
1 INTRODUCTION 

Economic and convenience benefits of interconnec-
tivity drive current explosive emergence and growth 
of networked systems (Helbing, D. 2013).  However, 
numerous recent systemic failures in various net-
worked systems suggest that market economy may 
have difficulty in accurate estimation and pricing of 
the drawbacks and systemic risks of interconnectivi-
ty.  This paper models and makes recommendations 
on systemic risk/benefit tradeoff of interconnectivity, 
where benefits are due to local risk mitigation, and 
systemic risk is due to risk exposure cascades. 
 Contagion in networked systems can be naturally 
modeled as a Markov process with locally interact-
ing components (Dobrushin, R.L. 1971), where sys-
tem “topology” is encoded as a directed graph with 
nodes representing system components, and links 
representing the contagion flow.  In applications, 
some internal node states represent component fail-
ure, overload, etc., and thus can be deemed “vulner-
able/undesirable” (Majdandzic, A., et al. 2013).   
This motivates definition of the individual node risk 
as the probability of this node being in such a state.  
Following (Lorenz, J., et al. 2009) we define system-
ic risk as the individual risk averaged over all the 
nodes in the system. 

We assume that increase in the node risk exposure 
immediately drives downstream adjacent nodes to-
wards higher risk exposure.  These “negative exter-

nalities” with respect to risk exposure for system 
components create a possibility of contagion and un-
desirable cascades.  Direct solution of the Kolmogo-
rov equations for the underlying Markov “micro-
process” with a large number of interacting compo-
nents N  is computationally infeasible due to astro-
nomically high dimension of the Kolmogorov sys-
tem.  This high dimension of micro-description on 
the one hand, and systemic risk being inherently a 
macroscopic phenomenon on the other hand, suggest 
a possibility of “macro-description” of systemic risk.   
 Our first step in realizing this possibility is devel-
oping mean-field and fluid approximations for the 
corresponding Kolmogorov microscopic equations 
for the underlying Markov process.  Similar to 
(Marbukh, V. 2013 & 2014) we obtain an approxi-
mate closed system of non-linear, fixed-point equa-
tions.  For low exposure to the exogenous risk, this 
system has a “normal/operational” system equilibri-
um with a low systemic risk.  As exogenous risk ex-
posure adiabatically, i.e., “slowly,” increases, the 
approximate equations may experience bifurcation, 
which results in emergence of “high systemic risk” 
solution.  Following conventional approach (An-
tunes, N., et al. 2008) we interpret multiple solutions 
of the approximate equations as describing the meta-
stable, i.e., persistent, system states.   

In a particular case of “symmetric” networked sys-
tems, dimension of the approximate descriptions are 
independent of N , and thus these approximations 
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qualify as macro-descriptions.  Phase portrait of the 
corresponding macro-equations determine the sys-
tem “phase diagram.”  However, in a general case of 
heterogeneous networked system, the dimensions of 
the corresponding approximations grow with N , 
and thus further dimension reduction is required.  
We suggest that Perron-Frobenius based “macro-
description” is possible in a close proximity to the 
stability boundary of the normal/operational system 
equilibrium in the space of system parameters.   

Importance of this region is due to economics, 
which drives networked systems towards the stabil-
ity boundary of the normal/operational equilibrium.  
We demonstrate that the proposed macro-description 
is instrumental in classification and managing of the 
emerging instability.  In particular we suggest that 
while maximizing economic and convenience bene-
fits of interconnectivity, networked system designers 
and operators should limit the systemic risk of ab-
rupt/discontinuous instability (Majdandzic, A. 2013) 
in favor of gradual/continuous instability. 

