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ABSTRACT 
A number of sensing technologies, using a variety of transduction principles, have been proposed for non-
invasive chemical sensing. A fundamental problem common to all these sensing technologies is determining 
what features of the transducer’s signal constitute a chemical fingerprint that allows for precise analyte 
recognition. Of particular importance is the need to extract features that are robust with respect to the sen-
sor’s age or stimulus intensity. Here, using pulsed stimulus delivery, we show that a sensor’s operation can 
be modeled as a linear input-output (I/O) transform. The I/O transform is unique for each analyte and can 
be used to precisely predict a temperature-programmed chemiresistor’s response to the analyte given the 
recent stimulus history (i.e. state of an analyte delivery valve being open or closed). We show that the 
analyte specific I/O transforms are to a certain degree stimulus intensity invariant and can remain consistent 
even when the sensor has undergone considerable aging. Significantly, the I/O transforms for a given ana-
lyte are highly conserved across sensors of equal manufacture, thereby allowing training data obtained from 
one sensor to be used for recognition of the same set of chemical species with another sensor. Hence, this 
proposed approach facilitates decoupling of the signal processing algorithms from the chemical transducer, 
a key advance necessary for achieving long-term, non-invasive chemical sensing. 
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1. INTRODUCTION 
Chemical sensing involves detection of a target analyte of interest by measuring a change in a signal that is 
generated by either the analyte’s contact or remote interaction with the sensor. The minimum signal that 
evokes a measurable output above noise levels is the sensor’s detection limit, and the minimum change in 
the signal levels that can be distinguished is its resolution or sensitivity. In this context, a sensor’s operation 
is akin to a mathematical input/output (I/O) transform[1, 2]. Ideally, the sensing operation will be meaning-
ful if this transform is different for different inputs. Assuming that this hypothesis is true, the proposed 
formalism faces several practical challenges: 

(i) how does one estimate the I/O transform of a sensor?  
(ii) how robust is the I/O transform to changes of parameters relevant to the sensing task such as 
identity and intensity of the target signal?  
(iii) how invariant is the I/O transform to changes in irrelevant parameters such as sensor age[3-
8]?, and finally 
(iv) how reproducible are the I/O transforms for different sensors of equal manufacture? 

We examined these issues in the context of chemical sensing with an array of chemiresistive microsensors.  
Current approaches for chemical sensing have been inspired by the biological principle of using an 

array of cross-selective chemical sensors to create unique multivariate fingerprints for different odorants. 
A number of sensing technologies have been proposed for sensitive detection and selective recognition of 
chemicals[9-20]. Irrespective of the transduction mechanism used, all chemical-sensing approaches must 
employ a readout mechanism that would allow extraction of meaningful features from the sensor’s re-
sponse. Two strategies seem popular depending on the segment of the response that is assumed to contain 
most discriminatory information: transient or steady-state responses. 

For steady-state response analysis, the ultimate change in the sensor signal after exposure to an 
analyte is typically the measurement used for further processing [8, 21-24].  In the case of response transi-
ents, time-domain features such as sensor‘s response time constants[25-29] or frequency-domain features 
such as spectral content[30-32] have been popularly used. In general, it is widely accepted in both artificial 
and biological chemical sensing systems that the sensor response during transient periods tends to carry 
richer analyte specific information and therefore can provide better recognition performances[28, 33-44]. 

Irrespective of the signal readout from the sensor (steady-state vs. transient or time-domain vs. 
frequency domain), another issue faced by almost all chemical sensors that severely limits their long-term 
use is the issue of sensor drift, or deviation of the response, over time[3, 7, 26, 45-49]. Drift in artificial 
chemical sensors has been suggested to primarily be an effect of aging or poisoning of the sensing film[5].  
Drift has a profound effect on absolute transducer measurements, making these measures unreliable for 
long term analyte identification. Therefore, the long-standing need for the development of portable, accu-
rate and precise chemical sensors, which remain viable for extended periods of operation, still remains 
unmet. 

In this work, we propose a simple but elegant approach to characterize the sensor’s operation as an 
I/O transform. The proposed approach exploits the richness of a sensor’s response to a temporally structured 
pulsatile sampling of analytes similar to those used in biological olfaction [37, 38, 41, 50]. It is worth noting 
that the sensor responses following stimulus onsets, offsets and during their steady-state are all used to 
characterize a sensor’s response to an analyte. We reveal that this approach, to a certain degree, is robust 
with respect to changes in analyte intensity and to changes due to sensor drift. More importantly, we also 
show that this approach facilitates generalization between sensors of equal manufacture and therefore pro-
vides a way to allow seamless replacement of sensors in a chemical sensing system. The latter problem is 
fundamental for successful deployment of sensors in commercial applications. 

 

2. EXPERIMENTAL SECTION 
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2.1 Chemicals used.  

The following five chemicals were used in this study: ethanol (Pharmco-Aaper, Brookfield, CT)*, acetone, 
hexanol, 2-octanol, and 2-octanone (Sigma-Aldrich, St. Louis, MO)*. 

2.2 Analyte delivery and flow system. 

A custom made flow system was used for analyte delivery to the sensor. Liquid chemicals were vaporized 
in 500 mL gas washing bottles (Pyrex, Corning, NY)* using zero air (Airgas, St. Louis, MO)*. A constant 
stream of 0.1 standard l/min (slm) of zero-grade air was flowed through a bubbler containing a pure liquid 
analyte. The outflow, assumed to be a saturated vapor, was diluted with a carrier stream of cleaned, dehu-
midified air flowing at 1 slm. A sub-sample of this well-mixed stream (0.1 slm) was further diluted by 
mixing with a second carrier stream of 0.65 slm of cleaned, dehumidified air. Regardless of whether an 
analyte was present, a constant airflow of 0.75 slm across the sensor was maintained at all times. The analyte 
for each trial was selected pseudo-randomly to reduce effects of long-term chemical hysteresis. The analytes 
were presented in a pulsed fashion as shown in Fig. 1. 

For altering analyte concentrations, we varied the relative volume of the saturated output from the 
bubblers and the first carrier stream, before sub-sampling (i.e during the first dilution stage). Note that only 
the volume of the first carrier stream was changed; the flowrate through the bubbler was kept constant. The 
total flow rate of the first carrier stream was varied from a 1 slm flow rate to 0.5, 0.75, or 1.25 slm. The 
resulting analyte concentrations achieved as a result of this flow modulation are shown in Table S-1.  
 
