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Abstract. The numerical computation of ill-posed, nonlinear, multidimensional initial value
problems presents considerable difficulties. Conventional stepwise marching schemes for such prob-
lems, whether explicit or implicit, are necessarily unconditionally unstable and result in explosive
noise amplification. Following previous work on backward parabolic equations, this paper develops
and analyzes a stabilized explicit marching scheme for ill-posed time-reversed viscous wave equa-
tions. The method uses easily synthesized linear smoothing operators at each time step to quench
the instability. Smoothing operators based on positive real powers p of the negative Laplacian are
helpful, and (−∆)p can be realized efficiently on rectangular domains using FFT algorithms.

The stabilized explicit scheme is unconditionally stable, marching forward or backward in time,
and can be applied to nonlinear viscous wave equations by simply lagging the nonlinearity at the
previous time step. However, the smoothing operation at each step leads to a distortion away from
the true solution. This is the stabilization penalty. It is shown that in many problems of interest,
that distortion is often small enough to allow for useful results. In the canonical case of linear
autonomous selfadjoint time-reversed viscous wave equations, with solutions satisfying prescribed
bounds, it is proved that the stabilized explicit scheme leads to an error estimate differing from the
best-possible estimate, only by the stabilization penalty. The procedure is a valuable complement to
the well-known quasi-reversibility method.

As illustrative examples, the paper uses fictitiously blurred 512 × 512 pixel images, obtained by
using sharp images as initial values in linear or nonlinear well-posed, forward viscous wave equations.
Such images are associated with highly irregular underlying data intensity surfaces that can severely
challenge reconstruction procedures. Deblurring these images proceeds by applying the stabilized
explicit scheme on the corresponding ill-posed, time-reversed equation. Instructive computational
experiments demonstrate the capabilities of the method on 2D rectangular regions.

Key words. FFT Laplacian stabilization, forward or backward time marching; image deblur-
ring; irreversible systems; non-integer power Laplacian; quasi-reversibility method; stabilized explicit
scheme; viscous wave equation.
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1. Introduction. This paper explores the possible application of step by step
time-marching explicit finite difference schemes in the numerical computation of mul-
tidimensional, ill-posed, initial value problems for partial differential equations. Many
examples of such problems, of importance in science and engineering, are discussed
and analyzed in [1], [10], [11], and their references. The specific problem studied
here involves time-reversed viscous wave equations [10, Chapter 2], where the spa-
tial elliptic differential operator has variable coefficients, and may even be nonlinear.
The successful results obtained in Section 7 below, on 2D rectangular regions, invite
consideration of problems in more general domains, as well as consideration of other
irreversible evolution systems. In [10], time-reversal is analyzed for several types of
irreversible parabolic and non parabolic initial value problems. There, the authors
construct a well-posed modified time-reversed problem, involving higher order spatial
differential operators. Implicit difference schemes are then contemplated for solving
this modified problem. In the multidimensional case, such implicit schemes require
computationally intensive solutions of the resulting algebraic systems of difference
equations at each time step. The explicit scheme methodology developed in the
present paper is more advantageous, and may constitute a valuable complement to
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the quasi-reversibility toolbox developed in [10]. In [6], [7], stabilized explicit schemes
were used successfully in computing nonlinear time-reversed parabolic equations.

As is well-known [17, p. 59], for ill-posed initial value problems, all consistent
time-marching difference schemes, whether explicit or implicit, are unconditionally
unstable. The explicit scheme introduced below is unconditionally stable but incon-
sistent, and leads to a distortion away from the true solution. However, in many
problems of practical interest, that error is often small enough to allow for useful
results.

2. Linear selfadjoint viscous wave equations. While the explicit scheme
is applicable and will be applied to a more general class of problems, analysis of the
transparent linear selfadjoint case provides valuable insight into the scheme’s behavior.
The error bounds developed in Eqs.(4.4, 4.12) and Eqs.(5.10, 5.12), are of particular
interest.

Let Ω be a bounded domain in Rn with a smooth boundary ∂Ω. Let < , > and
‖ ‖2, respectively denote the scalar product and norm on L2(Ω). Let −L denote a
linear, second order, positive definite selfadjoint variable coefficient elliptic differential
operator in Ω, with homogeneous Dirichlet boundary conditions on ∂Ω. Let {φm}∞m=1

be the complete set of orthonormal eigenfunctions for −L on Ω, and let {λm}∞m=1,
satisfying

0 < λ1 ≤ λ2 ≤ · · · ≤ λm · · · ↑ ∞, (2.1)

be the corresponding eigenvalues.
As in [10, Chapter 2], consider the linear initial value problem

wtt − 2aLwt − bLw = 0, x ∈ Ω, t > 0; w(x, 0) = f(x), wt(x, 0) = g(x) (2.2)

with given constants a, b > 0. As shown in [10], we can find the unique solution in
Eq. (2.2) by expanding in the eigenfunctions φm. Let

rm = −aλm +
√

a2λ2
m − bλm, sm = −aλm −

√
a2λ2

m − bλm. (2.3)

Put dm = 2
√

a2λ2
m − bλm, and define

A(λm, t) = (−smermt + rmesmt)/dm, B(λm, t) = (ermt − esmt)/dm. (2.4)

Then, with ŵm(t) =< w(., t), φm >, we have

ŵm(t) = A(λm, t) < f, φm > +B(λm, t) < g, φm >, (2.5)

and the unique solution of the initial value problem Eq. (2.2) is given by

w(x, t) =

∞∑

m=1

ŵm(t)φm(x), t ≥ 0. (2.6)

3. Stabilized explicit scheme. The initial value problem Eq. (2.2) becomes
ill-posed when the time direction is reversed. We contemplate such time-reversed
computations by allowing for possible negative time steps ∆t in the explicit difference
scheme Eq.(3.5) below. With λm as in Eq. (2.1), the positive constants a, b, and the
operator L as in Eq. (2.2), fix ω > 0 and p > 1. Given ∆t, define c, Λ, Q, µm, qm,
as follows:

c = 2a + b, Λ = (I − cL), Q = exp(−ω|∆t|Λp),

µm = 1 + cλm > 1, qm = exp (−ω|∆t|(µm)p) , m ≥ 1.
(3.1)
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Let G, S, and P , be the following 2 × 2 matrices

G =

[
0 I
bL 2aL

]
, S =

[
Q 0
0 Q

]
, P =

[
Λp 0
0 Λp

]
. (3.2)