The paper is organized as follows.  Section 2 de-
velops approximations for the systemic risks at the 
microscopic level.  These approximations require 
solving system of non-linear, fixed-point equations 
of reduced dimension, which is much lower than 
dimension of the microscopic Kolmogorov system.  
A particular case of symmetric system, when the re-
duced dimension does not depend on N , is analyzed 
in Section 3.  Phase portrait of the corresponding 
macroscopic equations in the space of system pa-
rameters provides the global qualitative picture of 
persistent system behavior.  Section 4 argues that 
onset of systemic instability in real-life heterogene-
ous systems can be described and managed using 
Perron-Frobenius theory.  Finally, Section 5 summa-
rizes and outlines directions of future research. 

2 SYSTEMIC RISK AT MICROSCOPIC LEVEL  

This Section describes a microscopic model of risk 

propagation in networked systems of shared re-

sources.  Subsection 2.1 defines the individual and 

systemic risks.  Subsection 2.2 proposes mean-field 

and fluid approximations for the individual and sys-

temic risks.  Subsection 2.3 quantifies the effect of 

risk sharing on the individual/systemic risk. 

2.1 Definition of systemic risk 

Consider a networked system evolving according to 
a Markov process   ),..,1),(()( Nitxtx i

N   with N  
locally interacting components ii Xx   (Dobrushin, 
R.L. 1971). System “topology” is characterized by a 
directed graph, where nodes represent system com-
ponents, links represent the contagion flow, and 
some internal node i  states iii XXx  *

  are 
deemed “vulnerable/undesirable,” since they repre-
sent component failure, overload, etc. (Majdandzic, 

A., et al. 2013).  We use “components” and “nodes” 
interchangeably, and introduce binary variables 

1i  if node i  is in an vulnerable/undesirable state, 
i.e., 

*

ii Xx  , and 0i   otherwise, i.e., 
*

ii Xx  . 
In a networked system, excessive load, stress, or 

damage can be transferred from a component i  in a 
vulnerable state 

*

ii Xx   to the certain combinations 
of other components, which are not in the vulnera-
ble/undesirable states.  This transfer on the one hand 
provides relief to overloaded, overstressed, or dam-
aged components, but on the other hand may cause 
undesirable cascades due to the negative externali-
ties.  We formalize the negative externalities by as-
suming that conditional probability of component i  
being in the undesirable state conditioned on the 
vector ),( ijji   , ][ iiE   is an increasing 
function of i : 

              ][][ 2121

iiiiii EE    ,    (1)    

where inequality for vectors is interpreted as the cor-
responding inequalities for all vector components.   

To model a possibility of alternate load routing 
(Stolyar, A.L. & Zhong, Y. 2013), we assume that 
ability to transfer component i ’s load to other com-
ponents is determined by binary function )( ii  , 
which two values: 0 and 1.  Specifically, the transfer 
is possible if 0)( ii  , and the transfer is not pos-
sible if 1)( ii  .  Functions )( ii   characterize 
system topology, e.g., physical connectivity.  Under 
natural assumption of monotonic system structure 
(Barlow, R.E., & Proshan F. 1965) and for natural 
load allocation strategies, functions )( ii   are 
monotonically increasing:     

               )()( 2121

iiiiii    . (2) 

In a particular case when overflowing risk from sys-
tem component Ni ,..,1  can be transferred to a 
single component iJj , structural function be-
comes the following product:  

                     
iJj jii  )( . (3) 

We define node i  individual risk as the following 
average: 

                      )]([ iiii Es   . (4) 

In a particular case (3), individual risk (4) takes the 
following form: 
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We define systemic risk as a weighted sum of the 
individual risks: 
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with some weights  0iw .  In a particular case of 
the same weights wwi  , Ni ,..,1 , systemic risk 
(6) becomes 

                             
i

isNS 1 . (7)    

Averaging in (4) generally requires knowledge of 
the joint probability distribution of random variables 

i  for Ni ,..,1 , which are determined by solution 
to the corresponding Kolmogorov equations for the 
Markov process ),..,1),(()( Nitxtx i

N  .  Since di-
rect solution of this Kolmogorov system is computa-
tionally infeasible due to astronomically high dimen-
sion even for moderate size N  system, next 
Subsection proposes some approximates. 

