
Network Diversity: A Security Metric for
Evaluating the Resilience of Networks against

Zero-Day Attacks
Mengyuan Zhang, Lingyu Wang, Member, IEEE, Sushil Jajodia, Fellow, IEEE, Anoop Singhal, Senior

Member, IEEE, and Massimiliano Albanese, Member, IEEE,

Abstract—Diversity has long been regarded as a security
mechanism for improving the resilience of software and networks
against various attacks. More recently, diversity has found new
applications in cloud computing security, Moving Target De-
fense (MTD), and improving the robustness of network routing.
However, most existing efforts rely on intuitive and imprecise
notions of diversity, and the few existing models of diversity are
mostly designed for a single system running diverse software
replicas or variants. At a higher abstraction level, as a global
property of the entire network, diversity and its effect on security
have received limited attention. In this paper, we take the first
step towards formally modeling network diversity as a security
metric by designing and evaluating a series of diversity metrics.
Specifically, we first devise a biodiversity-inspired metric based
on the effective number of distinct resources. We then propose
two complementary diversity metrics, based on the least and the
average attacking efforts, respectively. We provide guidelines for
instantiating the proposed metrics and present a case study on
estimating software diversity. Finally, we evaluate the proposed
metrics through simulation.

Index Terms—Diversity, Security Metrics, Network Security,
Cloud Security, Zero Day Attacks

I. INTRODUCTION

Protecting mission critical computer networks, such as those
used in critical infrastructures and military organizations,
demands more than just patching known vulnerabilities and
deploying firewalls or IDSs. Improving the resilience of such
networks against potential zero day attacks exploiting un-
known vulnerabilities is equally important, which is evidenced
by the fact that modern malware may exploit multiple un-
known vulnerabilities at the same time [10]. However, dealing
with unknown vulnerabilities is clearly a challenging task.

To this end, diversity has long been regarded as a secu-
rity mechanism for improving the resilience of a software
system against unknown vulnerabilities [24] (a more detailed
review of related work will be given in Section VII). Security
attacks exploiting unknown vulnerabilities may be detected
and tolerated as Byzantine faults by comparing either the
outputs [8] or behaviors [13] of multiple software replicas

M. Zhang and L. Wang are with the Concordia Institute for Information
Systems Engineering (CIISE), Concordia University, Montreal, QC H3G 1M8,
Canada. E-mail: {mengy zh,wang}@ciise.concordia.ca.

S. Jajodia and M. Albanese are with the Center for Secure Information
Systems, George Mason University, Fairfax, VA 22030, USA.

A. Singhal is with the Computer Security Division, National Institute of
Standards and Technology, Gaithersburg, MD 20899, USA.

or variants [7]. Although the earlier diversity-by-design ap-
proaches usually suffer from prohibitive development and
deployment cost, recent work show more promising results on
employing either opportunistic diversity [14] or automatically
generated diversity [4], [20], [5]. More recently, diversity has
found new applications in cloud computing security [33], [44],
Moving Target Defense (MTD) [18], and network routing [6].
Most of those existing efforts rely on either intuitive notions
of diversity or models mostly designed for a single system
running diverse software replicas or variants.

However, at a higher abstraction level, as a global property
of an entire network, the concept of network diversity and its
effect on security has received limited attention. In this paper,
we take the first step towards formally modeling network
diversity as a security metric, for the purpose of evaluating
the resilience of networks with respect to zero day attacks.
More specifically,

• First, we propose a network diversity metric by adapting
well known mathematical models of biodiversity in ecol-
ogy. The metric basically counts the number of distinct
resources inside a network, while considering the uneven
distribution of resources and varying degree of similarity
between resources. This first metric is suitable for cases
where all the resources are regarded as equally important,
and it can also serve as a building block of other metrics.
The main limitation is that it ignores potential causal
relationships between resources in a network.

• Second, we design a network diversity metric based
on the least attacking effort required for compromising
certain important resources, while taking into account
the causal relationships between resources. This metric
is suitable for cases where administrators are mostly
concerned about some critical assets (e.g., storage or
database servers). However, by focusing on the least
attacking effort, the metric only provides a partial picture
about how diversity may affect security.

• Third, we devise a probabilistic network diversity met-
ric to reflect the average attacking effort required for
compromising critical assets. This metric serves as a
complementary measure to the above second metric in
depicting the effect of diversity on security.

• Fourth, we provide guidelines for instantiating the pro-
posed metric models for given networks. In particular, we
demonstrate how software similarity may be estimated

through a case study on different versions of Chrome.
• Finally, we evaluate and compare the three metrics

through simulation results under different use cases.
The main contribution of this paper is threefold. First, to the

best of our knowledge, this is the first effort on systematically
modeling network diversity as a security metric. As we will
demonstrate shortly, an intuitive notion of diversity can usually
cause misleading results, whereas our formal model of network
diversity will enable a better understanding of the effect of
diversity on security. Second, the application of biodiversity
concepts to computer networks draws an interesting analogy
between the two domains, and we believe there exist other
opportunities for adapting existing concepts and methodolo-
gies in ecology to security. Third, by quantifying the effect
of diversity on network security, the proposed metrics lay a
foundation for developing better, quantitative approaches to
improving network security through diversity.

The preliminary version of this paper has previously ap-
peared in [42]. This paper has substantially improved and
extended the previous version. The most significant extensions
include a new probabilistic model for addressing various lim-
itations of the previous model appearing in [42] (Section IV),
discussions on how to instantiate the metrics and in particular
on collecting inputs about software diversity (Section V), and
finally a series of simulations for analyzing the proposed
metrics under different use cases (Section VI).

The rest of this paper is organized as follows. Section II
presents use cases and the biodiversity-inspired metric. Sec-
tion III and Section IV propose the least and average attacking
effort-based metrics, respectively. Section V discusses how to
instantiate the metric models and presents a case study on esti-
mating software similarity. Section VI gives simulation results.
Section VII reviews related work, and finally Section VIII
discusses limitations and concludes the paper.

II. PRELIMINARIES

This section presents several use cases and defines a
biodiversity-inspired network diversity metric.

A. Use Cases

We describe several use cases in order to motivate our
study and illustrate various requirements and challenges in
modeling network diversity. Some of those use cases will also
be revisited in later sections.

a) Use Case 1: Stuxnet and SCADA Security: Stuxnet is
one of the first malware that employ multiple (four) different
zero day attacks [10]. This clearly indicates, in a mission crit-
ical system, such as supervisory control and data acquisition
(SCADA) in this case, the risk of zero day attacks and multiple
unknown vulnerabilities is very real, and consequently network
administrators will need a systematic way for evaluating such a
risk. However, this is clearly a challenging task due to the lack
of prior knowledge about vulnerabilities or attacking methods.