Putting z = wt, and letting W be the two component vector [w, z]T , we may
rewrite Eq. (2.2) as the equivalent first order system,

Wt = GW, 0 < t ≤ Tmax, W (0) = [f, g]T . (3.3)

It is instructive to study the following explicit time-marching finite difference
scheme for Eq.(3.3), in which only the time variable is discretized, while the space
variables remain continuous. With a given positive integer N , let |∆t| = Tmax/N be
the time step magnitude, and let Wn denote W (n∆t), n = 0, 1, · · ·N . If W (t) is the
unique solution of Eq.(3.3), then

Wn+1 = Wn + ∆tGWn + τn, (3.4)

where the ‘truncation error’ τn = 1
2 (∆t)2G2W (t̃), with n|∆t| < t̃ < (n+1)|∆t|. With

G and S as in Eq.(3.2), let R be the linear operator R = S + ∆tSG. We consider
approximating Wn with Un ≡ [un, vn]T , where

Un+1 = SUn + ∆tSGUn ≡ RUn, n = 0, 1, · · · (N − 1), U0 = [f, g]T . (3.5)

With ∆t > 0 and the data U0 at time t = 0, the forward marching scheme in Eq.(3.5)
aims to solve a well-posed problem. However, with ∆t < 0, together with appropriate
data U0 at time Tmax, marching backward from Tmax in Eq.(3.5) attempts to solve an
ill-posed problem. It remains to be seen whether Un can be a useful approximation
to Wn, by proper choices of ω, p, and |∆t|. Define the following norms for two-
component vectors such as W (., t) and Un,

‖ W (., t) ‖2=
{
‖ w(., t) ‖2

2 + ‖ z(., t) ‖2
2

}1/2
,

‖ Un ‖2=
{
‖ un ‖2

2 + ‖ vn ‖2
2

}1/2
,

|||W |||2,∞ = sup 0≤t≤Tmax
{‖ W (., t) ‖2} .

(3.6)

Lemma 1. With p > 1, and µm, qm, as in Eq. (3.1), fix a positive integer J,
and choose ω ≥ (µJ)1−p. Then,

qm (1 + |∆t|µm) ≤ 1 + |∆t|µJ , m ≥ 1. (3.7)

Proof : The inequality in Eq. (3.7) is valid for 1 ≤ m ≤ J, in view of Eq. (2.2). For
m > J ,

exp{−ω|∆t|(µm)p} ≤ exp{−ω|∆t|µm(µJ)p−1} ≤ exp{−|∆t|µm}, (3.8)

since ω(µJ)p−1 ≥ 1. Also, exp{−|∆t|µm|} ≤ (1 + |∆t|µm)
−1

, since 1+x ≤ ex for real
x. Hence, for m > J, qm (1 + |∆t|µm) ≤ 1. QED.
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Lemma 2. With ω, p, µJ , as in Lemma 1, and R as in Eq.(3.5), we have
‖ R ‖2≤ 1 + |∆t|µJ . The explicit scheme in Eq.(3.5) is unconditionally stable, and

‖ Un ‖2=‖ RnU0 ‖2≤ exp{n|∆t|µJ} ‖ U0 ‖2, n = 1, 2, · · · , N. (3.9)

Proof : In the system Un+1 = SUn +∆tSGUn, expand in the orthonormal eigenfunc-
tions φm, using Lφm = −λmφm. Let un =

∑∞
m=1 un

mφm, vn =
∑∞

m=1 vn
mφm, where

wn
m =< wn, φm >. Then,

un+1
m = qmun

m + ∆tqmvn
m, vn+1

m = −qmb∆tλmun
m + qm(1 − 2a∆tλm)vn

m. (3.10)

Hence, using 2ab ≤ a2 + b2,

|un+1
m |2 ≤ q2

m|un
m|2 + ∆t2q2

m|vn
m|2 + 2|∆t|q2

m|un
mvn

m|

≤ q2
m|un

m|2(1 + |∆t|) + q2
m|vn

m|2(|∆t| + ∆t2). (3.11)

and

|vn+1
m |2 ≤ q2

mb2∆t2λ2
m|un

m|2 + q2
m|vn

m|2(1 + 4a|∆t|λm + 4a2∆t2λ2
m)

+ 2b|∆t|q2
mλm|un

mvn
m| + 4q2

mab∆t2λ2
m|un

mvn
m|,

≤ q2
m

(
b|∆t|λm + (2ab + b2)∆t2λ2

m

)
|un

m|2

+ q2
m

(
1 + (4a + b)|∆t|λm + (2ab + 4a2)∆t2λ2

m

)
|vn

m|2. (3.12)

Therefore,

|un+1
m |2 + |vn+1

m |2 ≤ q2
m

(
|un

m|2 + |vn
m|2

)
{1 + |∆t| (1 + (2a + b)λm)}

2
, (3.13)

Thus, ‖ Un+1 ‖2≤ supm≥1{qm(1 + |∆t|)µm} ‖ Un ‖2, n = 0, 1, 2 · · · , N − 1, which
implies Eq. (3.9), on using Lemma 1. QED

If W (t) is the unique solution of Eq.(3.3) on 0 ≤ t ≤ Tmax, we get from Eq.(3.4)
with 0 ≤ n ≤ N − 1,

Wn+1 = RWn + (Wn − SWn) + ∆t(GWn − SGWn) + τn. (3.14)

Lemma 3. Let W (t) be the unique solution of Eq.(3.3). Then, with S and P as
in Eq.(3.2), the definitions of the norms in Eq.(3.6), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||G2W |||2,∞,

‖ Wn − SWn ‖2 ≤ ω|∆t| |||PW |||2,∞,

|∆t| ‖ GWn − SGWn ‖2 ≤ ω(∆t)2 |||PGW |||2,∞. (3.15)

Proof : The inequality for the truncation error τn in Eq. (3.15) follows naturally from
the defintions in Eq. (3.6). Expanding in the orthonormal eigenfunctions φm of L,
and using the inequality 1 − e−x ≤ x for all real x, we get

‖ Wn − SWn ‖2
2 =

∞∑

m=0

(1 − qm)2(|wn
m|2 + |zn

m|2) ≤

∞∑

m=0

(ω|∆t|(µm)p)
2
(|wn

m|2 + |zn
m|2),

= (ω∆t)2
(
‖ PWn ‖2

2

)
. (3.16)
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This proves the second inequality in Eq. (3.15). The last inequality is a corollary of
the second. QED.