2. 3 Metal oxide sensor. 
A microsensor array with four individually controllable elements covered by SnO2 sensing films was used 
in this study. Other sensing elements in the array were left idle. The manufacture of these devices has been 
thoroughly described previously [17, 51-55]. Briefly, each sensor element is a multilayer, suspended device. 
From the top, the functional layers are: a polycrystalline SnO2 sensing film, two interdigitated platinum 
electrodes, an insulating layer, and a polysilicon heater. The operating temperature of the sensor was mod-
ulated between 55 °C and 435 °C. Sensor responses of four copies of the SnO2 microsensors were meas-
ured. Each sensor was cycled through 28 temperature steps (Fig. S-1), with each temperature treated as a 
perturbed-isotherm[56]. 

Previous work by us [25], has shown that at least two different correlated bands of information 
were generated at low and high temperatures for most analytes.  Therefore, we used a temperature program 
that sampled a range of temperatures between 55 C – 435 C. Consistent with previous results, a cross-
correlation of information content obtained at different temperature revealed that information content does 
change with temperature and in analyte specific manner (Fig. S-2). 

Conductance measurements were made at each of the operation steps for each sensor. Each meas-
urement cycle lasted 38 s as all four sensors used were cycled through 28 temperatures.  A logarithm (base 
10) was calculated to compress the sensor responses (note that this step is not critical for results reported 
here). Analysis in this paper was performed using three sensors that lasted the entire data collection period 
of approximately 7 months.  

2.4 Calculation of the I/O transforms. 

                                                 

 
* Commercial equipment and materials are identified in order to adequately specify certain procedures.  In 
no case does such identification imply recommendation or endorsement by the National Institute of Stand-
ards and Technology, nor does it imply that the materials or equipment identified are necessarily the best 
available for the purpose. 
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The sensor response (𝑦𝑦) at a particular temperature was treated as the dependent variable to be predicted 
given the most recent stimulus history (�⃗�𝑥; series of 1 and 0 indicating analyte valve open or closed during 
each measurement; in other words random binary valve states prior to the measurement y). Note, the length 
of the moving window (i.e. dimensionality of vector (�⃗�𝑥)) is a free parameter. For each sensor, temperature 
combination:  

𝑦𝑦 =  𝑘𝑘�⃗ ⋅ �⃗�𝑥   (1) 
where 𝑘𝑘�⃗  is the transform that maps the stimulus history (the input) onto the sensor’s response (the output) 
for a given analyte. I/O transform for each analyte was calculated using a least squares regression estimation 
method, where the mean squared error of prediction is defined as:  

(𝑘𝑘�⃗ ⋅ �⃗�𝑥 − 𝑦𝑦)2   (2) 
A moving window was continuously shifted and the sensor response at the end of the stimulus history was 
recorded to construct a sensor input matrix (𝑋𝑋), and a sensor response vector (𝑌𝑌; a column vector of sensor 
responses at the end of each stimulus history). A bias term was added to account for average signal baseline 
(DC offset) throughout the experiment. This bias-term was not used in any further analysis as the goal was 
to focus primarily on the changes in response dynamics.  Note that the reconstruction error is minimized 
when: 

𝒌𝒌��⃗ = �𝑿𝑿��⃗ 𝑻𝑻𝑿𝑿��⃗ �
−𝟏𝟏
𝑿𝑿𝑻𝑻𝒀𝒀  (3) 

i.e. the pseudo-inverse solution. A schematic of this approach is presented in Fig. 2. 
For results shown in this manuscript, a stimulus history of eight recent stimulus states was chosen 

as the window size. This selection was based on the minimum window length for which the error of recon-
struction converged (Fig. S-3). This was done to provide a sufficient tradeoff between minimizing recon-
struction error and reducing over-fitting to the training data. 

Note that the response of the sensor at each temperature was treated separately. Therefore, we cre-
ated 28 I/O transforms for each analyte one for each operating temperature. These are shown in Fig. 2D. 

2.5 Training and Testing Datasets. 

First dataset: The sensor response measurements were collected over a period of a month. Each analyte 
was presented in a random binary pulsatile sequence (analyte ON and OFF) as shown in Fig. 1. A single 
pulsatile sequence run resulted in 140 sensor response measurements (~40 with analyte ON period and 
~100 analyte OFF period). The training data set consisted of 17 such measurement sequences; 3 for acetone, 
3 for ethanol, 4 for hexanol, 4 for 2-octanol, and 3 for 2-octanone. Note that this was the training data used 
for generating the I/O transforms shown in Fig 2, and 3. 

Second dataset: The sensor array was purposely aged for a period of two months during which it was 
intermittently operated with exposure to the same analytes. Subsequent to the aging phase, a second exper-
imental run, lasting a 2-3 weeks of data collection, was used to validate our approach. The second experi-
mental run consisted of similar sequences as in the training period. 20 such measurement sequences were 
made (4 for each analyte). This data was used as the testing data for quantifying performance of the models 
generated using the first training dataset (refer Fig. 4). 

Third dataset (Concentration dataset): To further assess the limits of our methodology a third dataset using 
a subset of the analytes (acetone, ethanol, hexanol, and 2-octanol) was presented at varying concentrations. 
Note that this third dataset was collected 3 months after the collection of the second dataset. This dataset 
consisted of 13 measurement sequences; 4 for Acetone, 3 for Ethanol, 3 for Hexanol, and 3 for 2-Octanol. 
Also note that the dataset collected during the previous data collection phase (i.e. second dataset) were used 
to create the I/O transforms for classifying these responses (Fig. 6). 

2. 6 Dimensionality reduction and classification. 
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A linear principle component analysis (PCA) was used for visualizing the I/O transforms associated with 
each analyte. The I/O transforms or response filters were projected onto eigenvectors corresponding to the 
three largest eigenvalues of the correlation matrix.  Only the training data and their corresponding trans-
forms were used for determining the PCA axes. Both training and testing datasets were projected onto the 
same axes to aid visualization and comparison. 

In order to classify testing data, we implemented a hierarchical, recursive approach. In this scheme, 
we treated one m-class classification problem into a series of m binary classification problem. The algo-
rithm can be summarized as follows: 

 
1. Compute the I/O transform of the test analyte that needs to be classified 
2. Perform PCA to reduce dimensionality of the filter (Note that this step was performed for vis-

ualization, but not strictly necessary for the approach).  
3. Compute the mean centroid of the dimensionally reduced I/O transform of each training analyte 
4. Repeat until done 

a. Based on pairwise distances between the mean I/O transforms, find the analyte that is 
farthest from all others (i.e. the analyte with the most unique I/O filter shape; in Fig. 5 
this is ethanol).  

b. Project all training and test data onto a difference of mean plane between the centroid 
of the farthest analyte and the centroid of the closest analyte (for ethanol the closest 
response cluster is acetone). 

c. Use a nearest neighbor classifier to assign the test sample to one of the two classes: 
farthest analyte vs. rest of training 

d. If assigned to farthest analyte, then stop recursion.  
e. If only two training analytes remain, then classify the test sample using the label of the 

nearest neighbor in the training sample.  
f. Else, remove the samples from the farthest analyte from further consideration and re-

peat steps a-e.  
 