2.2 Approximations of systemic risk 

Following conventional approach (Antunes, N., et al. 
2008), consider a mean-field approximation, which 
assumes that steady states of system components 

Ni ,..,1  are jointly statistically independent: 
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Assumption (8) implies that binary random variables 

j  with expectations ][ ii E    are approximately 
jointly statistically independent for Ni ,..,1 : 
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Averaging in (4) over (9) results in the following 
approximate expressions for the individual risks: 
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Further simplification is possible by changing order 
of function evaluation and averaging in (4): 

                         )( iiiis   . (11) 

In a particular case (3), individual risk (10) takes the 
following form: 

                         



iJj

jiis  . (12)            

After identifying individual risks, the systemic risk 
can be evaluated according to (6).  The rest of this 
Subsection proposes a mean-field approximation for 
N  probabilities ][ ii E   , Ni ,..,1  in (10)-(12). 

Assuming existence, steady-state probabilities for 
component i ,  ))(Pr(lim)( iiti xtxxP    satisfy 
the following Kolmogorov equations: 
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where 
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and ]),,[( iiii xx 
  is the transition rate of vector 

)(txN  i -th component )(txi  from state ii xtx )(  to 
state ii xtx )( .   Transition rate ]),,[( iiii xx 

  de-
pendence on vector i  reflects interaction between 
system components. 

System (13)-(14) is not closed since conditional 
distributions )( ii xP   are not known.  Assumption 
(8) implies that: )()( iiii xP    , and thus 

               ),(~),( iiiiiii xxxx 
  , (15) 

where: 
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Combining (13)-(16) we obtain the following closed 
system of linear equations for marginal distributions 

)()(
~

iiiii xPxP  : 
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supplemented with the normalization condition 
1)(

~
  

ii Xx iii xP   for a given vector i .  After 
solving system (17) with respect to )(

~
iii xP  , we 

obtain the following closed fixed-point system: 

                          )
~

(
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where    
ii Xx iiiii xP )

~
(

~
:)

~
(  .  Solution to (18), 

)
~

(
~

i   can be viewed as a mean-field approxima-
tion for vector )( i  . 

2.3 Risk sharing  

The level of risk sharing in the system is determined 
by sets iJ , Ni ,..,1 .  As we discuss below, it may 
be beneficial for systemic risk management to trans-
fer component i  risk to components iJj  with con-
trolled probability 1iq .  This results in the follow-
ing modifications of the individual risk (4): 

                )]([)1( iiiiiii Eqqs   . (19) 

In a case (3) risk (19) take the following form: 
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which under approximation (9) becomes: 
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Increasing system component i  ability to transfer 
its individual risk to components iJj  by broaden-
ing set iJ  or increasing probability iq  reduces com-
ponent i  individual risk at the cost of increasing the 



individual risks for components iJj .   The sys-
temic risk is the result of the interplay of these two 
trends, and depends on the system parameters.  In 
applications each system component Ni ,..,1  is 
typically characterized by exogenous parameters i  
and iC .  Parameter i  quantifies the component i  
“exposure to individual risk” or “individual fragili-
ty” (Lorenz, J., et al. 2009), which may represent the 
exogenous load, stress, or damage.  Parameter iC  
represents component i  ability to accommodate this 
load, resist this stress, or tolerate this damage.   

Due to risk sharing, mean-field equations (18) 
have the following form:  

                   ),,,
~

(
~

jjjiiiii CqC   , (22) 

Nji ,..,1,  , ij  , where parameter iii C   rep-
resents component i  normalized “exposure to exog-
enous risk” or “individual fragility.”  The right-hand 
side of (22) is an increasing in j

~
, j ,  jjq   and 

decreasing in  iC , jC  function.  Fluid approxima-
tion describes system with high capacity components 

iC  capable of sustaining individual risk below 
capacity (Stolyar, A.L. & Zhong, Y. 2013). Assum-
ing existence of the following limit: 
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fluid approximation is: 
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Nji ,..1,  , ji  , where 0),
~

(  jjiii q   if 
1,,

~
jjij q  , and thus for 1, jji q   system 

(24) has “risk free” solution: 0
~
 iisS  . 