4. The stabilization penalties in the forward and backward problems.
The stabilizing smoothing operator S in the explicit scheme in Eq. (3.5) leads to
unconditional stability, but at the cost of introducing a small error at each time step.
We now assess the cumulative effect of that error.

4.1. The stabilization penalty in the well-posed forward problem.

Theorem 1. With ∆t > 0, let Wn be the unique solution of Eq.(3.3) at t = n∆t.
Let Un be the corresponding solution of the forward explicit scheme in Eq. (3.5),
and let p, µJ , ω, be as in Lemma 1. If ER(t) ≡ Un − Wn, denotes the error at
t = n∆t, n = 0, 1, 2, · · · , N, we have

‖ ER(t) ‖2≤ etµJ ‖ ER(0) ‖2 +
{
ω(etµJ − 1)/µJ

}
|||PW |||2,∞

+
{
(etµJ − 1)/µJ

}{
ω∆t |||PGW |||2,∞ + (∆t/2) |||G2W |||2,∞

}
. (4.1)

Proof : Let Hn = τn+(Wn−SWn)+∆t(GWn−SGWn). Then, Wn+1 = RWn+Hn,
while Un+1 = RUn. Therefore

Un+1 − Wn+1 = R(Un − Wn) + Hn = Rn+1ER(0) + ∆t

n∑

j=0

Rn−jHj/(∆t). (4.2)

Hence, using Lemma 2, and letting t = (n + 1)∆t,

‖ ER(t) ‖2 ≤ etµJ ‖ ER(0) ‖2 + {|||H |||2,∞/∆t}∆t

n∑

j=0

‖ Rn−j ‖2,

≤ etµJ ‖ ER(0) ‖2 + {|||H |||2,∞/∆t}

∫ t

0

eµJ (t−u)du

= etµJ ‖ ER(0) ‖2 + {|||H |||2,∞/∆t} (etµJ − 1)/µJ . (4.3)

Next, using Lemma 3 to estimate {|||H |||2,∞/∆t}, one obtains Eq. (4.1) from Eq.
(4.3). QED.

In the forward problem, we may assume the given data U0 = [f, g]T to be known
with sufficiently high accuracy that one may set ER(0) = 0 in Eq.(4.1). Choosing
ω = (µJ )1−p in Lemma 1, Eq.(4.1) reduces to

‖ ER(t) ‖2≤ (µJ )−p(etµj − 1) |||PW |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (4.4)

Therefore, when using the explicit scheme in Eq.(3.5, there remains the non-vanishing
residual error (µJ )−p(etµj −1) |||PW |||2,∞, as ∆t ↓ 0. This is the stabilization penalty,
which results from smoothing at each time step, and grows monotonically as t ↑ Tmax.
Clearly, if Tmax is large, the accumulated distortion may become unacceptably large
as t ↑ Tmax, and the stabilized explicit scheme is not useful in that case. On the
other hand, if Tmax is small, as is the case in problems involving small values of t, it
may be possible to choose p > 2 and large µJ , yet with small enough µJTmax that
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(µJ )−p(eµjTmax − 1) is quite small. In that case, the stabilization penalty remains
acceptable on 0 ≤ t ≤ Tmax. As an example, with Tmax = 10−3, p = 2.75, and
µJ = 104, we find (µJ)−p(eµjTmax −1) < 2.21×10−7. For this important but limited
class of problems, the absence of restrictive Courant conditions on the time step ∆t in
the explicit scheme in Eq.(3.5), provides a significant advantage in well-posed forward
computations of multidimensional problems on fine meshes.

4.2. The additional penalty in the ill-posed backward problem. In the
ill-posed problem of marching backward from t = Tmax, solutions exist only for a
restricted class of data satisfying certain smoothness constraints. These data are
seldom known with sufficiently high accuracy. We shall assume the given data [fb, gb]

T

at t = Tmax, differs from such unknown exact data by small amounts:

fb(x) = w(x, Tmax)+γ(x), gb(x) = wt(x, Tmax)+σ(x), ‖ γ ‖2
2 + ‖ σ ‖2

2≤ δ2. (4.5)

Theorem 2. With ∆t < 0, let Wn be the unique solution of the forward well-
posed problem in Eq.(3.3) at s = Tmax−n|∆t|. Let Un be the solution of the backward
explicit scheme in Eq. (3.5), with initial data U(0) = [fb, gb] as in Eq.(4.5). Let
p, µJ , ω, be as in Lemma 1. If ER(s) ≡ Un − Wn, denotes the error at s =
Tmax − n|∆t|, n = 0, 1, 2, · · · , N, we have, with δ as in Eq.(4.5),

‖ ER(s) ‖2≤ δen|∆t|µJ +
{

ω(en|∆t|µJ − 1)/µJ

}
|||PW |||2,∞

+
{

(en|∆t|µJ − 1)/µJ

}{
ω|∆t| |||PGW |||2,∞ + (|∆t|/2) |||G2W |||2,∞

}
. (4.6)

Proof : Let Hn = τn+(Wn−SWn)+∆t(GWn−SGWn). Then, Wn+1 = RWn+Hn,
while Un+1 = RUn. Therefore

Un+1 − Wn+1 = R(Un −Wn) + Hn = Rn+1ER(0) + |∆t|

n∑

j=0

Rn−jHj/(|∆t|). (4.7)

Hence, using Lemma 2, and with τ = (n + 1)|∆t|,

‖ Un+1 − Wn+1 ‖2 ≤ δeτµJ + {|||H |||2,∞/|∆t|} |∆t|

n∑

j=0

‖ Rn−j ‖2,

≤ δeµJ + {|||H |||2,∞/|∆t|}

∫ τ

0

eµJ (τ−u)du. (4.8)

As in the preceding Theorem, we may now use Lemma 3 to estimate {|||H |||2,∞/|∆t|}
and obtain Eq.(4.6) from Eq.(4.8). QED.