 

3. RESULTS 

3.1 Responses of a chemical sensor to pulsatile stimuli 

We began by examining the response of a metal-oxide chemiresistor to a few analytes that varied in their 
functional group, carbon chain length and vapor pressure. Unlike most chemical sensing studies, we deliv-
ered stimuli in a pulsatile fashion to exaggerate the response transients. The pulses delivered varied in 
duration, (1 to 3) min, and inter-pulse interval, (1 to 4) min. The mean response of the sensor (±standard 
deviation (S.D.)) at one particular operating temperature (435 °C; see Fig. S-1) is shown in Fig. 1. Note that 
sensor responses to the exposed gas were measured at twenty eight operating temperatures (Fig. S-1).  

In general, irrespective of the operating temperatures, we found that all gases used increased sen-
sor’s conductance (i.e. all were reducing gases) with the absolute magnitude of the response being greater 
for ethanol and acetone (blue and green) compared to the others. We found that the pulsed stimulus sequence 
emphasized differences in the transient responses generated by different analytes. During a relatively 
lengthy pulse, there was a discernable difference in time to peak response between different analytes (Fig. 
1, inset 1). Similarly, when the inter-pulse interval was reduced, responses to the non-leading pulses de-
creased substantially for all analytes (Fig. 1, inset 2). Note that the magnitude of response reduction was 
analyte specific. Hence, we hypothesized that the pulsed mode of stimulus exposures could enhance dis-
criminability between analytes. Furthermore, since some of the response dynamics were governed by the 
differences in stimulus dynamics, we expected these transient portions to remain invariant to sensor drift, 
consistent with previously shown results[57].  
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3.2 Chemical sensing as an I/O transform 

For any given analyte, and at any particular point in time, the state of the valve delivering the stimulus 
(open or closed) and the sensor’s response were both known. We viewed the sensor’s operation as a trans-
form that when applied to the stimulus state produced a corresponding response. If the sensor was extremely 
rapid and there was no hysteresis, then the I/O transform could be regarded to be instantaneous. However, 
this was not true for our sensor and for most chemical sensors studied in general. Therefore, we assumed 
that the sensor response at any given time is not instantaneous but a weighted linear function of the recent 
stimulus history. Note that this I/O operation or transformation must still be unique for each analyte in order 
for the sensor to generate unique fingerprints. 

To estimate the linear transform from the training data, we recorded the stimulus history, as deter-
mined by the valve state, in a given time window (�⃗�𝑥) and the sensor response at the end of this period (𝑦𝑦; a 
scalar value). For example, the following valve-states for last eight measurements [closedt-7, opent-6, opent-

5, opent-4, closedt-3, closedt-2, closedt-1, closedt], would result in the following stimulus history vector [0,1, 
1, 1, 0, 0, 0, 0]. For each stimulus and each trial, or run, we systematically moved the stimulus history 
window in time to generate a matrix of stimulus histories (X; 8 columns but multiple rows) and a vector of 
sensor responses measured at the end of each stimulus history (Y; column vector with the same number of 
components as the rows of X). The sensor response model to a given analyte could now be viewed as the 
optimal linear transform that reconstructs Y given X (schematically shown in Fig. 2a).  Since this results in 
an over-determined system of equations (more rows than columns), we calculated the I/O transform to 
minimize the mean-squared error of reconstruction (i.e. pseudo-inverse solution). 

The optimal linear transform (𝑘𝑘�⃗ ; vector of the same dimensions as �⃗�𝑥), and the comparison between 
the actual vs. reconstructed sensor responses for the different analytes used are shown in Fig. 2b and 2c. 
Note that each component of the I/O transform is a weight for the stimulus/valve state at a particular point 
in time/history. The overall sensor’s response that is reconstructed in this fashion is merely a weighted sum 
of valve states in the recent past. As can be observed, the actual sensor response (black traces) and the 
predicted sensor response (red traces) are well-matched for all analytes (see Fig. S-4).  

The I/O transform of each analyte for each of the 28 operating temperatures used in the study is 
shown in Fig. 2D.  

3. 3 Recognition of chemicals based on Sensor’s I/O transform 

As can be noted from Fig. 2, the I/O transform was unique for each analyte examined. Furthermore, as 
shown in Fig. 3a, the I/O transform was reliable across multiple training runs for each analyte used. These 
results suggest that the estimated I/O transform of a sensor may be used as a fingerprint to identify each 
analyte. To confirm this hypothesis, we first visualized the eight-dimensional I/O transform using principal 
component analysis (Fig. 3b). Note that each complete training run or trial, resulted in a single estimate of 
the I/O transform, and therefore is represented as a single point/symbol after PCA dimensionality reduction. 
Different runs corresponding to a particular analyte generally clustered together and were discriminable 
from clusters representing other analytes. Therefore, this result suggests that the sensor’s I/O transform can 
indeed be used for analyte recognition. 

3.4 Sensor’s I/O transforms are drift tolerant 

As mentioned before, drift can be a major issue with chemical sensors, as it can significantly reduce the 
viability of sensors operating over an extended period of time. To test the stability of the sensor’s I/O trans-
form to each analyte, we aged the sensor for a period of two months (see methods; dataset 2). Subsequent 
exposures of the same five analytes generated raw sensor responses that were substantially drifted. We note 
that sensor baseline response decreased and the sensor response magnitude varied as a result of this drift 
(Fig. S-5). 

We made a qualitative comparison of sensor response profiles before (training dataset) and after 
(testing dataset) aging using a linear principle component analysis (Fig. S-6a). Note that sensor response 
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from the training dataset is indicated using circles, whereas raw sensor responses during the validation 
phase are identified as squares. As can be noted, although groupings within datasets are well-defined, drift 
in sensor responses across datasets shifted the overall response profiles. Complementing this qualitative 
visualization analysis, we performed a quantitative nearest-neighbor classification. The overall results from 
this classification analysis are summarized in the confusion matrix shown in Fig. S-6b. Note that the main 
diagonal elements were low indicating misclassification. These results qualitatively and quantitatively con-
firm that the raw responses of the sensor before and after aging were inconsistent. 

