.

The first three define a point on the plane. The next three define

the direction normal to the plane. If one thinks of refdir as

defining “up,” then the plane returned will be “under” the data

points. The code makes use of a function called

computetrianglearea, which computes the area of a

triangle in a special way to reduce the impact of finite

precision. Code for that function is given in Appendix A of this

paper. A check can be added for the case that the points form a

perfect plane. This check (which is not needed for the 2D case)

can be performed by simply looking at the residuals from a

least-squares plane fit as described in [11]. If the residuals are

essentially zero, then the least-squares plane is the datum plane.

Needs["TetGenLink`"];

l1PlaneDatum3d[pts_, refdir_] := Module[{hullpts,

hullsurface, surface, trianglecentroids,

triangleareas, centroid, normals, distances,

1 Certain commercial software packages are identified in this paper in

order to specify the experimental procedures and code adequately. Such

identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that
the software tools identified are necessarily the best available for the purpose.

mindistanceindex},{hullpts, hullsurface} =

TetGenConvexHull[pts];

surface = Select[hullsurface, Cross[hullpts[[#[[2]]]]

- hullpts[[#[[1]]]], hullpts[[#[[3]]]]

- hullpts[[#[[1]]]]].refdir > 0 &];

trianglecentroids =

Table[Sum[hullpts[[surface[[i]]]][[j]]/3,{j, 3}],

{i,Length[surface]}];

triangleareas =

Table[computetrianglearea[hullpts[[surface[[i]]]]

], {i,Length[surface]}];

centroid =

triangleareas.trianglecentroids/Total[triangleare

as];

normals = Table[Cross[hullpts[[surface[[i]][[2]]]] -

hullpts[[surface[[i]][[1]]]],hullpts[[surface[[i]

][[3]]]] - hullpts[[surface[[i]][[1]]]]],{i,

Length[surface]}];

normals = Table[normals[[i]]/Norm[normals[[i]]],{i,

Length[normals]}];

distances = Table[normals[[i]].(centroid -

trianglecentroids[[i]]), {i, Length[normals]}];

mindistanceindex = Ordering[distances, 1];

Flatten[{trianglecentroids[[mindistanceindex]],

normals[[mindistanceindex]]}]];

Mathematica (version 8) code for the cases of fitting of a

plane to data in two dimensions is presented next. The function

name should be understood as l1PlaneDatum2d = “ℓ1

Planar Datum in two dimensions.” It should be understood that

this is a case of a constrained planar datum, which, when

constrained to two dimensions is actually a line. In this code,

pts contains the list of all the two-coordinate points and the

reference direction is indicated by refdir (a vector of

dimension two). The function returns a list of four numbers.

The first two define a point on the line. The next two define the

direction normal to the line. If one thinks of refdir as

defining “up,” then the line returned will be “under” the data

points.

Needs["ComputationalGeometry`"];

l1PlaneDatum2d[pts_, refdir_] := Module[{indices,

newpts, midpoints, vectors, alldata, lowerdata,

lengths, centroid, normals, distances,

mindistanceindex},

indices = ConvexHull[pts];

newpts = pts[[indices]];

newpts = Append[newpts, newpts[[1]]];

midpoints = Table[(newpts[[i + 1]] + newpts[[i]])/2,

{i, Length[newpts] - 1}];

vectors = Table[newpts[[i + 1]] - newpts[[i]],{i,

Length[newpts] - 1}];

newpts = Drop[newpts, -1];

normals = Table[{-vectors[[i]][[2]],

vectors[[i]][[1]]}, {i, Length[vectors]}];

normals = Table[normals[[i]]/Norm[normals[[i]]],{i,

Length[normals]}];

alldata = Transpose[{vectors, midpoints, normals}];

lowerdata = Select[alldata, #[[3]].refdir > 0 &];

{vectors, midpoints, normals} = Transpose[lowerdata];

lengths = Table[Norm[vectors[[i]]],{i,

Length[vectors]}];

centroid = lengths.midpoints/Total[lengths];

distances = Table[normals[[i]].(centroid-

midpoints[[i]]), {i, Length[normals]}];

mindistanceindex = Ordering[distances, 1];

JCISE-15-1017 6 Shakarji

Flatten[{midpoints[[mindistanceindex[[1]]]],

normals[[mindistanceindex[[1]]]]}]];

3. A COMPARISON OF SEVERAL POSSIBLE DATUM
PLANE DEFINITIONS

For the sake of a reasonable scope, we will simply consider

defining a primary datum plane to a planar feature. Indeed,

secondary and tertiary datum planes are important as well, but

the reader can extend the implications of this work to the

additional cases without much difficulty. We consider the

following eight possible means to define a primary datum plane

given a planar datum feature—all of which have been proposed

at some level in standards development. (Abbreviated names

are given to each for convenient use throughout this paper.)