It is instructive to compare the results in the well-posed case in Eq.(4.4), with the
ill-posed results implied by Eq.(4.6). For this purpose, we must reevaluate Eq.(4.6)
at the same t values that are used in Eq.(4.4). With ∆t > 0, t = k∆t, and W k =
W (k∆t), let Uk now denote the precomputed backward solution evaluated at t =
k∆t. Let ER(t) = Uk − W k, k = 0, 1, 2, · · · , N, with Tmax = N∆t. Again, choosing
ω = (µJ )1−p, we get from Eq.(4.6),

‖ ER(t) ‖2 ≤ (µJ)−p {exp[µj(Tmax − t)] − 1} |||PW |||2,∞

+ δ exp{µJ(Tmax − t)} + O(∆t), 0 ≤ t ≤ Tmax. (4.9)
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Here, the stabilization penalty is augmented by an additional term, resulting from
amplification of the errors γ(x), σ(x), in the given data at t = Tmax, as shown in
Eq.(4.5). Both of these terms grow monotonically as t ↓ 0, reflecting backward in
time marching from t = Tmax.

Again, with large Tmax, the non-vanishing residuals in Eq. (4.9) as |∆t| ↓ 0,
lead to large errors, and the backward explicit scheme is not useful in such cases.
However, there is an important class of ill-posed backward problems, problems with
small Tmax and small δ, for which Eq.(4.9) leads to almost optimal results. With
W (x, t) the exact solution in Eq. (3.3), let the given data V (x) = [fb, gb]

T at time
Tmax approximate the unknown true data W (x, Tmax) to within δ > 0 in the L2

norm, as in Eq. (4.5). Also, let W (x, 0) satisfy a prescribed L2 bound M . These
a-priori constraints are expressed as follows

‖ W (., Tmax) − V ‖2≤ δ, ‖ W (., 0) ‖2≤ M. (4.10)

We now choose µJ in terms of M and δ, and define β(t) as follows

µJ = (1/Tmax) log(M/δ), β(t) = t/Tmax. (4.11)

With these definitions, Eq. (4.9) now becomes

‖ ER(t) ‖2 ≤ (µJ )−p {exp[µj(Tmax − t)] − 1} |||PW |||2,∞

+ M1−β(t) δβ(t) + O(∆t), 0 ≤ t ≤ Tmax. (4.12)

The second term on the right in Eq. (4.12) represents the fundamental uncertainty in
ill-posed backward continuation from noisy data, for solutions satisfying prescribed
bounds, as in Eq. (4.10). Indeed, the uncertainty M1−β(t) δβ(t) is known to be best-
possible in the case of autonomous selfadjoint problems, [9], [12]. The first term in
Eq. (4.12), which is also present in the forward problem, is the penalty that must
be incurred for computing multidimensional problems, using simple explicit schemes
without stringent Courant restrictions on the time step ∆t. In many problems of
interest, the choice of µJ in Eq. (4.11), together with a suitable value of p > 2, can
make that first term small enough to enable useful backward recovery in Eq.(3.3). For
example, with parameter values such as Tmax = 10−3, M = 102, δ = 10−3, p = 2.75,
we have M/δ = 105 = exp{µjTmax}, and (µJ )−p < 6.79 × 10−12. We would then
obtain from Eq. (4.12),

‖ ER(t) ‖2 ≤ M1−β(t) δβ(t)

+ (6.79 × 10−7) |||PW |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (4.13)

Remark 1. The above analysis, valid in general domains Ω ∈ Rn, assumes knowledge
of the complete set of characteristic pairs {λm, φm} of the elliptic operator L, to enable
synthesis of the smoothing operator S in Eq. (3.5). As discussed below, and illustrated
in Section 7, in several special domains, an equivalent smoothing operator S† may
readily be available on that particular domain, and one may dispense with complete
knowledge of {λm, φm}.

However, in other cases, precomputing a sufficiently large number K of eigenpairs
{λm, φm} of a linear selfadjoint elliptic operator L on a general domain Ω, may well
be warranted. If the operator L is representative of a class of more general, possibly
nonlinear, differential operators L̃, one may be able to synthesize a useful smoothing
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operator S using the first K eigenpairs of L, and use it to stabilize explicit schemes
for several time-reversed nonlinear equations wtt − 2aL̃wt − bL̃w = 0. Computational
methods for elliptic eigenvalue problems are discussed in [4], [8], [16].

Remark 2. In most practical applications of ill-posed backward problems, the values
of M and δ in Eq. (4.10) are seldom known accurately. In many cases, interactive
adjustment of the parameter pair (ω, p) in the definition of S in Eq. (3.2), based on
prior knowledge about the exact solution, is crucial in obtaining useful reconstruc-
tions. This process is similar to the manual tuning of an FM station, or the manual
focusing of binoculars, and likewise requires user recognition of a ‘correct’ solution.

There may be several possible ‘good’ solutions, differing slightly from one an-
other. Having located a successful pair (ω, p), define µJ = ω1/(1−p). One may then
use the first term in Eq. (4.12) to estimate the stability penalty deviation from the
best-possible result as ∆t ↓ 0. This is the deviation that would have been incurred
with the hypothetical representative operator L, rather than the actual L̃. However,
because error estimates necessarily contemplate worst case scenarios, such calculated
deviations may sometimes result in larger values than seem compatible with the per-
ceived quality of the reconstructions.

5. Using the Laplacian for smoothing. Let ∆ denote the Laplacian operator
in Ω, with homogeneous Dirichlet boundary conditions on ∂Ω. For any real q > 1 and
ǫ > 0, define

Q∆ = exp{−ǫ|∆t|(−∆)q}, (5.1)

Closed form expressions for the eigenfunctions of the Laplacian are known for specific
domains that are important in applications, including rectangles, circles, and spheres
[13]. On such domains, it may be advantageous to construct smoothing operators Q∆

based on the Laplacian, in lieu of the smoothing operator Q in Eq.(3.1), based on
the variable coefficient operator Λ. Such a program is feasible for those differential
operators Λ for which the following result is valid: Given any ω > 0, and p > 1, there
exist ǫ > 0, and real q ≥ p, such that for all g ∈ L2(Ω) and sufficently small |∆t|,

‖ exp{−ǫ|∆t|(−∆)q}g ‖2≤ exp{−ω|∆t|Λp}g ‖2, =⇒ ‖ Q∆g ‖2≤‖ Qg ‖2 . (5.2)

The linear operator H = (exp{−ǫ|∆t|(−∆)q}) (exp{ω|∆t|Λp}) is well-defined on the
range of (exp{−ω|∆t|Λp}), which is dense in L2(Ω). The inequality in Eq.(5.2) would
follow if it can be shown that H can be extended to a bounded operator on all of
L2(Ω), with ‖ H ‖2≤ 1.