 Further we assume that right-hand sides of (22) 
and (24) are continuous functions for all ),,

~
( iii C , 

and thus, Brouwer fixed-point theorem guarantees 
that these systems have at least one equilibrium for 
any set of system parameters.  Since systems (22) 
and (24) are generally non-linear, this equilibrium 
may not be unique.  Following common practice 
(Antunes, N., et al. 2008) we assume that globally 
stable solutions to (22) and (24) describe system 
steady state emerging as t  for any initial sys-
tem state.   Multiple locally stable solutions describe 
metastable or persistent system states.  On the “fast” 
time scale system state converges to the “closest” 
metastable state.  Mixing of these metastable states 
occurs on the “slow” time scale and can be described 
by the embedded Markov chain (Marbukh, V. 1993). 

3 SYSTEMIC RISK IN SYMMETRIC SYSTEM 

Consider a symmetric system with component-
independent system parameters:  i , CCi  , 

qqi  , mJi  .  We also assume that for binomial 
distribution 

kNk
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right-hand sides in (22) and (24) do not depend on 
Ni ,..,1 .  In this case systems (22) and (24) pre-

serve symmetric distribution (25), where 
~

 satisfies 
the following mean-field equation:  

                      ),;,
~

(
~

Cqm    (26)                              

and fluid approximation 

                        );,
~

(
~

 qm  (27)                            

respectively, where 0);,
~

(  qm  for 1 .  In 
symmetric case expression (21) for systemic and in-
dividual risks takes the following form: 

                     
~

)
~

1( mqqsS  . (28)                           

Thus the optimal level of resource sharing 
optmm   

and risk transfer probability 
optqq   minimize ex-

pression (28) subject to constraint (22) or (24) for 
mean-field or fluid approximation respectively. 

Further in this Section we consider a specific case 
of symmetric system, where risk sharing can be 
modeled as increase in the normalized risk exposure  

                     )]
~

(1[~ mq , (29)                            

where function )
~

( mm   is increasing in both  
~

 
and m , and 0)0

~
()0(   m .  Under fluid ap-

proximation system components are capable of ac-
commodating the entire risk below capacity (Stolyar, 
et al. 2013), and thus 

                    )~11,0max(
~

  .    (30) 

Subsections 3.1 and 3.2 analyze systemic risk in 
symmetric system under mean-field and fluid ap-
proximations respectively. 

3.1 Mean-field approximation 

Figure 1 sketches typical solution structure of equa-

tion (26) (Marbukh, V. 2013 & 2014). 

 

 

 

 
 
 
 
 
 
 
 
Figure 1. Solution to equation (26) for different  . 
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For sufficiently small and sufficiently large exoge-
nous risk exposure  : *   and *  , equation 
(26) has unique globally stable solution *

~
  and *~

  
describing low and high systemic risk stable system 
equilibria respectively.  For intermediate values of 
 : *

*   , these two solutions *  and *  co-
exist as locally stable, and describe metastable, i.e., 
persistent system equilibria. 

Figure 2 sketches “long-term” risks (28) vs. adia-
batically, i.e., “slowly,” changing exogenous normal-
ized risk exposure   for different values of m .   
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Systemic/individual risk vs.  . 