3.1 The Planar Datum Definitions

1) 𝐿1 constrained convex envelope: This is the definition

presented in Section 2 of this paper.

This mathematical definition actually has an easy-to-

conceptualize physical understanding. Minimizing the 𝐿1 norm

between a plane and a surface is equivalent to simply setting

the surface on a level plane and allowing gravity to bring the

two into contact. In this definition, such contact is made—not

with the original surface—but with the convex envelope about

the surface.

2) 𝐿1 constrained: Find the plane that lies to one side (the

nonmaterial side) of the surface that minimizes the 𝐿1 norm

between the plane and the datum feature.

This is similar to (1) above, but does not create the convex

envelope first. This is the method described in [8].

3) 𝐿2 unconstrained: Find the plane fit to the planar feature

in a least-squares sense (see [11]).

4) 𝐿2 shifted: Find the plane as in (3) above, but translate

the plane such that it contacts the datum feature but does not

pass through any material. (In other words, shift to the “high

point” of the surface—or, as they are pictured here—the “low

point” of the surface.)

5) 𝐿2 constrained: Find the plane that is constrained to lie

on the nonmaterial side of the datum feature and that minimizes

the 𝐿2 norm (least-squares) of their separation.

6) 𝐿2 constrained convex envelope: Find the plane that is

constrained to lie on the nonmaterial side of the datum feature

and that minimizes 𝐿2 norm (least-squares) of the separation

between the plane and the convex envelope of the datum

feature.

7) 𝐿∞ constrained: Find the plane that is constrained to lie

on the nonmaterial side of the datum feature and that minimizes

the maximal separation between the plane and the datum

feature.

8) 𝐿∞ constrained convex envelope: Find the plane that is

constrained to lie on the nonmaterial side of the datum feature

and that minimizes the maximal separation between the plane

and the convex envelope of the datum feature.

3.2 Criteria for Comparison
While there are an infinite number of datum features to

which a datum plane could be mated, we found that using only

three example cases (actually shown and performed in 2D), we

could largely distinguish the behavior of various definitions.

Using these, combined with other desirable properties, we

can evaluate the various planar datum definitions. A benefit of

these criteria is that it is a framework for the reader to use for

evaluation. While we give our evaluations of “good,” “fair,”

and “poor,” the reader is free to alter any evaluations.

3.2.1 Asymmetric convex datum feature
When the datum feature is a convex shape as shown in Fig.

6, all the definitions yield a similar (negative) slope except the

𝐿∞ based definitions, which are horizontal. This is especially

troubling when one considers that the same undesired effect of

the 𝐿∞ based definition would occur if the datum feature were a

flat plane with just a corner bent up. (The bent corner—ever so

small—would nonetheless have significant impact on the slope

of the mating datum plane in the 𝐿∞ cases.) Thus a “poor”

evaluation is assigned to those definitions in this case. Also, the

𝐿2 unconstrained datum passes through the material (not shown

in the figure), which should be assigned a “poor” evaluation,

since planar datums are often associated with assembly that

cannot have interference of material. The same issue of

interference will result in a “poor” evaluation for the 𝐿2

unconstrained definition in the next two cases as well. See

Table 1.

In the figures for the test cases, the desired datum plane is

shown by a dotted line (and is in fact the 𝐿1-based fit in each of

the three cases shown). Behavior of other datum plane definitions

is depicted in dashed line(s). A few (not all) other (i.e., dashed)

lines are shown in each figure for clarity.

Fig. 6. Example case showing the 𝑳∞ based definitions

yielding an undesired slope of zero.

JCISE-15-1017 7 Shakarji

Table 1. Asymmetric convex case evaluation

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Good

𝐿2 unconstrained Poor

𝐿2 shifted Good

𝐿2 constrained Good

𝐿2 constrained convex envelope Good

𝐿∞ constrained Poor

𝐿∞ constrained convex envelope Poor

3.2.2 Asymmetric concave datum feature
As seen in Table 2, when the datum feature is a convex

shape as shown in Fig. 7, all the definitions yield an expected

horizontal plane except the 𝐿2 unconstrained and 𝐿2 shifted

definitions, which yield an undesired negative slope.

Fig. 7. Example case showing some 𝑳𝟐 based definitions
that have an undesired negative slope.