Eq. (5.2) appears to be validated in numerous computational experiments. Re-
sults of a somewhat similar nature are known in the theory of Gaussian estimates for
heat kernels. See e.g. [2], [3], [14], [15], and the references therein.

Let S∆ and P∆ be the following 2 × 2 matrices

S∆ =

[
Q∆ 0
0 Q∆

]
, P∆ =

[
(−∆)q 0

0 (−∆)q

]
. (5.3)

The Laplacian stabilized explicit scheme corresponding to Eq.(3.5) is given by

Un+1 = S∆Un + ∆tS∆GUn ≡ R∆Un, n = 0, 1, · · · (N − 1), U0 = [f, g]T , (5.4)
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to which the following result applies.
Lemma 4. Let p, µJ , ω be as in Lemma 1, and let R and R∆ be, respectively,

the operators in Eq.(3.5) and Eq.(5.4). Choose ǫ > 0 and q ≥ p, such that for all
g ∈ L2(Ω)

‖ exp{−ǫ|∆t|(−∆)q}g ‖2≤‖ exp{−ω|∆t|Λp}g ‖2, (5.5)

as postulated in Eq. (5.2). Then, ‖ R∆ ‖2≤‖ R ‖2≤ (1 + |∆t|µJ ), the explicit scheme
in Eq. (5.4) is unconditionally stable, and Un satisfies

‖ Un ‖2=‖ Rn
∆U0 ‖2≤ exp{n|∆t|µJ} ‖ U0 ‖2, n = 1, 2, · · · , N. (5.6)

Proof : Let F be any two dimensional vector [f, g]T . Then,

‖ S∆F ‖2
2=‖ Q∆f ‖2

2 + ‖ Q∆g ‖2
2≤‖ Qf ‖2

2 + ‖ Qg ‖2
2=‖ SF ‖2

2, (5.7)

on using Eq.(5.2). Hence, ‖ R∆Un ‖2≤‖ RUn ‖2, and the result follows from Lemma
2. QED.

Remark 3. As mentioned in Remark 2 and illustrated in Section 7, useful pairs
(ǫ, q) in the Laplacian stabilized scheme in Eq.(5.4) are generally found interactively
after relatively few trials. In many numerical experiments, typical values satisfy
2 < q < 3, 10−9 ≤ ǫ ≤ 10−6. However, values of q > 3 together with ǫ < 10−9,
have occasionally been found useful.

Lemma 5. Let W (t) be the unique solution of Eq.(3.3). Then, with S∆ and P∆

as in Eq.(5.3), the definitions in Eq.(3.6), and 0 ≤ n ≤ N ,

‖ τn ‖2 ≤ 1/2(∆t)2 |||G2W |||2,∞,

‖ Wn − S∆Wn ‖2 ≤ ǫ|∆t| |||P∆W |||2,∞,

|∆t| ‖ GWn − S∆GWn ‖2 ≤ ǫ(∆t)2 |||P∆GW |||2,∞. (5.8)

Proof : The proof follows from expanding in the orthonormal eigenfunctions of ∆ as
in the proof of Lemma 3. QED.

Using Lemmas 4 and 5, together with the arguments in Theorems 1 and 2, leads
to the following corresponding results for the Laplacian stabilized explicit scheme in
Eq. (5.4).

Theorem 3. Let p, µJ , ω, be as in Lemma 1, and choose ǫ > 0 and q ≥ p, such
that Eq. (5.2) is satisfied. With ∆t > 0, let Wn be the unique solution of Eq.(3.3) at
t = n∆t, and let Un be the corresponding solution of the forward explicit scheme in
Eq. (5.4). If ER∆(t) ≡ Un − Wn, denotes the error at t = n∆t, n = 0, 1, 2, · · · , N,
then

‖ ER∆(t) ‖2≤ etµJ ‖ ER∆(0) ‖2 +
{
ǫ(etµJ − 1)/µJ

}
|||P∆W |||2,∞

+
{
(etµJ − 1)/µJ

}{
ǫ∆t |||P∆GW |||2,∞ + (∆t/2) |||G2W |||2,∞

}
. (5.9)
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Theorem 4. Let p, µJ , ω, be as in Lemma 1, and choose ǫ > 0 and q ≥ p, such
that Eq. (5.2) is satisfied. With ∆t < 0, let Wn be the unique solution of the forward
well-posed problem in Eq.(3.3) at s = Tmax − n|∆t|. Let Un be the solution of the
backward explicit scheme in Eq. (5.4), with initial data U(0) = [fb, gb] as in Eq.(4.5).
If ER∆(s) ≡ Un − Wn, denotes the error at s = Tmax − n|∆t|, n = 0, 1, 2, · · · , N,
we have, with δ as in Eq.(4.5),

‖ ER∆(s) ‖2≤ δen|∆t|µJ +
{

ǫ(en|∆t|µJ − 1)/µJ

}
|||P∆W |||2,∞

+
{
(en|∆t|µJ − 1)/µJ

}{
ǫ|∆t| |||P∆GW |||2,∞ + (|∆t|/2) |||G2W |||2,∞

}
. (5.10)

Analogously to Eqs. (4.4), (4.12), we have the following Corollaries to Theorems
3 and 4.

Corollary 1. In the well-posed forward problem in Theorem 3 with exactly
known initial data U0, choose ω = (µJ )1−p. Then,

‖ ER∆(t) ‖2≤ (µJ )−p(etµj − 1) (ǫ/ω) |||P∆W |||2,∞ + O(∆t), 0 ≤ t ≤ Tmax. (5.11)

Corollary 2. Let W (t) be the exact solution of the forward well-posed problem
in Eq.(3.3). With ∆t > 0, t = k∆t, let W k = W (k∆t). With known M, δ as
in Eq.(4.10), let µJ and β(t) be defined as in Eq.(4.11). Choose ω = (µJ )1−p, and
choose ǫ > 0 and q ≥ p, such that Eq. (5.2) is satisfied. Let Uk now denote the
precomputed backward solution in Theorem 4, evaluated at t = k∆t. Then,

‖ ER∆(t) ‖2 ≤ (µJ)−p {exp[µj(Tmax − t)] − 1} (ǫ/ω) |||P∆W |||2,∞

+ M1−β(t) δβ(t) + O(∆t), 0 ≤ t ≤ Tmax. (5.12)

6. Time-dependent spatial operator L̃(t). As will be shown in the computa-
tional examples below, the Laplacian stabilized explicit scheme may be applicable in
cases where the coefficients of the spatial differential operator in Eq. (2.2) depend on

t, as well as on the space variables, leading to an operator L̃(t). This may result from
nonlinearities, with coefficients depending on the solution w(x, y, t). Thus, we have

Wt = G̃(t)W, in Eq. (3.3), where L̃(t) replaces L in the definition of G in Eq. (3.2).