A closer look at Stuxnet’s attack strategies will reveal
how network diversity may help here. Stuxnet targets the
programmable logic controllers (PLCs) on control systems
of gas pipelines or power plants [10], which are mostly

programmed using Windows machines not connected to the
network. Therefore, Stuxnet adopts a multi-stage approach, by
first infecting Windows machines owned by third parties (e.g.,
contractors), next spreading to internal Windows machines
through the LAN, and finally covering the last hop through
removable flash drives [10]. Clearly, the degree of software
diversity along potential attack paths leading from the network
perimeter to the PLCs can be regarded as a critical metric
of the network’s resilience against a threat like Stuxnet. Our
objective in this paper is to provide a rigorous study of such
network diversity metrics.

b) Use Case 2: Worm Propagation: To make our dis-
cussion more concrete, we will refer to the running example
shown in Figure 1 from now on. In this use case, our main
concern is the potential propagation of worms or bots inside
the network. A common belief here is that we can simply count
the number (percentage) of distinct resources in the network
as diversity. Although such a definition is natural and intuitive,
it clearly has limitations.

host0

host1

host2

firewall1 firewall2

host3

host4

Fig. 1. The Running Example

For example, suppose host 1, 2, and 3 are Web servers
running IIS, all of which access files stored on host 4. Clearly,
the above count-based metric will indicate a lack of diversity
and suggest replacing IIS with other software to prevent a
worm from infecting all three at once. However, it is easy
to see that, even if a worm can only infect one Web server
after such a diversification effort, it can still propagate to all
four hosts through the network share on host 4. The reason
that this naive approach fails in this case is that it ignores
the existence of causal relationships between resources (due
to the network share). Therefore, after we discuss the count-
based metric in Section II-B, we will address this limitation
with a goal oriented approach in Section III.

c) Use Case 3: Targeted Attack: Suppose now we are
more concerned with a targeted attack on the storage server,
host 4. Following above discussions, an intuitive solution is
to diversify resources along any path leading to the critical
asset (host 4), e.g., between hosts 1 (or 2, 3) and host 4.
Although this is a valid observation, realizing it requires a
rigorous study of the causal relationships between different
resources, because host 4 is only as secure as the weakest
path (representing the least attacking effort) leading to it. We
will propose a formal metric based on such an intuition in
Section III.

On the other hand, the least attacking effort by itself only
provides a partial picture. Suppose now host 1 and 2 are
diversified to run IIS and Apache, respectively, and firewall

2

2 will only allow host 1 and 2 to reach host 4. Although
the least attacking effort has not changed, this diversification
effort has actually provided attackers more opportunities to
reach host 4 (by exploiting either IIS or Apache). That is,
misplaced diversity may in fact hurt security. This will be
captured by a probabilistic metric in Section IV.

d) Use Case 4: MTD: In this case, suppose host 1
and 2 are Web servers, host 3 an application server, and
host 4 a database server. A Moving Target Defense (MTD)
approach attempts to achieve better security by varying in
time the software components at different tiers [18]. A com-
mon misconception here is that the combination of different
components at different tiers will increase diversity, and the
degree of diversity is equal to the product of diversity at those
tiers. However, this is usually not the case. For example, a
single flaw in the application server (host 3) may result in a
SQL injection that compromises the database server (host 4)
and consequently leaks the root user’s password. Also, similar
to the previous case, more diversity over time may actually
provide attackers more opportunities to find flaws. The lesson
here is again that, an intuitive observation may be misleading,
and formally modeling network diversity is necessary.

B. Biodiversity-Inspired Network Diversity Metric

Although the notion of network diversity has attracted
limited attention, its counterpart in ecology, biodiversity, and
its positive impact on the ecosystem’s stability has been
investigated for many decades [9]. While many lessons may
potentially be borrowed from the rich literature of biodiversity,
in this paper we will focus on adapting existing mathematical
models of biodiversity for modeling network diversity.

Specifically, the number of different species in an ecosystem
is known as species richness [32]. Similarly, given a set of
distinct resource types (we will consider similarity between
resources later) R in a network, we call the cardinality | R | the
richness of resources in the network. An obvious limitation of
this richness metric is that it ignores the relative abundance of
each resource type. For example, the two sets {r1, r1, r2, r2}
and {r1, r2, r2, r2} have the same richness of 2 but clearly
different levels of diversity.

To address this limitation, the Shannon-Wiener index, which
is essentially the Shannon entropy using natural logarithm, is
used as a diversity index to group all systems with the same
level of diversity, and the exponential of the diversity index is
regarded as the effective number metric [15]. The effective
number basically allows us to always measure diversity in
terms of the number of equally-common species, even if
in reality those species may not be equally common. For
example, the second set {r1, r2, r2, r2} will yield an effective
number of 1.75, which means this set has the same amount
of diversity as a set with 1.75 equally-common resources.
Therefore, this set is less diversified than the first set (which
yields an effective number of 2). In the following, we borrow
this concept to define the effective resource richness and our
first diversity metric.

Definition 1 (Effective Richness and d1-Diversity): In a
network G with the set of hosts H = {h1, h2, . . . , hn},

set of resource types R = {r1, r2, . . . , rm}, and
the resource mapping res(.) : H → 2R, let
t =

∑n
i=1 | res(hi) | (total number of resource instances),

and let pj =
|{hi:rj∈res(hi)}|

t (1 ≤ i ≤ n, 1 ≤ j ≤ m) (relative
frequency of each resource). We define the network’s diversity
as d1 = r(G)

t , where r(G) is the network’s effective richness
of resources, defined as

r(G) =
1∏n
1 p

pi

i

One limitation of the effective number-based metric is that
similarity between different resource types is not taken into
account and all resource types are assumed to be entirely
different, which is not realistic (e.g., the same application
can be configured to fulfill totally different roles, such as
NGinx as a reverse proxy or a web server, respectively, in
which case these should be regarded as different resources with
high similarity). Therefore, we borrow the similarity-sensitive
biodiversity metric recently introduced in [22] to re-define
resource richness. With this new definition, the above diversity
metric d1 can now handle similarity between resources.