Table 2. Asymmetric concave case evaluation

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Good

𝐿2 unconstrained Poor

𝐿2 shifted Poor

𝐿2 constrained Good

𝐿2 constrained convex envelope Good

𝐿∞ constrained Good

𝐿∞ constrained convex envelope Good

3.2.3 Convex and concave (wavy) datum feature
When the datum feature is a wavy shape as shown in

Fig. 8, the 𝐿1 based planes contact the surface at the left side

and near the minimum as shown. The 𝐿∞ constrained convex

envelope is exactly horizontal. The other fits fall somewhere in

between. (Depending on the size of the concave section, the 𝐿2

constrained datum plane may or may not be coincident with the

𝐿1 based planes.) One interesting note here: the implementation

of the lower convex envelope actually produces an inferior

plane in this case for the 𝐿2 and 𝐿∞ definitions. The 𝐿1 plane is

unchanged in this example case. See Table 3.

Fig. 8. Example of a wavy datum feature showing various
datum definitions.

Table 3. Asymmetric concave case evaluation

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Good

𝐿2 unconstrained Poor

𝐿2 shifted Fair

𝐿2 constrained Fair

𝐿2 constrained convex envelope Poor

𝐿∞ constrained Fair

𝐿∞ constrained convex envelope Poor

3.2.4 Correspondence to the established practice of
mating the physical part on a surface plate.

Constrained 𝐿1 planar fitting has the effect of mating a

planar datum feature to a plane in a manner that all points on

the datum feature are “pulled” to the datum plane with equal

force. (See [10] for a more detailed explanation of the 𝐿1 norm

in fitting.) This is the same as the physical effect of gravity

pulling a datum feature surface to a “perfect” plane

approximated by a surface plate (all points on the datum feature

surface are pulled equally).

Furthermore, a primary datum feature will contact a

surface plate at (at least) three points (unless a rocking

condition exists, a case described in [4]). Likewise a secondary

datum feature will contact its datum simulator at two points in

general, and the tertiary at one. This 3-2-1 behavior is exactly

mimicked by the constrained 𝐿1 planar datum definitions, but

this is not shared by any of the other planar datum definitions

as seen in Table 4. See [8] for a complete 3-2-1 description

related to 𝐿1 planar datum definitions.

Table 4. Physical surface plate correspondence

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Good

𝐿2 unconstrained Poor

𝐿2 shifted Poor

𝐿2 constrained Poor

𝐿2 constrained convex envelope Poor

𝐿∞ constrained Poor

𝐿∞ constrained convex envelope Poor

JCISE-15-1017 8 Shakarji

3.2.5 Ability to establish the datum plane using both
coordinate metrology and physical mating processes

It would be advantageous if a default planar datum

definition could be realized with both coordinate metrology and

using physical mating of parts. All the definitions can be

realized using coordinate metrology, reducing the question to

be which definitions can be realized physically. Both of the 𝐿1

definitions can be realized physically, since the mating can

occur by simply applying a downward force on the part above

the location of the centroid (The centroid in both cases can be

found easily using physical processes).

Also, the 𝐿∞ constrained convex envelope definition can

be realized physically by using shims to ensure the maximum

separation between the edges of the datum feature and the

surface plate is as small as possible. (This is easy to picture in

2D, since the separation at each end has to be of the same size.

The extension to 3D would have at least three such critical

locations.)

The 𝐿∞ constrained definition requires information that is

hidden to the user (in the middle section of the part that is

mated to the surface plate) making it difficult or impossible to

realize in practice. The 𝐿2 based definitions are easily solved on

a computer but are simply not attainable to someone having

only physical, shop-floor resources. See Table 5.

Table 5. Ability to realize datum plane using surface plate or

coordinate metrology

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Good

𝐿2 unconstrained Poor

𝐿2 shifted Poor

𝐿2 constrained Poor

𝐿2 constrained convex envelope Poor

𝐿∞ constrained Poor

𝐿∞ constrained convex envelope Good

3.2.6 Ability to use only sampled points to obtain the
datum plane, without requiring weights or part information

Several of the methods in coordinate metrology, when

implemented correctly, require weighted information when

point sampling is not uniform (see, for example, [8, 11]). An

algorithm that generates its own weights typically would need

part information (though there are workarounds with varying

success depending on the sampling density). The references [8,

11] show why the 𝐿1 constrained and all the 𝐿2 based

definitions need weighting information. Since the 𝐿∞ fits are

determined by a few extreme points, the effect of the other

points do not alter the fit, making weighting not important. We

have shown in Section 2, that the 𝐿1 constrained convex

envelope definition can be realized without needing weights or

part information, as the correct weights arise automatically

within the algorithm. See Table 6.