With G̃n = G̃(n∆t), one can apply the Laplacian stabilized explicit scheme

Un+1 = S∆Un + S∆G̃nUn as in Eq. (5.4). Let Λ̃(t) = I − cL̃(t) in Eq. ((3.1).
Useful results may be expected provided an inequality such as Eq. (5.2) holds, with

a fixed operator Λp that is reflective of the individual {Λ̃(t)}p on 0 ≤ t ≤ Tmax.

7. Rectangular domains Ω and FFT-based Laplacian stabilization. Con-
sider the viscous wave equation in Eq. (2.2) on a hyperrectangle Ω in Rn, with com-
bined homogeneous Dirichlet and Neumann conditions on ∂Ω. We may discretize the
elliptic spatial operator L and boundary conditions, using centered finite differencing
on a uniform mesh. With preselected ǫ, q, apply the stabilized explicit scheme in
Eq. (5.4) as follows. At each time step m, direct and inverse Fast Fourier Transform
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(FFT) algorithms are used to synthesize Q∆wm in Eq. (5.4). However, the FFT algo-
rithm assumes the array wm to be extended by periodicity to all of Rn, and returns
an array wm+1 = Q∆wm satisfying periodic boundary conditions. At the next time
step, application of the discretized operator L to wm+1 restores the original combined
homogeneous Dirichlet and Neumann boundary conditions. In practice, such alter-
nating erroneous periodic boundary conditions are found to cause spurious artifacts
at the very edges of the region, without impairing the results away from the edges.
Such incovenience is a small price to pay for the highly efficient FFT synthesis of
the stabilizer Q∆. In particular, use of FFT-Laplacian stabilization on large size 2D
images, enables instructive computational experiments in backward reconstruction.

7.1. Linear and nonlinear viscous wave image reconstruction. Because
images are typically associated with highly irregular intensity data surfaces, as in-
dicated in Figure 7.1, fictitious nonlinearly blurred images provide challenging test
problems for backward reconstruction. The illustrative examples below involve vis-
cous wave equations applied to images on the unit square Ω ≡ {0 ≤ x, y ≤ 1} in
R2, with homogeneous Dirichlet boundary conditions. Blurred image data are ob-
tained by forward well-posed numerical computation of the viscous wave system up
to time Tmax, using sharp 512 × 512 pixel images as input data. The initial values
w(x, y, 0) = f(x, y), wt(x, y, 0) = g(x, y), are 8 bit grey scale images with intensity
values ranging from 0 to 255. Discretization of the wave equations uses centered fi-
nite differencing for the space variables, with ∆x = ∆y = 1/512, together with pure
explicit time differencing, with time step ∆t chosen to yield useful results.

Let α, γ, κ, ρ, σ be given nonnegative constants. With z(x, y, t) = wt(x, y, t)
as in Eq. (3.3), let

v(x, y, t) = αw(x, y, t) + z(x, y, t), q(x, y) = 1 + γ(x2 + y2),

s(v) = κ exp{ρv} cos2(σv), L(v) = s(v)∇.{q(x, y)∇v}.
(7.1)

We shall study the following viscous wave system

wt = z, zt = L(v), 0 < t ≤ Tmax,

w(x, y, 0) = f(x, y), z(x, y, 0) = g(x, y).
(7.2)

Note that with γ = σ = ρ = 0, the system in Eq. (7.2) reduces to the classical viscous
wave equation wtt − κ∆wt − κα∆w = 0, discussed in [10, Chapter 2]. The linear
stability analysis given in Eq. (5.12) pertains to that case. However, the stabilized
explicit scheme is applicable to a much wider class of problems. With positive σ, ρ,
the wave equation in Eq. (7.2) has coefficients depending on both w and wt, and
potentially significant nonlinearities. Such an equation would be a useful test of the
robustness of the explicit scheme. Numerous other instructive nonlinear equations
may also be studied. While not necessarily modeling actual physical problems, such
nonlinear experiments can provide valuable mathematical feedback.

In general, the numerically obtained blurred images may not be sufficiently accu-
rate approximations to the true solutions of Eq. (7.2) at time Tmax. Recovering the
finest details in the sharp images at t = 0, from input data at t = Tmax that is only
modestly accurate, may lie beyond the capabilities of any method. Indeed, while the
fundamental uncertainty in ill-posed reconstruction of linear selfadjoint autonomous
systems has the form M1−β(t)δβ(t), with linearly decaying Hölder exponent β(t) as
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noted in Eq. (5.12), in nonlinear problems, the corresponding Hölder exponent may
decay exponentially to zero as t ↓ 0. See [1], [9], [12]. For this reason, high quality
nonlinear reconstructions from imprecise data are not always feasible. See [5].

7.2. Nonlinear time reversal using FFT-Laplacian stabilization. A first
nonlinear experiment, shown in Figure 7.2, uses κ = 3.8 × 10−5, α = 0.25, γ = σ =
1.0, ρ = 0.015, with Tmax = 0.02 in Eq. (7.2). Using the input data at t = 0, shown in
the leftmost column in Figure 7.2, forward stable computation using 10000 time steps
∆t = 2.0 × 10−6, produced the data at Tmax = 0.02, shown in the middle column.
The USAF resolution chart used as intial velocity, becomes corrupted by the George
Washington image used as initial displacement. In fact, the George Washington image
is also corrupted by the resolution chart at Tmax = 0.02, but this is not discernible
in Figure 7.2. The images in the middle column were then used as input in the FFT-
Laplacian stabilized time-reversed explicit scheme in Eq. (5.4), using 1000 time steps
∆t = −2.0×10−5, together with ǫ = 1.0×10−10, q = 2.975, to produce the deblurred
images shown in the righthmost column. This particular choice for the pair (ǫ, q) was
arrived at after a very few interactive trials.

Clearly, this is a successful, explicit, stepwise marching computation of an ill-
posed, nonlinear, time-reversed problem. Noteworthy is the fact that the inequality
in Eq. (5.2), appears to be applicable in the present case of a nonlinear elliptic spatial

operator Λ̃.