Definition 2 (Similarity-Sensitive Richness): In
Definition 1, suppose a similarity function is given as
z(.) : [1,m] × [1,m] → [0, 1] (a larger value denoting
higher similarity and z(i, i) = 1 for all 1 ≤ i ≤ m), let
zpi =

∑m
j=1 z(i, j)pj . We define the network’s effective

richness of resources, considering the similarity function, as

r(G) =
1∏n

1 zp
pi

i

The effective richness-based network diversity metric d1 is
only suitable for cases where all resources may be treated
equally, and causal relationships between resources either do
not exist or may be safely ignored. On the other hand, this
metric may also be used as a building block inside other
network diversity metrics, in the sense that we may simply
say “the number of distinct resources” without worrying about
uneven distribution of resource types or similarity between
resources, thanks to the effective richness concepts given in
Definition 1 and 2.

III. LEAST ATTACKING EFFORT-BASED NETWORK
DIVERSITY METRIC

This section models network diversity based on the least
attacking effort. Section III-A defines the metric, and Sec-
tion III-B discusses the complexity and algorithm.

A. The Model

In order to model diversity based on the least attacking
effort while considering causal relationships between different
resources, we first need a model of such relationships and
possible zero day attacks. Our model is similar to the attack
graph model [35], [2], although our model focuses on remotely
accessible resources (e.g., services or applications that are
reachable from other hosts in the network), which will be
regarded as placeholders for potential zero day vulnerabilities
instead of known vulnerabilities as in attack graphs.

3

<http,0,1>

<0,1> <user,0> <0,F>

<firewall,0,F>

<ssh,1,4> <http,0,2>

<2,4><user,2>

<user,4> <4,5>

<user,5>

<http,1,2>

<user,1><1,4> <0,2><1,2>

<rsh,4,5> <http,4,5>

<ssh,2,4>

Fig. 2. An Example Resource Graph

To build intuitions, we revisit Figure 1 by making following
assumptions. Accesses from outside firewall 1 are allowed to
host 1 but blocked to host 2; accesses from host 1 or 2 are
allowed to host 3 but blocked to host 4 by firewall 2; hosts 1
and 2 provide http service; host 3 provides ssh service; Host
4 provides both http and rsh services.

Figure 2 depicts a corresponding resource graph, which is
syntactically equivalent to an attack graph, but models zero day
attacks rather than known vulnerabilities. Each pair in plaintext
is a self-explanatory security-related condition (e.g., connec-
tivity ⟨source, destination⟩ or privilege ⟨privilege, host⟩),
and each triple inside a box is a potential exploit of resource
⟨resource, source host, destination host⟩; the edges point
from the pre-conditions to a zero day exploit (e.g., from ⟨0, 1⟩
and ⟨user, 0⟩ to ⟨http, 0, 1⟩), and from that exploit to its post-
conditions (e.g., from ⟨http, 0, 1⟩ to ⟨user, 1⟩). Exploits or
conditions involving firewall 2 are omitted for simplicity.

We simply regard resources of different types as entirely
different (their similarity can be handled using the effective
resource richness given in Definition 2). Also, we take the
conservative approach of considering all resources (services
and firewalls) to be potentially vulnerable to zero day attacks.
Definition 3 formally introduces the concept of resource graph.

Definition 3 (Resource Graph): Given a network with the
set of hosts H , set of resources R with the resource map-
ping res(.) : H → 2R, set of zero day exploits E =
{⟨r, hs, hd⟩ | hs ∈ H,hd ∈ H, r ∈ res(hd)} and their pre-
and post-conditions C, a resource graph is a directed graph
G(E ∪C,Rr ∪Ri) where Rr ⊆ C ×E and Ri ⊆ E ×C are
the pre- and post-condition relations, respectively.

Next consider how attackers may potentially attack a critical
network asset, modeled as a goal condition, with the least
effort. In Figure 2, by following the simple rule that an exploit
may be executed if all the pre-conditions are satisfied, and
executing that exploit will cause all the post-conditions to be
satisfied, we may observe six attack paths, as shown in Table I
(the second and third columns can be ignored for now and
will be explained shortly). Definition 4 formally introduces
the concept of attack path.

Definition 4 (Attack Path): Given a resource graph G(E ∪
C,Rr ∪ Ri), we call CI = {c : c ∈ C, (@e ∈ E)(⟨e, c⟩ ∈
Ri)} the set of initial conditions. Any sequence of zero day

exploits e1, e2, . . . , en is called an attack path in G, if (∀i ∈
[1, n])(⟨c, ei⟩ ∈ Rr → (c ∈ Ci ∨ (∃j ∈ [1, i − 1])(⟨ej , c⟩ ∈
Ri))), and for any c ∈ C, we use seq(c) for the set of attack
paths {e1, e2, . . . , en : ⟨en, c⟩ ∈ Ri}.

We are now ready to consider how diversity could be defined
based on the least attacking effort (the shortest path). There
are actually several possible ways for choosing such shortest
paths and for defining the metric, as we will illustrate through
our running example in the following.

• First, as shown in the second column of Table I, path
1 and 2 are the shortest in terms of the steps (i.e., the
number of zero day exploits). Clearly, those do not reflect
the least attacking effort, since path 4 may actually take
less effort than path 1, as attackers may reuse their exploit
code, tools, and skills while exploiting the same http
service on three different hosts.

• Next, as shown in the third column, path 2 and 4 are
the shortest in terms of the number of distinct resources
(or effective richness). This seems more reasonable since
it captures the saved effort in reusing exploits. However,
although path 2 and 4 have the same number of distinct
resources (2), they clearly reflect different diversity.

• Another seemingly valid solution is to base on the min-
imum ratio # of resources

of steps (which is given by path 4 in
this example), since such a ratio reflects the potential
improvements in terms of diversity (e.g., the ratio 2

4 of
path 4 indicates 50% potential improvement in diversity).
However, we can easily imagine a very long attack path
minimizing such a ratio but does not reflect the least
attacking effort (e.g., an attack path with 9 steps and 3
distinct resources will yield a ratio of 1

3 , less than 2
4 , but

clearly requires more effort than path 4).
• Finally, yet another option is to choose the shortest path

that minimizes both the number of distinct resources (path
2 and 4) and the above ratio # of resources

of steps (path 4).
However, a closer look will reveal that, although path
4 does represent the least attacking effort, it does not
represent the maximum amount of potential improvement
in diversity, because once we start to diversify path 4, the
shortest path may change to be path 1 or 2.