Table 6. The need for weights to accompany sampled
points

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Poor

𝐿2 unconstrained Poor

𝐿2 shifted Poor

𝐿2 constrained Poor

𝐿2 constrained convex envelope Poor

𝐿∞ constrained Good

𝐿∞ constrained convex envelope Good

3.2.7 Uniqueness of the datum plane
It has been pointed out in [8] that the 𝐿1 based can lead to a

rare case of nonuniqueness. An example case is a perfect “V”

shaped datum feature. If there is any asymmetry in that shape,

though, the 𝐿1 based definitions produce unique datum planes.

However, not only are these cases rare due to the symmetry

required, they correspond to the reality of having

nonuniqueness in physical situations of mating datum features

with surface plates. See Table 7.

Table 7. The Uniqueness of the datum plane

Datum Definition Evaluation

𝐿1 constrained convex envelope Fair

𝐿1 constrained Fair

𝐿2 unconstrained Good

𝐿2 shifted Good

𝐿2 constrained Good

𝐿2 constrained convex envelope Good

𝐿∞ constrained Good

𝐿∞ constrained convex envelope Good

3.2.8 Applicability to handle broken surfaces.
While all the definitions under consideration give a result

when applied to a datum feature that is a broken surface, it is

possible that the intent would be missed. For instance in

Section 2, a case was described where the intent was that each

of the three parts of the datum feature would contact the datum

plane. The methods that first create the convex envelope are

better at attaining this intent. The evaluations in Table 8 are

based on the likelihood that the datum plane would contact

points in all three regions of a 3-region broken surface.

Table 8. The ability to follow intent with broken surfaces

Datum Definition Evaluation

𝐿1 constrained convex envelope Good

𝐿1 constrained Fair

𝐿2 unconstrained Poor

𝐿2 shifted Poor

𝐿2 constrained Fair

𝐿2 constrained convex envelope Good

𝐿∞ constrained Poor

𝐿∞ constrained convex envelope Poor

JCISE-15-1017 9 Shakarji

3.3 Results of Comparison
Only the improved version of the 𝐿1 fit presented in Section 2

of this paper (the 𝐿1 constrained convex envelope) was

considered “good” across all eight of the criteria for

consideration except one. The one exception was uniqueness

where it was “fair” and those rare cases of nonuniqueness

reflect the actual physical reality of the mating.

4. TIME COMPLEXITY OF ALGORITHMS
The 3D version of the algorithm relies on computing the

convex hull of a given set of points, which turns out to be the

dominant step in terms of computing time. Thus the computing

time will largely be determined by the choice of convex hull

algorithm. Quickhull [15] is a well-known, efficient convex

hull algorithm that typically requires 𝑂(𝑛 log 𝑛) operations on

average, where 𝑛 is the number of points. However, depending

on the particular data set, Quickhull can require 𝑂(𝑛2)

operations in the worst case.

The remaining steps in the algorithm require 𝑂(𝑛)

operations, and are thus (for large 𝑛) not the dominant steps in

computing time.

5. CONCLUSIONS
An improved definition for datum planes has been

proposed for primary and secondary datums along with

corresponding algorithms and codes. (The tertiary case is

trivial.) The definition has been compared with seven other

definitions under some consideration for the default planar

datum definition. The candidate definitions were compared

over eight realistic criteria and from our best evaluation, the

method we present seems to have the strongest case. A reader is

free to use the criteria laid out in this paper but with subjective

changes to the “good,” “fair,” and “poor” evaluations to those

given here.

ACKNOWLEDGEMENT
Dr. Paul Thomas had generated excellent graphs of some

popular datum algorithms, which have been adapted into the

more general discussion of Figures 6-8.

REFERENCES

[1] Srinivasan, V., 2013, “Reflections on the role of science in

the evolution of dimensioning and tolerancing standards,”

Proceedings of the Institution of Mechanical Engineers, Part B:

Journal of Engineering Manufacture, 227(1), pp. 3-11, DOI:

10.1177/0954405412464012

[2] Tandler, W., 2008, “All Those Datum Things,” Quality

Digest Magazine, February.

[3] Tandler, W., 2008 “Establishing Datum Reference Frames,”

Quality Digest Magazine, March.

[4] ANSI/ASME Y14.5.1M, 2009 “Dimensioning and

Tolerancing,” The American Society of Mechanical Engineers,

New York.