A second nonlinear experiment is shown in Figure 7.3, where the experiment in
Figure 7.2 is repeated with ρ increased to the value 0.025 in Eq. (7.2), and ǫ chosen ten
times larger, while all other parameters remain unchanged. Here, the middle column,
representing the forward evolution at time Tmax = 0.02, is qualitatively very similar
to that obtained in the previous case. However, the stable time-reversed computation
now fails to recover the USAF resolution chart at t = 0. A possible explanation may
be that with a 67% increase in the value of ρ, there is now substantially more blurring
at time Tmax = 0.02. The computed data shown in the middle column may no
longer be sufficiently accurate to enable full recovery at t = 0. In nonlinear problems,
as previoualy noted, the Hölder exponent β(t) in the fundamental uncertainty in
Eq. (5.12) can decay exponentially to zero as t ↓ 0.

7.3. Linear time reversal using FFT-Laplacian stabilization. A first lin-
ear experiment, shown in Figure 7.4, uses κ = 3.8×10−5, α = 0.25, γ = 1, σ = ρ = 0,
with Tmax = 0.04 in Eq. (7.2). Using the input data at t = 0 shown in the leftmost col-
umn in Figure 7.4, forward stable computation using 20000 time steps ∆t = 2.0×10−6,
produced the data at Tmax = 0.04 shown in the middle column. Evidently, viscous
wave propagation causes the initial velocity satellite image to become severely cor-
rupted by the MRI brain image used as initial displacement. However, with the
middle column used as input data at Tmax = 0.04 in the FFT-Laplacian stabilized
time-reversed explicit scheme in Eq. (5.4), and using 2000 time steps ∆t = −2.0×10−5,
together with ǫ = 1.0 × 10−10, q = 2.975, we obtain the deblurred images shown in
the righthmost column.

Again, using FFT-Laplacian stabilization, highly successful, explicit, stepwise
marching computation was achieved in an ill-posed time-reversed viscous wave equa-
tion with variable coefficients.

In a second experiment, shown in Figure 7.5, the experiment in Figure 7.4 was
repeated with κ increased by a factor of 10 to the value κ = 3.8× 10−4, and ǫ chosen
fifty times larger, while all other parameters remained unchanged. Such a sizeable
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increase in diffusion coefficient leads to noticeably more intense corruption of the
satellite image by the MRI brain image shown in the middle column in Figure 7.5,
than was the case in Figure 7.4. In contrast, in the nonlinear experiments, the middle
columns in Figures 7.2 and 7.3, appeared qualitatively similar. We again find poor
recovery at t = 0 from possibly insufficiently accurate input data at Tmax = 0.04,
even though the time-reversed computation was stable. However, in view of the large
increase in κ, this experiment indicates the linear time-reversed problem to be better
behaved than the nonlinear problem.

7.4. Time reversal using the wrong equation. In the four reconstruction
experiments discussed in Figures 7.2 through 7.5, a stable forward viscous wave equa-
tion computation was used to generate the blurred input data at t = Tmax. That
same equation was then run backward in time to retrieve the initial data at t = 0.
In the present experiment, described in Figures 7.6 and 7.7, we consider a compound
blurring process whereby a linear viscous wave equation, applied for a period of time
0 ≤ t ≤ t1, is followed by a linear diffusion equation on t1 ≤ t ≤ Tmax. We then
wrongly assume this compound blur to have been generated by applying the original
viscous wave equation on 0 ≤ t ≤ Tmax, and we attempt deblurring by running that
wave equation backward in time from t = Tmax.

Using the input data at t = 0 shown in the leftmost column in Figure 7.6,
together with κ = 3.8 × 10−4, α = 0.25, γ = 1, σ = ρ = 0, in Eq. (7.2), we march
forward in time for 5000 time steps ∆t = 2 × 10−6, to time t1 = 0.01. This linear
viscous wave computation produces the blurred data shown in the middle column of
Figure 7.6.

Next, with a1 = 1.7×10−3, a2 = a3 = 1.0, consider the following linear diffusion
equation on the unit square Ω, with homogeneous Dirichlet conditions on ∂Ω,

θt = a1∆θ + a2θx + a3θy, x, y ∈ Ω, t1 ≤ t ≤ Tmax,

θ(x, y, t1) = f(x, y).
(7.3)

The viscous wave equation evolution in Eq. (7.2), is a coupled process in which each
of the two images in Figure 7.6 influences the blurring of the other. In contrast,
the diffusion equation in Eq. (7.3) will be applied independently to each of the two
images in the middle column of Figure 7.6, by using each image in turn as initial data
f(x, y) at time t1 = 0.01, and marching forward 1429 time steps ∆t = 3.5 × 10−6, to
the final time Tmax = 0.015. Such uncoupled diffusion blurring, over a time interval
half as long as the preceding viscous blur, represents a significant perturbation. The
resulting final blur, shown in the rightmost column of Figure 7.6, cannot legitimately
be considered a viscous wave equation process.

Surprisngly, useful recovery was found possible by viewing this compound blur
as resulting solely from the original viscous wave equation at time Tmax = 0.015.
With ǫ = 5.0× 10−12, q = 2.975, the FFT-Laplacian stabilized time-reversed explicit
scheme in Eq. (5.4), using 1500 time steps ∆t = −1.0×10−5, produced the deblurred
images shown in the right column of Figure 7.7.

8. Connections with the quasi-reversibility (QR) method. A particu-
larly valuable feature of the stabilized explicit scheme in Eq. (5.4), is that it allows
for efficient and simultaneous exploration of the parameter values (ǫ, q), including non
integer positive values of q in (−∆)q, all within the same computational code. In the
QR method applied to the viscous wave equation [10, Chapter 2], the second order
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   Sydney Opera House                Plot of intensity values

Saggital Brain MRI                   Plot of intensity values

IMAGES INVOLVE COMPLEX INTENSITY SURFACE PLOTS

Fig. 7.1. Fictitious nonlinearly blurred images provide instructive test examples. Image recon-
strcuction requires recovery of the underlying highly irregular intensity data surfaces that typically
generate these images. Such jagged non smooth data surfaces can severely challenge ill-posed com-
putational algorithms.
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     SUCCESSFUL  NONLINEAR  VISCOUS WAVE  PROPAGATION 
RUN BACKWARD  IN  TIME, USING   STABILIZED  EXPLICIT  SCHEME.