Based on these discussions, we define network diversity
by combining the first two options above. Specifically, the
network diversity is defined as the ratio between the minimum
number of distinct resources on a path and the minimum
number of steps on a path (note these can be different paths).
Going back to our running example above, we find path 2
and 4 to have the minimum number of distinct resources
(two), and also path 1 and 2 to have the minimum number of
steps (three), so the network diversity in this example is equal
to 2

3 (note that it is a simple fact that this ratio will never
exceed 1). Intuitively, the numerator 2 denotes the network’s
current level of robustness against zero day exploits (no more
than 2 different attacks) , whereas the denominator 3 denotes
the network’s maximum potential of robustness (tolerating no
more than 3 different attacks) by increasing the amount of
diversity (from 2

3 to 1). More formally, we introduce our
second network diversity metric in Definition 5 (note that,

4

Attack Path # of Steps # of Resources
1. ⟨http, 0, 1⟩ → ⟨ssh, 1, 4⟩ → ⟨rsh, 4, 5⟩ 3 3
2. ⟨http, 0, 1⟩ → ⟨ssh, 1, 4⟩ → ⟨http, 4, 5⟩ 3 2
3. ⟨http, 0, 1⟩ → ⟨http, 1, 2⟩ → ⟨ssh, 2, 4⟩ → ⟨rsh, 4, 5⟩ 4 3
4. ⟨http, 0, 1⟩ → ⟨http, 1, 2⟩ → ⟨ssh, 2, 4⟩ → ⟨http, 4, 5⟩ 4 2
5. ⟨firewall, 0, F ⟩ → ⟨http, 0, 2⟩ → ⟨ssh, 2, 4⟩ → ⟨rsh, 4, 5⟩ 4 4
6. ⟨firewall, 0, F ⟩ → ⟨http, 0, 2⟩ → ⟨ssh, 2, 4⟩ → ⟨http, 4, 5⟩ 4 3

TABLE I
ATTACK PATHS

for simplicity, we only consider a single goal condition for
representing the given critical asset, which is not a limitation
since multiple goal conditions can be easily handled through
adding a few dummy conditions [1]).

Definition 5 (d2-Diversity): Given a resource graph G(E ∪
C,Rr ∪ Ri) and a goal condition cg ∈ C, for each c ∈ C
and q ∈ seq(c), denote R(q) for {r : r ∈ R, r appears in q},
the network diversity is defined as (where min(.) returns the
minimum value in a set)

d2 =
minq∈seq(cg) | R(q) |
minq′∈seq(cg) | q′ |

B. The Complexity and Algorithm

Since the problem of finding the shortest paths (in terms
of the number of exploits) in an attack graph (which is
syntactically equivalent to a resource graph) is known to be
NP-hard [35], not surprisingly, the problem of determining the
network diversity d2 is also NP-hard, as stated in Theorem 1
(the proof is omitted and can be found in [42]).

Theorem 1: Given a resource graph G(E ∪ C,Rr ∪ Ri),
determining the network diversity d2 is NP-hard.

Although determining d2 in general is computationally
infeasible, it may be estimated within a reasonable time using
heuristics. In particular, we have proposed an algorithm that
employs the heuristic of only maintaining a limited number
of local optima at each step in order to keep the complexity
manageable [42]. The algorithm is shown to run in polynomial
time under the assumption that each exploit has a constant
number of pre- and post-conditions. The simulation results
also confirm that the algorithm provides accurate enough
estimation of d2 in an acceptable amount of time.

IV. PROBABILISTIC NETWORK DIVERSITY

In this section, we develop a probabilistic metric to capture
the effect of diversity based on average attacking effort by
combining all attack paths. The preliminary version of this
paper [42] has proposed a probabilistic metric model for this
purpose. We will first identify important limitations in this
model, and then provide a redesigned model to address them.

A. Overview

This section first reviews the probabilistic model of network
diversity introduced in [42] and then points out its limitations.
This model defines network diversity as the ratio between
two probabilities, namely, the probability that given critical
assets may be compromised, and the same probability but
with an additional assumption that all resource instances are

<http,0,1>
0.08

<0,1> <user,0>

<1,2>

<user,2>

<http,1,2>
0.9

<user,1>
0.08

0.072

0.072

<http,1,2>

<http,0,1> <user,1> <1,2> T F

T T T 0.9 0.1

T T F 0 1

T F T 0 1

F T T 0 1

F T F 0 1

F F F 0 1

<http,0,1>
0.08

<0,1> <user,0>

<1,2>

<user,2>

<http,1,2>
0.08

<user,1>
0.08

<http,1,2>

<user,1> <1,2> T F

T T 0.08 0.92

T F 0 1

F T 0 1

F F 0 1

0.0064

0.0064

Fig. 3. Modeling Network Diversity Using Bayesian Networks

distinct (which means attackers cannot reuse any exploit).
Both probabilities represent the attack likelihood with respect
to goal conditions, which can be modeled using a Bayesian
network constructed based on the resource graph [11].

For example, Figure 3 demonstrates this model based on
our running example (only part of the example is shown for
simplicity). The left-hand side represents the case in which the
effect of reusing an exploit is not considered, that is, the two
http service instances are assumed to be distinct. The right-
hand side considers that effect and models it as the conditional
probability that the lower http service may be exploited given
that the upper one is already exploited (represented using a
dotted line). The two conditional probability tables (CPTs)
illustrate the effect of reusing the http exploit (e.g., probability
0.9 in the right CPT), and not reusing it (e.g., probability 0.08
in the left CPT), respectively. The network diversity in this
case will be calculated as the ratio d3 = 0.0064

0.072 .
In the above model, modeling the effect of reusing exploits

as a conditional probability (that a resource may be exploited
given that some other instances of the same type are already
exploited) essentially assumes a total order over different
instances of the same resource type in any resource graph,
which comprises a major limitation. For example, in Figure 4
(the dashed line and box, and the CPT table may be ignored for
the time being), although the reused http exploit ⟨http, 1, 2⟩
(after exploiting ⟨http, 0, 1⟩) may be handled using the above
model by adding a dotted line pointing to it from its ancestor
⟨http, 0, 1⟩, the same method will not work for the other
potentially reused http exploit ⟨http, 0, 2⟩, since there does
not exist a definite order between ⟨http, 0, 1⟩ and ⟨http, 0, 2⟩,

5

<http,0,1>

<0,1>
<user,0>

<0,F>

<firewall,0,F>

<http,0,2>

<user,2>

<http,1,2>

<user,1> <0,2><1,2>

<http>
0.008

<http,1,2>

<http> <user,1> <1,2> T F

T T T 0.9 0.1

T T F 0 1

T F T 0 1

F T T 0 1

F T F 0 1

F F F 0 1

Fig. 4. The Redesigned Model

which means an attacker may reach ⟨http, 0, 2⟩ before, or
after, reaching ⟨http, 0, 1⟩. Therefore, we cannot easily assume
one of them to be exploited first. Considering that the resource
graph model is defined based on a Bayesian network, which by
definition requires acyclic graphs, we cannot add bi-directional
dotted lines between exploits, either.