[5] ANSI/ASME Y14.5.1M, 1994 “Dimensioning and

Tolerancing,” The American Society of Mechanical Engineers,

New York.

[6] ISO 5459, 2011. “Geometrical product specifications

(GPS)—geometrical tolerancing—datums and datum systems.”

Geneva: International Organization for Standardization.

[7] Zhang, Xuzeng, and Roy, Utpal, 1993 “Criteria for

establishing datums in manufactured parts” Journal of

Manufacturing Systems, 12(1), pp 36–50.

[8] Shakarji, C. M., and Srinivasan V., 2013, “Theory and

Algorithms for L1 Fitting Used for Planar Datum

Establishment in Support of Tolerancing Standards,” ASME

International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

(IDETC/CIE2013), Paper No. DETC2013-12372.

[9] Hopp, T. H., 1990, “The Mathematics of Datums,”

American Society for Precision Engineering Newsletter,

September. Available at:

http://www.mel.nist.gov/msidlibrary/doc/hopp90.pdf (accessed

in January 2015).

[10] Shakarji, C. M., 2011 “Coordinate Measuring System

Algorithms and Filters,” J. Hocken, and P. H. Pereira (Eds.),

Coordinate Measuring Machines and Systems, CRC Press,

Boca Raton, FL, pp. 153-182, Chap 8.

[11] Shakarji, C. M., and Srinivasan, V., 2013, “Theory and

Algorithms for Weighted Total Least-Squares Fitting of Lines,

Planes, and Parallel Planes to Support Tolerancing Standards,”

ASME J. Comput. Inf. Sci. Eng, 13(3).

[12] Weisstein, Eric W. “Convex Hull.” From MathWorld—A

Wolfram Web Resource. Available at

http://mathworld.wolfram.com/ConvexHull.html (accessed in

January 2015).

[13] O’Rourke J., 1998, Computational Geometry in C, 2nd ed.,

Cambridge University Press, Cambridge, UK.

[14] Houle, M. E., Toussaint, G. T., 1988, “Computing the

Width of a Set,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 10(5), pp.761-765.

[15] Barber, C. B., Dobkin D. P., and Huhdanpaa H., 1996,

“The quickhull algorithm for convex hulls,” ACM Transactions

on Mathematical Software, 22(4), pp. 469-483.

http://www.mel.nist.gov/msidlibrary/doc/hopp90.pdf
http://mathworld.wolfram.com/ConvexHull.html

JCISE-15-1017 10 Shakarji

APPENDIX A: STABLE CODE FOR COMPUTING THE
AREA OF A TRIANGLE

The following Mathematica function computes the area of

a triangle given coordinates of its vertices. It is reliable even for

triangles with one or two small angles.

computetrianglearea[pt1_, pt2_, pt3_] :=

Module[{sidelengths, a, b, c, t1, t2, t3, t4},

sidelengths = {Norm[pt2 - pt1], Norm[pt3 - pt2],

Norm[pt1 - pt3]};

sidelengths = Sort[sidelengths];

a = sidelengths[[1]];

b = sidelengths[[2]];

c = sidelengths[[3]];

t1 = b + c;

t1 = a + t1;

t2 = a - b;

t2 = c - t2;

t3 = a - b;

t3 = c + t3;

t4 = b - c;

t4 = a + t4;

Sqrt[t1*t2*t3*t4]/4

];

JCISE-15-1017 11 Shakarji

Figure captions:

Fig. 1. Deriving a datum plane from a datum feature.

Fig. 2. Fitting a plane to a surface patch.

Fig. 3. An example case to show the need for part information when assigning weights.

Fig. 4. An example datum feature comprised of three disjoint surfaces.

Fig. 5. An example of the lower convex envelope derived from the data points (shown in 2D for simplicity).

Fig. 6. Example case showing the 𝑳∞ based definitions yielding an undesired slope of zero.

Fig. 7. Example case showing some 𝑳𝟐 based definitions that have an undesired negative slope.

Fig. 8. Example of a wavy datum feature showing various datum definitions.

Table captions:

Table 1. Asymmetric convex case evaluation

Table 2. Asymmetric concave case evaluation

Table 3. Asymmetric concave case evaluation

Table 4. Physical surface plate correspondence

Table 5. Ability to realize datum plane using surface plate or coordinate metrology

Table 6. The need for weights to accompany sampled points

Table 7. The Uniqueness of the datum plane

Table 8. The ability to follow intent with broken surfaces