Next, we compared the I/O transform for different analytes before and after sensor aging (Fig. 4). 
Despite the evident drift, the I/O transforms were relatively consistent (Fig. 4a). Further, to quantify the 
performance results we performed a classification analysis (Fig. 5a). We reduced the overall classification 
problem into a series of two-class discriminations to determine similarity with ethanol vs. others (step1), 
acetone vs. remaining others (step2), 2-octanol vs. remaining others (step3), and finally hexanol vs. 2-
octanone (step4). Note that this scheme allows progressive refinement at each step, focusing primarily on 
determining membership to the most distant response cluster (see methods). The discriminations are shown 
on the right in Fig. 5a. The colored bands indicate regions, of the projection, where analytes would be 
successfully classified at that step and the gray bands indicate regions of the projection where analytes 
would be parsed through subsequent stages. The confusion matrix shows that most of the analytes were 
recognized well above the chance level (17 % to 24 %), and significantly higher than a direct PCA approach 
(Fig. S-7). 

3.5 Concentration invariant recognition 

Changes in concentration are also known to alter the sensor response magnitudes [58, 59]. Such response 
variations can lead to significant overlap in the responses generated by different analytes. Since the I/O 
transforms of the sensor to each analyte are predominantly focused on the response dynamics, we next 
examined how robust these were with respect to changes in stimulus intensity. We repeated the experiments 
with acetone, ethanol, hexanol, and 2-octanol but presented at different intensities.  

We found that the I/O transforms were consistent even when the analyte concentrations were 
changed (Fig. 6a). In addition, we used a correlation based distant metric in our dimensionality reduction 
(Fig. 6b) to focus primarily in the shape of the I/O transform and not on its magnitude to further reduce 
sensitivity to variations that might arise due to stimulus intensity. As can be noted, the classification perfor-
mance was well above the chance levels for all analytes tested in this fashion (Fig. 6c).  

To further clarify these results, we scaled the response of a particular analyte using three different 
values (x1, x2 and x5). Such scaling provided responses that had similar transients and time constants, but 
with varying magnitude (Fig. S-10). As expected, we found that the I/O transforms obtained for these three 
responses were identical in shape but differed substantially in their magnitude. Further, we note that a dis-
tance metric based on the correlation values would classify these I/O transforms to be identical thereby 
providing the analytical basis for invariance with respect to the changes in response magnitude.  

3.6 Sensor-invariant analyte recognition 

Finally, we examined how robust the proposed signal extraction approach was across different equivalent 
sensors that were fabricated together.  To examine this, we repeated the same analyses and compared the 
I/O transforms obtained between two sensors. We found that for each analyte, the I/O transforms were 
surprisingly consistent and training data from one sensor can allow identification of those analytes even 
when data from a different sensor was used for validation (Fig. 7). Note that these results are largely con-
sistent with using training and testing datasets from the same sensor (refer Fig. 4). This further suggests 
that the response dynamics are dominated by the stimulus dynamics of the analyte themselves and may 
provide a robust approach for analyte recognition. Therefore, we expect this approach may also insulate the 
signal processing approaches to changes happening in the sensor array when damaged sensors are replaced 
with copies of the same type of sensor. 
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4. DISCUSSION AND CONCLUSIONS 
In this work, we have presented a method to characterize a chemical sensor’s operation as a linear I/O 
transform. The input to the sensor is the recent stimulus history, which we defined here as a short time-
series of the valve states (‘ON’ or ‘OFF’). The sensor’s response at the end of the stimulus history became 
the output to be predicted. In this formulation, we showed that for each analyte the sensor’s operation be-
came a unique input-output filter or a transform. Such an approach for developing a mathematical model 
of a dynamical system based on the inputs provided and the outputs measured  is commonly recognized as 
a ‘Systems Identification’ approach [1, 2, 46, 60-62]. However, in the context of chemical sensing, what is 
not clear is how to use this system identification approach for recognition/differentiation of different ana-
lytes, how stable are these estimated I/O relationships, and how they vary over time, sensors etc. We have 
carefully explored these issues in this study. 

In order for such a scheme to be feasible, it is first important to test whether the impulse response 
function of a chemical sensor can be reasonably estimated with a random inputs of certain finite length. If 
this assumption is reasonable, then the I/O transform (or alternately impulse response function) computed 
over one segment of random pulsatile binary inputs should allow prediction of the sensor’s response to 
other random patterns of pulsatile binary inputs as well. We found that this is indeed feasible and the pro-
posed estimation approach is robust and works well even when predicting the response of the sensor to 
other patterns of random binary input pulses (Fig. 9). 

We note that the analyte discriminability was enhanced due to the employment of pulsatile stimulus 
delivery that enhanced information in the transient sensor responses. The response dynamics were largely 
driven by the stimuli themselves possibly due to differences in vapor pressure, the physisorption onto the 
sensor surfaces, etc. Therefore, we found that these analyte-specific transforms were robust, to a certain 
extent, to variations in analyte intensity and sensor age. The latter feature allowed reliable recognition of 
the analytes even when the sensor’s baseline and the magnitude of stimulus-evoked responses changed over 
extended periods of operation (see Fig. 1, Fig. S-5, Fig. S-6). Hence, we believe that this approach may 
provide a drift-invariant analyte recognition scheme, a key requirement towards realizing non-invasive 
chemical sensing. 

The only additional requirement imposed by the proposed technique is the need for active sampling 
approach as opposed to the typical passive methodology used for gas sensing. While other efforts that have 
examined the use of a pulsed stimulus delivery protocol for generating information rich datasets from the 
sensor, these works have either focused on the magnitude of the response [23] from a few short pulses or 
select features from the signal [63]. However, our approach markedly differs in that we examined not only 
the signal from stimulus exposure (onset transients and steady-states) but also took into account the transi-
ents generated following absence of a gas stimulus (i.e. offset transients). It will be worth noting that, alt-
hough OFF-responses are informative, they are not considered by most approaches for discriminating ana-
lytes. 

Such active sampling techniques are routinely used by biological systems to sample the chemical 
stimuli encountered in their environment (“antennal flicks” in invertebrates[64] or  “sniffs” in vertebrates 
[65]). Active sampling is thought to extend greater control of the stimulus to the system, allowing it to 
manipulate and define the stimulus dynamics. Previous works have shown that stimulus dynamics can be 
dependent on the analyte or ‘odorant’ [37, 40] and may be exploited by subsequent processing centers in 
the brain [38, 41]. Several approaches to generate spatiotemporal sensor response profiles for analytes to 
enhance their discrimination have also been explored in artificial olfaction [39, 63, 66]. Our work comple-
ments these studies and focuses on development of schemes that take advantage of such rich data streams 
for the purpose of robust chemical identification.  

Using such as scheme in a real-world scenario could be easily achieved by placing a small pump 
downstream of the sensor and drawing air carrying the encountered analyte over the sensor in a known 
binary pattern. In this scenario, the I/O transform can be estimated if the random binary stimuli used to 
control the pump/valve over a period of time and the output of the sensor during this active sampling period 
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are both known. The estimated I/O transform of the currently encountered analyte can then be compared 
and pattern matched with those of the training analytes for the purpose of recognition.  