Another related limitation is that, once exploits are con-
sidered to be partially ordered, the attack likelihood will not
necessarily be the lowest when all the resources are assumed
to be distinct. For example, in Figure 4, an attacker may
reach condition ⟨user, 2⟩ through two paths, ⟨http, 0, 1⟩ →
⟨http, 1, 2⟩ and ⟨firewall, 0, F ⟩ → ⟨http, 0, 2⟩. Intuitively,
the attack likelihood will actually be higher if the http exploits
in the two paths are assumed to be distinct, since now
an attacker would have more choices in reaching the goal
condition ⟨user, 2⟩. Those limitations will be addressed in
following sections through a redesigned model.

B. Redesigning d3 Metric

To address the aforementioned limitations of the original
d3 metric [42], we redesign the model of reusing exploits of
the same resource type. Intuitively, what allows an attacker to
more likely succeed in exploiting a previously exploited type
of resources is the knowledge, skills, or exploit code he/she has
obtained. Therefore, instead of directly modeling the casual
relationship between reused exploits, we explicitly model such
advantages of the attacker as separate events, and model their
effect of increasing the likelihood of success in subsequent
exploits as conditional probabilities.

More specifically, a new parent node common to exploits
of the same resource type will be added to the resource graph,
as demonstrated in Figure 4 using dashed lines and box. This
common parent node represents the event that an attacker
has the capability to exploit that type of resources. However,
unlike nodes representing initial conditions, which will be
treated as evidence for calculating the posterior probability
of the goal condition, the event that an attacker can exploit a
type of resources will not be considered observable. Adding a
common parent node to exploits of the same resource type will
introduce probabilistic dependence between the children nodes

such that satisfying one child node will increase the likelihood
of others, which models the effect of reusing exploits.

For example, in Figure 4, the dashed line box indicates
a new node ⟨http⟩ representing the event that an attacker
has the capability to exploit http resources. The dashed lines
represent conditional probabilities that an attacker can exploit
each http instance, and the CPT table shows an example
of such conditional probability for ⟨http, 1, 2⟩. The marginal
probability 0.08 assigned to ⟨http⟩ represents the likelihood
that an attacker has the capability of exploiting http resources,
and the conditional probability 0.9 assigned to ⟨http, 1, 2⟩
represents the likelihood for the same attacker to exploit that
particular instance. The existence of such a common parent
will introduce dependence between those http exploits, such
that satisfying one will increase others’ likelihood.

Formally, Definition 6 characterizes network diversity using
this approach. In the definition, the second set of conditional
probabilities represent the probability that an attacker is capa-
ble of exploiting each type of resources. The third and fourth
sets together represent the semantics of a resource graph.
Finally, the fifth set represents the conditional probability that
an exploit may be executed when its pre-conditions are satis-
fied (including the condition that represents the corresponding
resource type).

Definition 6 (d3 Diversity): Given a resource graph G(E ∪
C,Rr ∪Ri), let R′ ⊆ R be the set of resource types each of
which is shared by at least two exploits in E, and let Rs =
{(r, ⟨r, hs, hd⟩) : r ∈ R′, ⟨r, hs, hd⟩ ∈ E} (that is, edges from
resource types to resource instances). Construct a Bayesian
network B = (G′(E ∪ C ∪ R′, Rr ∪ Ri ∪ Rs), θ), where G′

is obtained by injecting R′ and Rs into the resource graph G,
and regarding each node as a discrete random variable with
two states T and F , and θ is the set of parameters of the
Bayesian network given as follows.

1) P (c = T) = 1 for all the initial conditions c ∈ CI .
2) P (r = T) are given for all the shared resource types

r ∈ R′.
3) P (e | ∃c⟨c,e⟩∈Rr

= F) = 0 (that is, an exploit cannot
be executed until all of its pre-conditions are satisfied).

4) P (c | ∃e⟨e,c⟩∈Ri
= T) = 1 (that is, a post-condition can

be satisfied by any exploit alone).
5) P (e | ∀c⟨c,e⟩∈Rr∪Rs

= T) are given for all e ∈ E (that
is, the probability of successfully executing an exploit
when its pre-conditions have all been satisfied).

Given any cg ∈ C, the network diversity d3 is defined
as d3 = p′

p where p = P (cg | ∀cc∈CI = T) (that is, the
conditional probability of cg being satisfied given that all
the initial conditions are true), and p′ denotes the minimum
possible value of p when some edges are deleted from Rs (that
is, the lowest attack likelihood by assuming certain resource
types are no longer shared by exploits).

Figure 5 shows two simple examples in which the first
depicts a conjunction relationship between the two exploits
(in the sense that both upper exploits must be executed before
the lower exploit can be reached), whereas the second a
disjunction relationship (any of the two upper exploits can
alone lead to the lower exploit). In both cases, assuming

6

<v1,0,1>

0.9

<c2,1>

<v1,2,1>

0.9

<c1,1>

<v3,1,1>

<v1,0,1> <v1,2,1> T F

T T 1 0

T F 0 1

F T 0 1

F F 0 1

0.072 0.072

0.072 0.072

0.0648

v1
0.08

0.08

<v3,1,1>

1.0

<c3,1>

0.0648

<v1,0,1>

0.9

<v1,2,1>

0.9

<c1,1>

<v3,1,1>

1.0

<v3,1,1>

<v1,0,1> <v1,2,1> T F

T T 1 0

T F 1 0

F T 1 0

F F 0 1

0.072 0.072

0.0792

v1
0.08

0.08

0.0792

<c3,1> 0.0792

Fig. 5. Two Examples of Applying d3

cg = ⟨c3, 1⟩, the probability p = P (cg | ∀cc∈CI = T)
is shown in the figure. We now consider how to calculate
the normalizing constant p′. For the left-hand side case, the
probability p = P (cg | ∀cc∈CI = T) would be minimized
if we delete both edges from the top node (v1) to its two
children (that is, those two exploits no longer share the same
resource type). It can be calculated that p′ = 0.0064, and
hence the diversity d3 = 0.0064

0.0648 in this case. The right-hand
case is more interesting, since it turns out that p is already
minimized because deleting edges from the top node (v1) will
only result in a higher value of p (since an attacker would have
two different ways for reaching the lower exploit), which can
be calculated as 0.1536. Therefore, diversity in this case is
d3 = 0.0792

0.0792 , that is, improving diversity will not enhance
(in fact it hurts) security in this case. This example also
confirms our earlier observation that assuming all resources
to be distinct does not necessarily lead to the lowest attack
likelihood.