 
Curve 00E  corresponds to sufficiently low level of 
risk sharing m , when equation (26) has unique glob-
ally stable equilibrium 

~
 for all  . For sufficiently 

high risk sharing level m  and intermediate load 
)()( *

* mm   , equation (26) has two locally 
stable equilibria *

~
  and *~

 .  As load   “slowly” in-
creases or decreases, the risks sS   follow curve 

mEmBmAmA )()()(0 **

*  or 0)()()( **

* mAmBmBEm  re-
spectively.  Curves )(0 * mA  and )(* mBEm  corre-
spond to the globally stable “low” and “high” risk 
system equilibria respectively. Branches 

)()( *

* mAmA  and )()( *

* mBmB  correspond to the co-
existing “low” and “high” metastable system equi-
libria respectively for intermediate load 

)()( *

* mm   .  Discontinuities at the critical 
loads )(* m  and )(* m  as well as the hysteresis 
loop )()()()( *

**

* mBmBmAmA  indicate discontinu-
ous, i.e., the first order phase transition. 

Increase in resource sharing level m  increases 
“spread” between the “low” and “high” risk meta-
stable equilibria.  Figure 3 demonstrates this dual ef-
fect of risk sharing level m on the systemic risk (28).  

 
 

 

 

 

 

 
 
 
 
 
 
Figure 3. Systemic/individual risk vs. risk sharing level m . 

As m  “slowly” increases (decreases), the system-
ic/individual risks sS   follow curve EBAAA **

*0  
)( 0**

* AABEB .  Branches *

*0 AAA , 
*

*BEB  and hyste-
resis loop 

**

**

* ABBAA  in Figure 3 correspond to 
branches *

*AOA , 
*

*BEB  and hysteresis loop 

**

**

* ABBAA  in Figure 2 respectively. 

3.2 Fluid approximation  

Figure 4 shows solution to fluid approximation (27) 
for 1  and 1q , where 

                    dxmxdq
x

)(lim:
0



 . (31)                           

 

 

 

 

 

 

 
 
 
 

Figure 4. Solution to fluid approximation (27) for 1 . 

 
Curves BHAOB  , OHAO  , and AHA    sketch right-
hand side of (27) for 1 , 1 , and 1  re-
spectively.  Figure 5 sketches steady-state system-
ic/individual risks (28) under fluid approximation 
(27) for 1  and 1q . 

 

 

 

 

 

 

 

 

 
 
 
Figure 5. Steady risks under fluid approximation for 1 . 

 

Figure 6 shows solution to fluid approximation (27) 
for 1  and 1q . 

 

 

 

 

 

 

 

 

 
 
Figure 6. Solution to fluid approximation (27) for 1 . 
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Curves CHAOBC  , BHAOB  , OHAO  , and AHA    
sketch right-hand side of (27) for 

*  , 
1*   , 1 , and 1  respectively.  For a 

sufficiently light or heavy exogenous risk exposure 

*   or 1 , equation (27) has a unique fixed 
point 0

~
  or 

*~~
   respectively.  For an inter-

mediate exogenous load 1*   , these both fixed 
points coexist as locally stable, and are separated by 
an unstable fixed point.   

Figure 7 sketched the persistent system-
ic/individual risks (28) under fluid approximation 
(27) for 1  and 1q . 

 

 

 

 

 

 

 

 

 
 
Figure 7. Persistent risks under fluid approximation for 1 . 

 

For 1  fixed point 0
~
  describes the desirable 

“risk-free” equilibrium.  Fixed point 
*~~

  , repre-
sented by curve CDE , describes the “high-risk” 
equilibrium.  Curve CB  represents unstable equilib-
rium fixed point separating stable equilibrium points 

0
~
  and 

*~~
  .  While the “risk-free” and “high-

risk” equilibria are globally stable for “light” and 
“heavy” exogenous risk exposure  , these equilibria 
are metastable for “intermediate” exogenous risk ex-
posure  .  As   “slowly” increases from 0  to  , 
or decreases from   to 0 , risk follows curve 

ABDE0 , or 0EDCA  respectively.  Hysteresis loop 
BDCAB  is indicative of the discontinuous “phase 
transition” and metastability.  