We note that the proposed scheme has not been optimized for rapid recognition of analytes. We 
envision changes that could be made to increase the sampling rate and therefore decrease the duration and 
spacing of pulses used to address this issue in future studies. Furthermore, in agreement with previous 
studies [26, 67], we found information content across temperatures was redundant. Hence, our temperature 
programs could be optimized by down-selecting to several high and low temperatures [62, 68-70]. We also 
found that hysteresis has a pervasive effect in metal oxide gas sensors. In general, our results show that I/O 
transforms of responses collected at temperatures above 250 °C, especially those that occur in the later 
segments of the temperature cycle, were more consistent across analytes and therefore resulted in higher 
classification accuracies (Fig. 8 and Fig. S-8). In this study, we did not systematically attempt to take ad-
vantage of the hysteresis related effects we observed, which would provide another free parameter for the 
purpose of optimization. 

Finally, we found that the sensors of equal manufacture generated strikingly similar transforms for 
a given analyte. This allowed the data obtained from one sensor to be used for recognizing the training 
analytes with a different sensor. The transferability of the training data is based upon the identification of 
sensor-independent features for pattern recognition. These can then be used to improve the flexibility of 
sensor arrays for a variety of application areas, primarily enabling greater longevity once deployed. Our 
demonstrated approach of pulsatile sampling and I/O transforms has the potential to be a simple, technol-
ogy-independent technique for achieving this capability. 

 
  



  10 

VITAE 
 
Nalin Katta received his B.S. degree in biomedical engineering from the Washington University in St. 
Louis, in 2010. He is a Ph.D. candidate in the Department of Biomedical Engineering at Washington Uni-
versity, St. Louis, MO, under the guidance of Dr. Baranidharan Raman. His current research interests in-
clude sensory and systems neuroscience, bio-mimetic sensors, and device design.  
 
Douglas C. Meier received the B.A. degree in chemistry from Northwestern University, Evanston, IL, and 
the Ph.D. degree in chemistry from Texas A&M University, College Station, where he studied the chemical 
physics of model catalyst systems under the guidance of Prof. D. W. Goodman. He is currently a National 
Institute of Standards and Technology (NIST) Research Chemist with the Process Sensing Group, NIST, 
Gaithersburg, MD, applying surface chemistry and thin-film science in the development of advanced chem-
ical microsensor arrays. Dr. Meier was awarded a National Research Council Post-Doctoral Research As-
sociateship from the Process Sensing Group, NIST. 
 
Baranidharan Raman received the B.Sc. Eng. degree (with distinction) in computer science from the 
University of Madras, Chennai, India, in 2000, and the M.S. and Ph.D. degrees in computer science from 
Texas A&M University, College Station, TX, in 2003 and 2005, respectively. He is an Assistant Professor 
with the Department of Biomedical Engineering, Washington University, St. Louis, MO. From 2006 to 
2010, he was a joint Post-Doctoral Fellow with the National Institutes of Health and the National Institute 
of Standards and Technology, Gaithersburg, MD. His current research interests include sensory and systems 
neuroscience, sensor-based machine olfaction, machine learning, biomedical intelligent systems, and dy-
namical systems. Dr. Raman is a recipient of the Wolfgang Gopel Award in 2011 from the International 
Society for Olfaction and Chemical Sensing and a NSF CAREER awardee. 
 
Kurt D. Benkstein received his B.S. degree in Chemistry in 1995 from Iowa State University and his M.S. 
and Ph.D. degrees in Chemistry from Northwestern University in 1996 and 2000, respectively. He went to 
the National Renewable Energy Laboratory in 2000 as a postdoctoral researcher to study the relation be-
tween film morphology and electron transport in dye-sensitized nanoparticle solar cells. In 2003, Dr. 
Benkstein joined the National Institute of Standards and Technology as a Research Chemist to study 
nanostructured materials for chemical sensors. 
 
Steve Semancik is the Project Leader of the Chemical and Bioanalytical Microsensor Program at the Na-
tional Institute of Standards and Technology (NIST) in Gaithersburg, Maryland. He received his B.S. degree 
in physics from Rensselaer Polytechnic Institute and his Sc.M. and Ph.D. degrees, also in physics, from 
Brown University. Dr. Semancik's professional research career began as a National Research Council Post-
doctoral Fellow, and has been centered in the fields of surface science and sensor science. His recent work 
has focused on developing improved nanomaterials for chemical and biochemical sensing, and combining 
such high performance materials with micromachined platforms to realize advanced microsensor devices 
and operating modes. He has authored or coauthored more than 150 papers, including multiple reviews, 
several book chapters, and six patents. Dr. Semancik is an elected Fellow of both the American Physical 
Society and the American Vacuum Society, has served as a Member of the Editorial Board of two sensor 
journals, and is a Member of the Steering Committee of the International Meeting on Chemical Sensors. 
 
 

 

AUTHOR INFORMATION 



  11 

Corresponding Author 
Barani Raman: barani@wustl.edu  
 

 

Author Contributions 
Experiments and analysis were designed by NK and BR and were carried out by NK. Sensor array was 
provided by DM, KB, and SS. NK wrote the first draft and BR revised it. The final draft submitted incor-
porated input from all authors and was approved by them. 
 
The authors declare no competing financial interest. 
 

ACKNOWLEDGMENTS  
We would like to thank members of the Raman Lab for comments on previous versions of the manuscript. 
We would also like to thank Dr. Chunguang Jin for his help in designing and implementing our analyte 
delivery system. This work was funded by an Office of Naval Research grant (N00014-12-1-0089), NSF 
CAREER grant (1453022) and Children Discovery Institute’s Interdisciplinary Research Initiative grants 
to B.R. 
  



  12 

REFERENCES  
[1] M.L. Meade, C.R. Dillon, Signals and systems : models and behaviour,  Signals and systems : 

models and behaviour, 2nd ed., Chapman & Hall, London ; New York, 1991, pp. 73-5. 
[2] M. Santiago, A. Pardo, F.A.M. Davide, C.D. Natale, A. D'Amico, A. Hierlemann, et al., 

Different strategies for the identification of gas sensing systems, Sensors and Actuators B: 
Chemical, 34(1996) 213-23. 

[3] M. Holmberg, F.A.M. Davide, C. Di Natale, A. D'Amico, F. Winquist, I. Lundström, Drift 
counteraction in odour recognition applications: lifelong calibration method, Sensors and 
Actuators B: Chemical, 42(1997) 185-94. 