The above example also leads to the observation that the
normalizing constant p′ may not always be straightforward
to calculate since finding the case in which p is minimized
essentially means we need to optimize a network’s diversity
for improving its security, which itself comprises an interesting
future direction. Instead, we propose an approximated version
of normalizing constant p′ based on following observations
from the above example. In Figure 5, we can see that the
right-hand side contains two attack paths leading to the goal
condition ⟨c3, 1⟩ (since each of the upper exploits alone
is sufficient to lead to the lower exploit). We have shown
previously that deleting dashed lines will only increase the
probability p (of reaching the goal condition). However, we
can easily see that, whether we delete the dashed lines or not,
the probability p would always be minimized if there were
only one path (e.g., by deleting ⟨v1, 2, 1⟩ from the figure).
Note that, for the left-hand side, there is already only one
path since both upper exploits are required to reach the lower
exploit, so p is minimized when the two upper exploits are
assumed to be distinct. Intuitively, the network’s security can
never exceed the case in which only the shortest path (in terms
of the number of steps) remains in the resource graph, with
no resource being shared along the path. This intuition leads
to following result.

Proposition 1: The normalizing constant p′ in Definition 6

always satisfies p′ ≥ p′′ where p′′ is the probability P (cg |
∀cc∈CI = T) calculated on the shortest attack path in terms
of steps (see Section III-A).

Proof (Sketch): We prove the result by mathematical induc-
tion on i, the number of steps in the shortest path. The base
case i = 1 is trivial. For the inductive case, suppose the result
holds for any resource graph with shortest path no longer than
k. Given a resource graph G whose shortest path has k + 1
steps, let the set of exploits that are directly adjacent to the
goal condition cg be Ek+1. Clearly, P (cg | ∀cc∈CI = T) ≥
P (e | ∀cc∈CI = T) holds for all e ∈ Ek+1 since cg can be
satisfied by any exploit in Ek+1 (and the probability of the
disjunction of events cannot be smaller than the probability of
any event). Without loss of generality, suppose ek+1 ∈ Ek+1

is the exploit next to cg on the shortest path, and we have
P (cg | ∀cc∈CI = T) ≥ P (ek+1 | ∀cc∈CI = T). Let Ek

be the set of exploits closest to ek+1, E ⊆ Ek be the set of
exploits on the shortest path, and ek ∈ E be the exploit next to
ek+1. There cannot be any conjunctive relationships between
the exploits in E and any other exploit in Ek \E with respect
to ek+1, because otherwise the shortest path would have more
than k+1 steps, contradicting our assumption. Therefore, we
have that P (cg | ∀cc∈CI = T) ≥ P (ek+1 | ∀cc∈CI = T) ≥
P (ek | ∀cc∈CI = T) · P (ek+1 | ∀c⟨c,e⟩∈Rr∪Rs

= T). Then by
our inductive hypothesis, we have that P (ek | ∀cc∈CI = T)
must be no less than the same probability calculated on the
shortest path (of length k), and hence conclude the proof. 2

The above result simplifies the application of d3 since
the shortest path can be easily obtained using the algorithm
mentioned in Section III-B. We apply the approach to our
running example, as shown in Figure 2. Based on Table I,
the first and second attack paths have the lowest number of
steps. The left-hand side of Figure 6 depicts the first path.
The normalizing constant can be calculated based on this
path as p′ = 5.12 ∗ 10−4. The right-hand side depicts the
application of our model for reusing exploits, which adds a
common parent for the same type of resources, represented
using dotted lines and boxes. There are two types of resources
that are reused in this resource graph, http and ssh. By
applying the method described above, we obtain the attack
likelihood p = 0.0052, and therefore the network diversity
can be calculated as d3 = p′

p = 5.12∗10−4

0.0052 .

V. APPLYING THE NETWORK DIVERSITY METRICS

The network diversity metrics we have proposed so far
are based on abstract models of networks and attacks. How
to instantiate such models for a given network is equally
important. This section discusses various practical issues in
applying the metrics, such as collecting input information and
determining software diversity.

A. Instantiating the Network Diversity Models

To apply the proposed network diversity metrics, necessary
input information need to be collected. We describe how such
inputs may be collected from a given network and discusses
the practicality and scalability.

7

<http,0,1>
0.9

<0,1> <user,0> <0,F>

<firewall,0,F>
0.08

<ssh,1,4>
0.9

<http,0,2>
0.9

<2,4>
user(2)

<user,4>

<4,5>

<http,1,2>
0.9

<user,1>

<1,4>

<0,2><1,2>

<ssh,2,4>
0.9

<http>

<ssh>

<http,0,1>
0.08

<0,1> <user,0>

<ssh,1,4>
0.08

<user,1>
<1,4>

0.08

0.0064

<user,4>

<user,5>

<rsh,4,5>
0.08

<http,4,5>
0.9

0.0052

0.08

<user,4>

<user,5>

<rsh,4,5>
0.08

0.000512

0.000512

Fig. 6. Applying d3 on the Running Example

1) The d1 Metric: To instantiate d1, we need to collect
information about

- hosts (e.g., computers, routers, switches, firewalls),
- resources (e.g., remotely accessible services), and
- similarity between resources.
Information about hosts and resources is typically already

available to administrators in the form of a network map.
A network scanning will assist in collecting or verifying
information about active services. A close examination of host
configurations (e.g., the status of services and firewall rules)
may also be necessary since a network scanning may not
reveal services that are currently disabled or hidden by security
mechanisms (e.g., firewalls) but may be re-enabled once the
security mechanisms are compromised.