4 TOWARDS SYSTEMIC RISK MANAGEMENT 

This Section argues that analysis in Subsection 3.2 
can be extended to describe and manage onset of 
systemic instability in general heterogeneous sys-
tems.  Subsection 4.1 demonstrates that under fluid 
approximation systemic instability occurs in one di-
mension described by Perron-Frobenius theory.  
Subsection 4.2 quantifies beneficial effect of risk 
sharing in networked systems on the system ability 
to sustain exogenous risks.  Subsection 4.3 demon-
strates how proposed in Subsection 4.1 systemic risk 
characterization can be used for balancing benefits 
and downsides of risk sharing. 

4.1 Perron-Frobenius risk characterization 

Mean-field system (22) has solution 0
~

*  , which 
describes normal/operational, low-risk regime: 

0S  for 1i , Ni ,..,1 .  It can be shown that so-
lution *

~
  is unique for sufficiently small i .  As ex-

ogenous parameters i  adiabatically, i.e., “slowly,” 
increase, low-risk equilibrium may disappear or 
loose stability, and a “high-risk equilibrium” may 
emerge.  Onset of this instability can be described 
using Perron-Frobenius theory (Nussbaum, R.D. 
2012) as follows.  Let },..,1,0{ NixxK ii   be 
standard cone in N - dimensional Euclidian space.  
For Kyx ,  let yx   if ii yx   for Ni ,..,1 ; 

yx   means that yx   and yx  .  It can be shown 
under some additional technical assumptions, that 
negative externalities with respect to individual risks 
(1) imply monotone mapping (22): KK : , i.e., 

yx 0  implies  )()(0 iiii yx     for any set 
of system parameters.  Thus system (22) falls within 
domain of non-linear Perron-Frobenius theory. 
 Due to limited space, consider fluid approxima-
tion (24), which has risk-free solution 0i  for pa-
rameter vector UN  ),..,(: 1  , where the system 
operational region is },..,1,1{ NiU i   .  Eco-
nomics incentivizes system operator(s) to keep the 
system within its operational region U   close to the 
corner point 1i , Ni ,..,1  since both increase of 
the capacities iC  and decrease of the loads i  re-
duce the system operator(s) profit.  However, una-
voidable uncertainties in the exogenous parameters 

),..,( 1 N   create inherent tradeoff between eco-
nomic benefits of keeping system close to the 
boundary of the operational region on the one hand 
and risk of system crossing the stability boundary on 
the other hand.  

To evaluate this risk consider system (24) for 

ii  1 , where  0ii  , 00 i , and 0 .  
Up to terms of order )(o  as 0 , system (24) 
takes the following form:  

                          0ii

ij

jiji ba 


, (32)                           

where 0])([lim
01,00    

iijiiija  
and 0])([ 1,0    iiiib  due to negative 
externalities with respect to the risk exposure.  As-
suming for simplicity matrix 

N

jiijaA 1,)(   to be irre-
ducible, sufficient condition for existence of a 
“small” solution to linear system (32), )( Oi   as 

0  is:  

                                  1)( A , (33)                           

where   is the Perron-Frobenius eigenvalue of ma-
trix A .  Criterion (33) is a generalization of one-
dimensional condition (31).  It can be shown that 
similar to considered in Subsection 3.2 one-
dimensional case, condition 1)( A  implies abrupt 
or discontinuous systemic instability.  

We suggest that an abrupt/discontinuous systemic 
instability is more dangerous than a gradu-
al/continuous one for the following reasons.  It has 
been argued (Scheffer, M., et al. 2009), that gradu-
al/continuous systemic instabilities are often preced-