ORIGINAL DISPLACEMENT       AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

ORIGINAL VELOCITY              AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

Fig. 7.2. Successful backward recovery in nonlinear viscous wave equation applied to 512 × 512 images. With initial displacement and velocity shown in
the leftmost column, and with κ = 3.8 × 10−5, α = 0.25, γ = σ = 1.0, ρ = 0.015, Eq. (7.2) was solved numerically forward in time up to time Tmax = 0.02.
This produced the images shown in the middle column. These data were then used as input in the time-reversed FFT-Laplacian stabilized explicit scheme in
Eq. (5.4), with ǫ = 1.0 × 10−10, q = 2.975, to produce the deblurred images shown in the righthmost column.
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       FAILURE IN  NONLINEAR VISCOUS  WAVE  PROPAGATION 
RUN  BACKWARD  IN  TIME, USING   STABILIZED  EXPLICIT  SCHEME.

ORIGINAL DISPLACEMENT       AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

ORIGINAL VELOCITY              AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

Fig. 7.3. Unsuccessful backward recovery when experiment in Figure 7.2 is repeated with ρ increased to the value 0.025 in Eq. (7.2), and ǫ chosen ten
times larger, while all other parameters remain unchanged. Resulting 67% larger diffusion in L(v) leads to insufficiently accurate computed input data at time
Tmax = 0.02, preventing full recovery at t = 0.
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      SUCCESSFUL  LINEAR VISCOUS  WAVE  PROPAGATION  RUN
     BACKWARD  IN  TIME, USING   STABILIZED  EXPLICIT  SCHEME.

ORIGINAL DISPLACEMENT       AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

ORIGINAL VELOCITY              AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

Fig. 7.4. Successful backward recovery in linear viscous wave equation applied to 512×512 images. With κ = 3.8×10−5, α = 0.25, γ = 1.0, and ρ = σ = 0,

Eq. (7.2) was solved numerically forward in time up to time Tmax = 0.04, producing the images in the middle column from the input data in the leftmost column.
The middle column images were then used as input in the time-reversed FFT-Laplacian stabilized explicit scheme in Eq. (5.4), with ǫ = 1.0× 10−10, q = 2.975,

to produce the deblurred images shown in the righthmost column.
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       FAILURE  IN  LINEAR VISCOUS  WAVE  PROPAGATION  RUN
     BACKWARD  IN  TIME, USING   STABILIZED  EXPLICIT  SCHEME.

ORIGINAL DISPLACEMENT       AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

ORIGINAL VELOCITY              AFTER VISCOELASTIC BLUR    STABILIZED EXPLICIT DEBLUR

Fig. 7.5. Unsuccessful backward recovery when linear experiment in Figure 7.4 is repeated with κ increased by a factor of 10, and with ǫ = 5.0 × 10−9,
while all other parameters remain unchanged. As in the nonlinear case in Figure 7.3, increased diffusion in the spatial operator L leads to insufficiently accurate
computed input data at time Tmax = 0.04, preventing full recovery at t = 0.
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  COMPOUND BLURRING PROCESS USING LINEAR VISCOUS  WAVE
        EQUATION FOLLOWED BY LINEAR DIFFUSION EQUATION.
    

ORIGINAL DISPLACEMENT        AFTER VISCOELASTIC BLUR       FURTHER DIFFUSION BLUR

 ORIGINAL VELOCITY               AFTER VISCOELASTIC BLUR        FURTHER DIFFUSION BLUR

Fig. 7.6. Compound blurring process involving two distinct physical mechanisms. With initial displacement and velocity shown in the leftmost column, and
with κ = 3.8 × 10−4, α = 0.25, γ = 1.0, σ = ρ = 0, Eq. (7.2) was solved numerically forward in time up to time t1 = 0.01. This produced the blurred images
in the middle column. Next, using each blurred image in the middle column in turn as initial data f(x, y) in Eq. (7.3), with a1 = 1.7 × 10−3, a2 = a3 = 1.0,

linear diffusion was applied on the interval t1 ≤ t ≤ Tmax = 0.015, producing the images in the rightmost column.
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Compound blurred original        After viscoelastic deblur

                 

        TIME REVERSAL USING WRONG EQUATION

Compound blurred velocity After viscoelastic deblur

  SUCCESSFUL VISCOELASTIC DEBLURRING OF COMPOUND
  BLUR INVOLVING BOTH VISCOELASTICITY AND DIFFUSION

Fig. 7.7. Successful recovery in compound blurring process in Figure 7.6, using the inapplicable
time-reversed viscous wave equation discussed in Section 7.4
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equation in Eq. (2.2), is augmented by a fixed fourth order term involving L2wt. This
modified problem is well-posed backward in time, and implicit time-differencing is
applied to solve a one dimensional example. Such implicit time differencing becomes
computationally intensive in higher dimensions. As formulated, the QR method ap-
pears restricted to linear problems, and there is no option for exploring other possible
stabilizing terms within the same computational code. With its emphasis on solv-
ing multidimensional nonlinear problems using explicit schemes, the present method
provides a useful alternative for an important class of problems. Significantly, with
q = 2.975 in the successful experiments in Section 7, stabilizing operators of order
close to six were found useful in time-reversed viscous wave equations.

9. Concluding Remarks. Following [7], this paper has explored the use of
explicit schemes in the numerical computation of ill-posed time-reversed viscous wave
propagation. In the linear problem with autonomous selfadjoint spatial differential
operator L, error bounds obtained in Eqs. (4.12, 5.12), include a stabilization penalty
term that augments an otherwise best-possible error estimate. The explicit scheme is
useful for a significant class of linear and nonlinear problems for which the stabilization
penalty is small, such as in Eq. (4.13). That penalty is the price that must be paid
for numerically solving intractable multidimensional problems in the simplest way.

Using fictitiously blurred 512×512 pixel images as test problems, several compu-
tational experiments were carried out in Section 7, to illustrate the theoretical results
obtained in the previous Sections. The success achieved in rectangular regions, using
FFT-based Laplacian stabilization, invites consideration of problems in more general
domains. At the same time, as noted in Figures 7.3 and 7.5, use of a stable explicit
scheme does not guarantee successful reconstruction at t = 0, if the input data at pos-
itive time T is insufficiently accurate. Nonlinear problems may require higher levels of
input accuracy than do linear problems, owing to ill-behavior in the Hölder exponents
that characterize the corresponding uncertainty inequalities [9].

It is noteworthy that the assumed inequality in Eq. (5.2), appeared validated in
the successful computations in Section 7.
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