Collecting and updating such information for a large net-
work certainly demand substantial time and efforts. Automated
network scanning or host-based tools exist to help simplify
such tasks. Moreover, focusing on remotely accessible re-
sources allows our model to stay relatively manageable and
scalable, since most hosts typically only have a few open ports
but tens or even hundreds of local applications. A challenge is
to determine the similarity of different but related resources,
which will be discussed in further details in Section V-B.

2) The d2-Diversity Metric: To instantiate the least attack-
ing effort-based d2 network diversity metric, we need to collect
the following, in addition to what is already required by d1,

- connectivity between hosts,
- security conditions either required for, or implied by, the

resources (e.g., privileges, trust relationships, etc.), and
- critical assets.
The connectivity information is typically already available

as part of the network map. A network scanner may help
to verify such information. A close examination of host
configurations (e.g., firewall rules) and application settings
(e.g., authentication policies) is usually sufficient to identify
the requirements for accessing a resource (pre-conditions),
and an assessment of privilege levels of applications and the
strength of isolation around such applications will reveal the

consequences of compromising a resource (post-conditions).
Critical assets can be identified based on an organization’s
needs and priority.

The amount of additional information required for applying
d2 is comparable to that required for d1, since a resource
typically has a small number of pre- and post-conditions. Once
such information is collected, we can construct a resource
graph using existing tools for constructing traditional attack
graphs due to their syntactic equivalence, and the latter is
known to be practical for realistic applications [31], [19].

3) The d3-Diversity Metric: To instantiate the probabilistic
network diversity metric d3, we need to collect the following,
in addition to what is already required for d2,

- marginal probabilities of shared resource types, and
- conditional probabilities that resources can be compro-

mised when all the pre-conditions are satisfied.
Both groups of probabilities represent the likelihood that at-

tackers have the capability of compromising certain resources.
A different likelihood may be assigned to each resource type, if
this can be estimated based on experiences or reputations (e.g.,
the history of past vulnerabilities found in the same or similar
resource). When such an estimation is not possible or desirable
(note that any assumption about attackers’ capabilities may
weaken security if the assumption turns to be invalid), we
can assign the same nominal value as follows. Since a zero
day vulnerability is commonly interpreted as a vulnerability
not publicly known or announced, it can be characterized
using the CVSS base metrics [28], as a vulnerability with
a remediation level unavailable, a report confidence uncon-
firmed, and a maximum overall base score (and hence produce
a conservative metric value). We therefore obtain a nominal
value of 0.8, converting to a probability of 0.08. For reference
purpose, the lowest existing CVSS score [30] is currently
1.7, so 0.08 is reasonably low for a zero day vulnerability.
Once the probabilities are determined, applying d3 amounts
to constructing Bayesian networks and making probabilistic
inferences based on the networks, which can be achieved using
many existing tools (e.g., we use OpenBayes [12]). Although
it is a well known fact that inference using Bayesian networks
is generally intractable, our simulation results have shown that
the particular inference required for applying the d3 metric can
actually be achieved under reasonable computational cost [42].

B. Determining Software Similarity

A challenge in applying the network diversity metrics is
to determine the similarity of different but related resources,
such as different versions of the same software. Although a
practical approach might be to simply disregard any small
differences among such similar resources and treat them
equally, this section presents a case study to demonstrate that it
is sometimes possible and necessary to take software similarity
into account.

Recall that the similarity-sensitive richness model (Defini-
tion 2) provides an abstract model to factor software similarity
into the network diversity metric, if such similarity can be
quantified as a similarity function z(.). To demonstrate how
such a model may be instantiated for realistic applications,

8

we examine 10 different versions of the Chrome browser,
whose details are given in Table II. The first row of the table
shows the latest version, 42.0.2283.5 (published Thu Jan 22
06:24:31 2015), which will be used as the benchmark for
further comparison. We observe that chrome has two branches
under development at the same time, one starting with 41 and
the other with 42.

Index # Version # Publish Time
0 42.0.2283.5 Thu Jan 22 06:24:31 2015
1 41.0.2272.28 Thu Jan 22 06:15:29 2015
2 42.0.2283.4 Thu Jan 22 05:52:05 2015
3 41.0.2272.27 Thu Jan 22 01:06:09 2015
4 41.0.2272.26 Wed Jan 21 23:15:50 2015
5 42.0.2283.3 Wed Jan 21 22:47:20 2015
6 42.0.2283.2 Wed Jan 21 20:39:39 2015
7 42.0.2283.1 Wed Jan 21 20:07:26 2015
8 42.0.2283.0 Wed Jan 21 20:01:55 2015
9 41.0.2272.25 Wed Jan 21 16:00:53 2015
10 41.0.2272.16 Wed Jan 21 02:44:41 2015

TABLE II
DIFFERENT VERSIONS OF CHROME

It might be expected that, with such small differences in
terms of version numbers, there would not be much differ-
ence in the software, either. Taking the first two versions,
42.0.2283.5 and 41.0.2272.28, as an example, the total num-
ber of source files is quite similar (75136 and 73596 files,
respectively). However, our study shows that totally 9338 files
have been modified between those two versions. Moreover, we
find that there are 767,987 insertions and 190,943 deletions
between those two versions (for reference purpose, the total
number of lines in those two versions are 14,750,264 and
15,330,677, respectively). Those numbers show that there may
exist significant differences between different versions of the
same software, both at file level and at line level. Therefore,
we measure the similarity between different versions at those
two levels, that is, the file-level similarity is defined as the
ratio between the number of unchanged files and that of all
files, and the modification-level similarity as the ratio between
the number of unchanged lines and that of all lines.

In Figure 7, the two lines depict the number of differences
in terms of files and modifications, respectively, for the ten
versions (represented using the same indices in Table II).
Version 42.0.2283.5 is used as a benchmark for comparison.
Clearly, the trends at those two different levels are very similar,
that is, the difference among versions belonging to the same
version branch (e.g., 42) is very small, whereas the difference
from another branch (e.g., 41) can be significant.

Table III shows a more detailed view for four selected
versions. We can see that, the number of changes (F-# for
file level and M-# for modification level) between versions
on the same branch is almost negligible. For versions on
different branches, the number of changes can reach almost
10,000 at file level and 1,000,000 at modification level. The
last two columns of the table show the calculated similarity
scores at two levels (F-Similarity for file-level similarity and
M-Similarity for modification-level similarity).