0 1

1

BA
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D
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ed by warning signals, such as critical slowing down 
and anomalously large fluctuations.  These “warning 
signals” may be used for prediction of the upcoming 
continuous systemic instabilities and taking the rele-
vant corrective actions.  On the other hand, ab-
rupt/discontinuous instabilities occur unexpectedly, 
i.e., without warning signs, and are typically associ-
ated with existence of metastable, i.e., persistent, 
undesirable equilibria (Majdandzic, A., et al. 2013). 
 Typically networked system evolution depends on 
controlled parameters to be manipulated in attempt 
to optimize certain economic performance criterion.  
Balancing economic efficiency with systemic risks 
can be naturally formulated as a constrained optimi-
zation problem.  Due to “higher priority” of ab-
rupt/discontinuous systemic instabilities, we propose 
systemic risk aware economic efficiency maximiza-
tion with condition (33) playing role of the optimiza-
tion constraint.  To account for uncertainty in the 
exogenous parameters, constraint (33) should hold 
with certain probability, which reflects the system 
risk aversion.  Due to difficulty of evaluation of the 
Perron-Frobenius eigenvalue )(A , future research 
should investigate a possibility of using in (33) an 
upper bound for   (Nussbaum, R.D. 2012), e.g., 

                           1max
,..,1


 j ij

Ni
a . (34)                           

4.2 Benefits of risk sharing: sustainable region 

Fluid approximation (24) for a system without risk 
sharing, i.e., for 0iq , Ni ,..,1 , yields unique 
risk-free solution with 0S  if vector of exogenous 
parameters )( i   stays within the operational re-
gion },..,1,1{ NiU i   .  Resource sharing al-
lows system to accommodate some imbalances in 
the risk exposures resulted from unavoidable uncer-
tainties due to variability of the exogenous condi-
tions, hardware breakdowns, etc.  To quantify the 
sustainable region T  comprised of all vectors 

)( i   which system with risk sharing can ac-
commodate, we quantify the inefficiency of accom-
modating component i  individual risk by component 

ij   by parameters 1 iiij  . 
If portion ijq  of component Ni ,..,1  exogenous 

risk i  is transferred to components ij  , and 

                      1  iJj iji qq , (35)                           

then the system can completely absorb the exoge-
nous risk if 

      1)1(~ 1   



iJj jjjijiiiii CqCq  .  (36)                           

Given system topology determined by sets iJ , the 
system sustainable region T  is comprised from all 
vectors )( i   such that inequalities (35)-(36) can 
be satisfied for some probabilities 0ijq .  Sustaina-
ble region T  subsumes the operational region 

TNiU i  },..,1,1{ , and thus region UT \  
quantifies benefits of risk sharing in the networked 
system with respect to system ability to accommo-
date the “worst-case” imbalances in the risk expo-
sure by different system components.  Note that ben-
efits of resource sharing under scenario with 
probabilistic uncertainty can be quantified by the 
corresponding statistical multiplexing gain. 

As an example consider a networked system with 
two components: 2N .  The corresponding sus-
tainable region, plotted in Figure 8, is  

                  1]1)[(  

jijjii CC    (37)                           

for 2,1i , ij  3 , where ),0max(:][ xx  . 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Operational and sustainable regions for 2N . 

 
Resource sharing expands operational region 

OAEBOU   into sustainable region 
OACEDBOT   by adding triangles ACE  & BDE .   

When 1ij ; Nji ,..,1,  , i.e., the “non-native” 
risk can be accommodated as efficiently as the “na-
tive” one, risk sharing has no downside.  However, 
in a typical situation when 1 iiij  , ji  , i.e., 
risk transfer amplifies the aggregate risk in the sys-
tem, negative externalities due to resource sharing 
create risk of abrupt/discontinuous instability.  Gen-
erally, this risk can be controlled by limiting degree 
of resource sharing.  Next Subsection briefly dis-
cusses mitigation systemic risk of ab-
rupt/discontinuous instabilities by controlling proba-
bilities iq . 