[4] M. Holmberg, F. Winquist, I. Lundström, F. Davide, C. DiNatale, A. D'Amico, Drift 
counteraction for an electronic nose, Sensors and Actuators B: Chemical, 36(1996) 528-
35. 

[5] T.C. Pearce, Handbook of machine olfaction : electronic nose technology, Weinheim Germany: 
Wiley-VCH; 2003. 

[6] D.C. Meier, B. Raman, S. Semancik, Detecting Chemical Hazards with Temperature-
Programmed Microsensors: Overcoming Complex Analytical Problems with 
Multidimensional Databases*, Annual Review of Analytical Chemistry, 2(2009) 463-84. 

[7] B. Raman, J.L. Hertz, K.D. Benkstein, S. Semancik, Bioinspired Methodology for Artificial 
Olfaction, Analytical Chemistry, 80(2008) 8364-71. 

[8] R. Gutierrez-Osuna, Pattern analysis for machine olfaction: a review, Sensors Journal, IEEE, 
2(2002) 189-202. 

[9] J.W. Grate, Acoustic Wave Microsensor Arrays for Vapor Sensing, Chemical Reviews, 
100(2000) 2627-48. 

[10] J. White, K. Truesdell, L.B. Williams, M.S. AtKisson, J.S. Kauer, Solid-State, Dye-Labeled 
DNA Detects Volatile Compounds in the Vapor Phase, PLoS Biol, 6(2008) e9. 

[11] D. Gopalakrishnan, W.R. Dichtel, Direct Detection of RDX Vapor Using a Conjugated 
Polymer Network, Journal of the American Chemical Society, 135(2013) 8357-62. 

[12] B.R. Goldsmith, J.J. Mitala, J. Josue, A. Castro, M.B. Lerner, T.H. Bayburt, et al., Biomimetic 
Chemical Sensors Using Nanoelectronic Readout of Olfactory Receptor Proteins, ACS 
Nano, 5(2011) 5408-16. 

[13] C.-J. Lu, J. Whiting, R.D. Sacks, E.T. Zellers, Portable Gas Chromatograph with Tunable 
Retention and Sensor Array Detection for Determination of Complex Vapor Mixtures, 
Analytical Chemistry, 75(2003) 1400-9. 

[14] R. Banan Sadeghian, M. Saif Islam, Ultralow-voltage field-ionization discharge on whiskered 
silicon nanowires for gas-sensing applications, Nat Mater, 10(2011) 135-40. 

[15] G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, et al., Diagnosing lung 
cancer in exhaled breath using gold nanoparticles, Nat Nano, 4(2009) 669-73. 

[16] P.T.T.B.C. Moseley, Solid-state gas sensors, Bristol; Philadelphia: A. Hilger; 1987. 
[17] S. Semancik, R. Cavicchi, Kinetically Controlled Chemical Sensing Using Micromachined 

Structures, Accounts of Chemical Research, 31(1998) 279-87. 
[18] N.A. Rakow, K.S. Suslick, A colorimetric sensor array for odour visualization, Nature, 

406(2000) 710-3. 
[19] B.J. Doleman, N.S. Lewis, Comparison of odor detection thresholds and odor 

discriminablities of a conducting polymer composite electronic nose versus mammalian 
olfaction, Sensors and Actuators B: Chemical, 72(2001) 41-50. 



  13 

[20] S.H. Lee, O.S. Kwon, H.S. Song, S.J. Park, J.H. Sung, J. Jang, et al., Mimicking the human 
smell sensing mechanism with an artificial nose platform, Biomaterials, 33(2012) 1722-9. 

[21] C. Hagleitner, A. Hierlemann, D. Lange, A. Kummer, N. Kerness, O. Brand, et al., Smart 
single-chip gas sensor microsystem, Nature, 414(2001) 293-6. 

[22] X. Jin, Y. Huang, A. Mason, X. Zeng, Multichannel Monolithic Quartz Crystal Microbalance 
Gas Sensor Array, Analytical Chemistry, 81(2008) 595-603. 

[23] E. Martinelli, M. Santonico, G. Pennazza, R. Paolesse, A. D’Amico, C. Di Natale, Short time 
gas delivery pattern improves long-term sensor reproducibility, Sensors and Actuators B: 
Chemical, 156(2011) 753-9. 

[24] M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, G. Cassano, Tungsten 
trioxide (WO3) sputtered thin films for a NOx gas sensor, Sensors and Actuators B: 
Chemical, 50(1998) 9-18. 

[25] B. Raman, D.C. Meier, J.K. Evju, S. Semancik, Designing and optimizing microsensor arrays 
for recognizing chemical hazards in complex environments, Sensors and Actuators B: 
Chemical, 137(2009) 617-29. 

[26] B. Raman, R. Shenoy, D.C. Meier, K.D. Benkstein, C. Mungle, S. Semancik, Detecting and 
recognizing chemical targets in untrained backgrounds with temperature programmed 
sensors, Sensors Journal, IEEE, 12(2012) 3238-47. 

[27] Y. Hiranaka, T. Abe, H. Murata, Gas-dependent response in the temperature transient of SnO2 
gas sensors, Sensors and Actuators B: Chemical, 9(1992) 177-82. 

[28] X. Vilanova, E. Llobet, R. Alcubilla, J.E. Sueiras, X. Correig, Analysis of the conductance 
transient in thick-film tin oxide gas sensors, Sensors and Actuators B: Chemical, 31(1996) 
175-80. 

[29] E. Llobet, X. Vilanova, X. Correig, Novel technique to identify hazardous gases/vapors based 
on transient response measurements of tin oxide gas sensors conductance,  Proc SPIE 2504, 
Environmental Monitoring and Hazardous Waste Site Remediation, Munich, Germany, 
1995, pp. 559-66. 

[30] A. Vergara, E. Llobet, J. Brezmes, P. Ivanov, C. Cané, I. Gràcia, et al., Quantitative gas mixture 
analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation 
of the optimal modulating frequencies, Sensors and Actuators B: Chemical, 123(2007) 
1002-16. 

[31] C. Distante, M. Leo, P. Siciliano, K.C. Persaud, On the study of feature extraction methods 
for an electronic nose, Sensors and Actuators B: Chemical, 87(2002) 274-88. 

[32] S. Zhang, C. Xie, M. Hu, H. Li, Z. Bai, D. Zeng, An entire feature extraction method of metal 
oxide gas sensors, Sensors and Actuators B: Chemical, 132(2008) 81-9. 

[33] E. Llobet, J. Brezmes, X. Vilanova, J.E. Sueiras, X. Correig, Qualitative and quantitative 
analysis of volatile organic compounds using transient and steady-state responses of a 
thick-film tin oxide gas sensor array, Sensors and Actuators B: Chemical, 41(1997) 13-21. 