4.3 Controlling systemic risk of abrupt instability 

In addition to keeping exogenous fragilities at the 
corner point 1i , Ni ,..,1  of the operational re-
gion },..,1,1{ NiU i   , economics also incen-
tivizes system operators to keep probabilities iq  
close to one to ensure that system is capable of ac-
commodating at least some unavoidable imbalances 
in risk exposure by different system components.  At 
the same time, as Subsection 4.1 suggests, system 
designer(s)/operator(s) should avoid ab-
rupt/discontinuous systemic instability by enforcing 
condition (33).  In this subsection we specify and il-
lustrate condition (33) on the example of considered 

B

1

0 1

C

D

A
E

1̂

2̂

1

2



in the previous Subsection heterogeneous networked 
system.  Specifically, our goal is to gain some in-
sight into the tradeoff between desire to take ad-
vantage of risk sharing on the one hand and avoiding 
a possibility of abrupt /discontinuous instabilities by 
enforcing restriction (33) on the other hand. 
 Specifically, we assume that component i  indi-
vidual risk can be transferred to components iJj  
with controlled probability ]1,0[)( jiq  .  Probabili-
ties )( jiq   satisfy self-consistency conditions, e.g., 

0)( jiq   if 1  iJj j  and  


iJj iji qq )0( , 
where ijq  is the probability that component i  indi-
vidual risk is transferred to a component iJj  
when 1i  and 0j , iJj .  It is easy to see 
that the corresponding matrix A  in condition (33) is 

                  J

jijijiij qCCA 1,

1 )( 

           (38)                           

and condition (34) becomes 

                1max
1

1 



J

j

jijiji
i

qCC  .      (39) 

Probabilities ijq  determine the system economic 
efficiency, e.g., quantified by the sustainable region 
T , given by (35)-(36).  Constrained maximization of 
the selected economic efficiency criterion over prob-
abilities ijq  subject to (33), (38) may be viewed as a 
systemic risk-aware performance optimization 
framework.  “Robustness” of this framework is due 
to conditions (33), (38) and (39) being independent 
on the exogenous parameters i , which are typically 
subject to uncertainty and variability.  In a particular 
case 2N  condition (33), (38) takes the following 
form: 

                        1

21122112 )(  qq . (40)                           

When 12112   , i.e., risk sharing does not ampli-
fy the aggregate risk, constraint (40) is not binding.   
When 12112  , i.e., this amplification takes place, 
constraint (40) is binding, and particular selection of 
probabilities ijq  satisfying (40) depends on the spe-
cific scenario.  For example, if risk exposure for 
component 1i  is more economically beneficial 
than for component 2j , then the natural selection 
of probabilities ijq  is 112 q  and 1

211221 )(  q . 

5 CONCLUSION AND FUTURE RESEARCH 

This paper has discussed interplay of the benefits 
and drawbacks of risk sharing in networked systems.  
The benefits are due to mitigation of local risk im-
balances, and the drawbacks are due to contagion 
and risk propagation.  The contagion is a result of 
negative externalities with respect to local risk expo-
sure, when risk sharing among system components 
amplifies the aggregate risk in the system.  The con-
tagion may produce a continuous or discontinuous 
systemic instabilities, which can be classified and 

controlled by applying Perron-Frobenius theory to 
risk propagation equations.   

Economics driving system towards stability 
boundary of the normal/operational equilibrium in 
combination with inherent uncertainties alplify risk 
of systemic instability. We have suggested that bal-
ancing economic benefits with systemic risks should 
eliminate or at least mitigate systemic risk of ab-
rupt/discontinuous instability in favor of gradu-
al/continuous instability.  This contention is based 
on predictability and implications of different kinds 
of systemic instabilities. 

Numerous questions deserve further investigation, 
e.g., accuracy of the proposed mean-field and fluid 
approximations.  More broadly, future work should 
address the practicality of the proposed framework at 
the system design and operational stages.  This may 
include controlling both the contagion on the exist-
ing network as well as controlling the network struc-
ture/topology.  Of particular interest is a potential 
ability of online measurements of the corresponding 
Perron-Frobenius eigenvalue and other “macroscop-
ic” parameters to be used as a part of “early warning 
system” of the approaching systemic instabilities.   
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