[34] G.J. Maclay, J.R. Stetter, S. Christesen, Use of time-dependent chemical sensor signals for 
selective identification, Sensors and Actuators, 20(1989) 277-85. 

[35] G. Niebling, R. Müller, Non-linear signal evaluation with linear regression techniques for 
redundant signals, Sensors and Actuators B: Chemical, 25(1995) 805-7. 

[36] A.K.M. Shafiqul Islam, Z. Ismail, M.N. Ahmad, B. Saad, A.R. Othman, A.Y.M. Shakaff, et 
al., Transient parameters of a coated quartz crystal microbalance sensor for the detection 
of volatile organic compounds (VOCs), Sensors and Actuators B: Chemical, 109(2005) 
238-43. 



  14 

[37] C. Martelli, J.R. Carlson, T. Emonet, Intensity Invariant Dynamics and Odor-Specific 
Latencies in Olfactory Receptor Neuron Response, The Journal of Neuroscience, 33(2013) 
6285-97. 

[38] J.A. Riffell, E. Shlizerman, E. Sanders, L. Abrell, B. Medina, A.J. Hinterwirth, et al., Flower 
discrimination by pollinators in a dynamic chemical environment, Science, 344(2014) 
1515-8. 

[39] S.E. Stitzel, D.R. Stein, D.R. Walt, Enhancing Vapor Sensor Discrimination by Mimicking a 
Canine Nasal Cavity Flow Environment, Journal of the American Chemical Society, 
125(2003) 3684-5. 

[40] C.-Y. Su, C. Martelli, T. Emonet, J.R. Carlson, Temporal coding of odor mixtures in an 
olfactory receptor neuron, Proceedings of the National Academy of Sciences, 108(2011) 
5075-80. 

[41] N.J. Vickers, T.A. Christensen, T.C. Baker, J.G. Hildebrand, Odour-plume dynamics influence 
the brain's olfactory code, Nature, 410(2001) 466-70. 

[42] D. Saha, K. Leong, C. Li, S. Peterson, G. Siegel, B. Raman, A spatiotemporal coding 
mechanism for background-invariant odor recognition, Nature Neuroscience, 16(2013) 
1830-9. 

[43] O. Mazor, G. Laurent, Transient Dynamics versus Fixed Points in Odor Representations by 
Locust Antennal Lobe Projection Neurons, Neuron, 48(2005) 661-73. 

[44] R.F. Galán, S. Sachse, C.G. Galizia, A.V.M. Herz, Odor-Driven Attractor Dynamics in the 
Antennal Lobe Allow for Simple and Rapid Olfactory Pattern Classification, Neural 
Computation, 16(2004) 999-1012. 

[45] T. Artursson, T. Eklöv, I. Lundström, P. Mårtensson, M. Sjöström, M. Holmberg, Drift 
correction for gas sensors using multivariate methods, Journal of Chemometrics, 14(2000) 
711-23. 

[46] A. Hierlemann, R. Gutierrez-Osuna, Higher-Order Chemical Sensing, Chemical Reviews, 
108(2008) 563-613. 

[47] A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas sensor 
drift compensation using classifier ensembles, Sensors and Actuators B: Chemical, 166–
167(2012) 320-9. 

[48] M. Zuppa, C. Distante, P. Siciliano, K.C. Persaud, Drift counteraction with multiple self-
organising maps for an electronic nose, Sensors and Actuators B: Chemical, 98(2004) 305-
17. 

[49] D. Saha, C. Li, S. Peterson, W. Padovano, N. Katta, B. Raman, Behavioural correlates of 
combinatorial versus temporal features of odour codes, Nat Commun, 6(2015). 

[50] J. Murlis, J.S. Elkinton, R.T. Cardé, Odor Plumes and How Insects Use Them, Annual Review 
of Entomology, 37(1992) 505-32. 

[51] K. Benkstein, C. Martinez, G. Li, D. Meier, C. Montgomery, S. Semancik, Integration of 
nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor 
performance, J Nanopart Res, 8(2006) 809-22. 

[52] C.J. Martinez, B. Hockey, C.B. Montgomery, S. Semancik, Porous Tin Oxide Nanostructured 
Microspheres for Sensor Applications, Langmuir, 21(2005) 7937-44. 

[53] S. Semancik, R.E. Cavicchi, M.C. Wheeler, J.E. Tiffany, G.E. Poirier, R.M. Walton, et al., 
Microhotplate platforms for chemical sensor research, Sensors and Actuators B: Chemical, 
77(2001) 579-91. 



  15 

[54] A.G. Shirke, R.E. Cavicchi, S. Semancik, R.H. Jackson, B.G. Frederick, M. Clayton Wheeler, 
Femtomolar isothermal desorption using microhotplate sensors, Journal of Vacuum 
Science & Technology A, 25(2007) 514-26. 

[55] R.E. Cavicchi, S. Semancik, F. DiMeo, Jr., C.J. Taylor, Featured Article: Use of 
Microhotplates in the Controlled Growth and Characterization of Metal Oxides for 
Chemical Sensing, Journal of Electroceramics, 9(2002) 155-64. 

[56] P.H. Rogers, S. Semancik, Development of optimization procedures for application-specific 
chemical sensing, Sensors and Actuators B: Chemical, 163(2012) 8-19. 

[57] Z. Boger, D.C. Meier, R.E. Cavicchi, S. Semancik, Rapid Identification of Chemical Warfare 
Agents by Artificial Neural Network Pruning of Temperature-Programmed Microsensor 
Databases, Sensor Letters, 1(2003) 86-92. 

[58] W.M. Sears, K. Colbow, F. Consadori, Algorithms to improve the selectivity of thermally-
cycled tin oxide gas sensors, Sensors and Actuators, 19(1989) 333-49. 

[59] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon Nanotube Sensors for Gas and 
Organic Vapor Detection, Nano Letters, 3(2003) 929-33. 

[60] L. Ljung, System Identification—Theory for the User, 2nd editionPTR Prentice Hall, Upper 
Saddle River, NJ, (1999). 

[61] G.T. Buračas, G.M. Boynton, Efficient Design of Event-Related fMRI Experiments Using M-
Sequences, NeuroImage, 16(2002) 801-13. 

[62] A. Vergara, E. Llobet, J. Brezmes, X. Vilanova, P. Ivanov, I. Gracia, et al., Optimized 
temperature modulation of micro-hotplate gas sensors through pseudorandom binary 
sequences, Sensors Journal, IEEE, 5(2005) 1369-78. 

[63] A. Ziyatdinov, J. Fonollosa, L. Fernández, A. Gutierrez-Gálvez, S. Marco, A. Perera, 
Bioinspired Early Detection through Gas Flow Modulation in Chemo-Sensory Systems, 
Sensors and Actuators B: Chemical, 206(2015) 538-47. 

[64] H. Suzuki, Antennal movements induced by odour and central projection of the antennal 
neurones in the honey-bee, Journal of Insect Physiology, 21(1975) 831-47. 

[65] D.G. Laing, Identification of single dissimilar odors is achieved by humans with a single sniff, 
Physiology & Behavior, 37(1986) 163-70. 

[66] M.D. Woodka, B.S. Brunschwig, N.S. Lewis, Use of Spatiotemporal Response Information 
from Sorption-Based Sensor Arrays to Identify and Quantify the Composition of Analyte 
Mixtures, Langmuir, 23(2007) 13232-41. 

[67] A. Vergara, K.D. Benkstein, C.B. Montgomery, S. Semancik, Demonstration of Fast and 
Accurate Discrimination and Quantification of Chemically Similar Species Utilizing a 
Single Cross-Selective Chemiresistor, Analytical Chemistry, 86(2014) 6753-7. 

[68] R.E. Cavicchi, J.S. Suehle, K.G. Kreider, M. Gaitan, P. Chaparala, Fast temperature 
programmed sensing for micro-hotplate gas sensors, Electron Device Letters, IEEE, 
16(1995) 286-8. 

[69] R.E. Cavicchi, J.S. Suehle, K.G. Kreider, M. Gaitan, P. Chaparala, Optimized temperature-
pulse sequences for the enhancement of chemically specific response patterns from micro-
hotplate gas sensors, Sensors and Actuators B: Chemical, 33(1996) 142-6. 

[70] R. Gosangi, R. Gutierrez-Osuna, Active Temperature Programming for Metal-Oxide 
Chemoresistors, Sensors Journal, IEEE, 10(2010) 1075-82. 

 

 



  16 

 

 

Figure 1. Responses of a metal-oxide sensor (SnO2) to five different analytes presented in pulsatile fashion. Each 
trace represents the mean sensor response to an analyte with the sensor operating at 435 °C. Color bands represent 
standard deviations. Gray bars indicate periods when the sensor was exposed to the analyte. First inset reveals 
response onset differences during a prolonged single pulse. Second inset reveals diminishing of responses when 
probed with short, back-to-back stimulus pulses. 
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Figure 2. I/O transforms of a metal-oxide chemiresistor.  A) Top row) Schematic illustration of the proposed ap-
proach. An analyte is pulsed over the sensor and causes changes in resistance across a metal oxide sensing film. 
Bottom row) A schematic of a sensor response reconstruction is shown. Given a specific stimulus sequence, the 
sensor’s operation is akin to a mathematical transformation that is specific for a given analyte. Convolving the 
analyte-specific filter with the most recent stimulus history will generate a prediction for the sensor’s response that 
can be expected at the end of that period. B) I/O transforms (𝑘𝑘�⃗ ) generated using sensor’s response at 435 °C for 
each of the five analytes examined in the study. C) Comparison of the sensor’s actual response at 435 °C (black) 
and reconstructions (red) obtained for all five analytes.  D) I/O transformations for each analyte at all twenty-eight 
temperatures used (see Fig. S-1). Higher intensity of color indicates higher temperature. 
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Figure 3. I/O transforms for different analytes are consistent across different training trials. A) I/O transforms 
obtained using sensor response at 435 °C are shown for each analyte and for each training run.  B) Visualization of 
the I/O transforms (𝑘𝑘�⃗ ) of different analytes and for different runs using principle component analysis is shown. 

 
 
 

 
 

Figure 4. I/O transforms are robust with respect to sensor aging. A) All I/O transforms of sensor responses at 435 
°C after aging are shown. Black line represents mean transforms obtained from pre-aged sensor (i.e. training data). 
Each colored line represents I/O transform obtained for an individual test phase trial. B) Principle component anal-
ysis of I/O transforms before (filled symbols) and after (open symbols) sensor aging. Only training data was used 
to calculate the principal component axes. 
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Figure 5. A hierarchical classification algorithm for multi-analyte recognition. A) Hierarchical classification algo-
rithm used to identify analytes is schematically shown. At each level, both training and testing data were projected 
onto the differences of means plane between the most distinct/farthest class and its nearest neighboring class. The 
data after this projection is shown in the panels on the right. The regions where the class assignment favored the 
distant class are identified in each subplot displaying projected data.  When testing data projects onto un-colored 
regions, those points will move down a level in order to be precisely classified. B) Confusion matrix quantitatively 
summarizing the performance of the hierarchical classification approach is shown. 
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Figure 6.  I/O transforms are robust with respect to analyte concentration. A) Each panel reveals I/O transforms 
estimated from a sensor’s responses at 435 °C to particular analyte presented at varying concentrations. Black line 
represents mean transforms obtained from sensor response to a fixed concentration (i.e. training data). Each colored 
line represents an I/O transform obtained for an individual test phase trial. B) Visualization of I/O transforms ob-
tained at varying concentrations of analytes are shown (filled symbols – training datapoints; asterisks – test data-
points). Only training data were used to calculate the principle component axes. C) Confusion matrix quantifying 
classification performance. 
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Figure 7. I/O transforms are robust across sensors of similar manufacture. A) All I/O transforms of sensor 2 re-
sponse at 435 °C for are shown. Black line represents mean transforms obtained from sensor 1 response (i.e. training 
data). Each colored line represents an I/O transform obtained for an individual test phase trial. B) Principle compo-
nent analysis of I/O transforms of sensor 1 (filled symbol) and sensor 2(asterisks). Only training data was used to 
calculate the principle component axes. C) Confusion matrix quantifying classification performance. 
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Figure 8. Classification performance is temperature and hysteresis dependent. Classification accuracy for sensor 1 
is shown for each temperature in the cycle for the three conditions examined (from top to bottom): (2 to 3) months 
drift, for varying concentrations, and across different sensors. The temperature cycle used in the study is shown at 
the top of the plot. In general, for all three cases, the classification performance is better in the second half of the 
temperature cycle. 
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Figure 9. I/O transforms of a metal-oxide chemiresistor. A) I/O transforms (𝑘𝑘�⃗ ) generated using sensor’s response 
at 435 °C for each of the five analytes are shown. Only half the entire stimulus sequence used in Fig. 2 used to 
generate these transforms. B) Comparison between the sensor’s actual response at 435 °C (black) and reconstruc-
tions (red) obtained for all five analytes for the first half (training) and second half (testing) of the stimulus sequence 
are provided.  Note that the stimulus sequences during training and testing portions are different. C) I/O transfor-
mations for each analyte at all twenty-eight temperatures used are shown. 

 