Next we apply the calculated similarity results to our

1 2 3 4 5 6 7 8 9 10
of Index

0

2000

4000

6000

8000

10000

#
 o
f
F
il
es

Files
0

200000

400000

600000

800000

1000000

#
 o
f
M
o
d
if
ic
at
io
n
s

Modifications

Fig. 7. Trends of File-Level and Modification-Level Differences

Index Version F-# M-# F-Similarity M-Similarity
0 42.0.2283.5 0 0 1 1
1 41.0.2272.28 9338 959044 0.875 0.937
2 42.0.2283.4 3 6 0.9999 0.999999
3 41.0.2272.27 9341 959114 0.875 0.937
4 41.0.2272.26 8795 940662 0.883 0.938

TABLE III
DETAILED RESULTS

richness-based network diversity metric d1. Assume a network
is installed with the four different versions shown in Table III.
Clearly, if we take the simplistic approach of disregarding
any small differences between the four versions, there would
be only one resource type. By Definition 1, the diversity of
a network with four instances of such a resource (without
considering any other resources) would be d1 = 0.25, as
shown in the third column of Table IV. The last column of the
table shows the same d1 results, but with similarity taken into
consideration (that is, the effective richness is now calculated
based on Definition 2). We can see that, as the two rows
show, for four versions from different branches, the d1 result
is about one percent different with or without considering
similarity, whereas the same result is almost identical for the
same branch. Therefore, software similarity may indeed have
a meaningful impact on network diversity, and we leave more
detailed study to future work.

Branch Version d1 d1 with Similarity

Different

1. 42.0.2283.5

0.25 0.2622390959542. 41.0.2272.28
4. 41.0.2272.27
5. 41.0.2272.26

Same

1. 41.0.2272.28

0.25 0.2500187514062. 41.0.2272.27
3. 41.0.2272.26
4. 41.0.2272.25

TABLE IV
THE EFFECT OF SIMILARITY ON d1

VI. SIMULATION

In this section, we study the three proposed metrics by
applying them to different use cases through simulations. All
simulation results are collected using a computer equipped

9

with a 3.0 GHz CPU and 8GB RAM in the Python environ-
ment under Ubuntu 12.04 LTS. The Bayesian network-based
metric is implemented using OpenBayes [12]. To generate a
large number of resource graphs for simulations, we first con-
struct a small number of seed graphs based on real networks,
and then generate larger graphs from those seed graphs by
injecting new hosts and assigning resources in a random but
realistic fashion (e.g., we vary the number of pre-conditions of
each exploit within a small range to reflect the fact that most
real world exploits have a small number of pre-conditions, as
evidenced in public vulnerability databases [30]).

We apply the three network diversity metrics to different
use cases, as presented in section II-A. Our objective is
to evaluate the three metrics through numerical results and
to examine those results together with statistically expected
results represented by different attack scenarios.

The first two simulations compare the results of all three
metrics to examine their different trends as graph sizes increase
and as diversity increases. First of all, to convert the Bayesian
network-based metric d3 to a comparable scale of the other
two, we use log0.08(p

′)
log0.08(p)

(i.e., the ratio based on equivalent
numbers of zero day exploits) instead of d3. In the left-hand
side of Figure 8, the scatter points marked with X in the
red color are the individual values of d2. The blue points
marked with Y are the values of d3 (converted as above).
Also shown are their average values, and the average value of
the effective richness-based metric d1. While all three metrics
follow a similar trend (diversity will decrease in larger graphs
since there will be more duplicated resources), the Bayesian
network-based metric d3 somehow reflects an intermediate
result between the two other extremes (d1 can be considered
as the average over all resources, whereas d2 only depends
on the shortest path). The right-hand side of Figure 8 shows
the average value of the three metrics in increasing number of
distinct resources for resource graphs of a fixed size. All three
metrics capture the same effect of increasing diversity, and
their relationships are similar to that in the previous simulation.

0 100 200 300 400 500 600
of nodes

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

Ind=2

d1
d2
d3

d2 scattered

d3 scattered

0 50 100 150 200 250 300
of services

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
et
ri
cs

Nodes=300

d1
d2

d3

Fig. 8. Comparison of Metrics (Left) and the Effect of Increasing Diversity
(Right)

Next we examine the metric results under different use
cases, as described in Section II-A. The first use case considers
worms, which are characterized as follows. First, each worm
can only exploit a small number of vulnerabilities. In our
implementation, we randomly choose one to three resource
types as the capability of each worm. Second, the goal of a
worm is infecting as many hosts as possible, without specific
targets. Although some worms or bots may indeed have a

target in the reality, it is usually still necessary for them to first
compromise a large number of machines before the target can
be reached (e.g., Stuxnet [10]). In Figure 9, the X-axis is the
ratio of the number of resource types to the number of resource
instances, which roughly represents the level of diversity in
terms of richness (it can be observed that d1 is close to a
straight line). Y -axis shows the results of the three metrics as
well as the ratio of hosts that are not infected by the simulated
worms. The four lines represent the three metrics (marked with
d1, d2, and d3) and the ratio of hosts uninfected by simulated
worms (marked with S1). The left and right figures correspond
to different percentage of first-level exploits (the exploits that
only have initial conditions as their pre-conditions) among
all exploits, which roughly depicts how well the network is
safeguarded (e.g., 50% means a more vulnerable network than
10% since initially attackers can reach half, or five times more,
exploits). For each configuration, we repeat 500 times to obtain
the average result of simulated worms.

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s1

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s1

Fig. 9. Worm Propagation (Left 10% Initially Satisfied Exploits, Right 50%
Initially Satisfied Exploits)

In this simulation, we can make following observations.
First of all, all three metrics still exhibit similar trends and
relationships as discussed above. The left figure shows that,
when the network is better safeguarded (with only 10% of
exploits initially reachable), the effect of increasing diversity
on simulated worms shows a closer relationship with the
d2 metric than the other two, both of which indicate that
increasing diversity can significantly increase the percentage
of hosts uninfected by worms. Intuitively, in such well guarded
networks, many hosts cannot be reached until the worms
have infected other adjacent hosts, so increasing diversity can
more effectively mitigate worm propagation. In comparison,
the right figure shows a less promising result where both
three metrics and the percentage of uninfected hosts all tend
to follow a similar trend. Intuitively, in such less guarded
networks where half of the exploits may be reached initially,
the effect of diversity on worms is almost proportional to the
richness of resources (d1), and all three metrics tend to yield
similar results.

The second use case is about targeted attack (Section
II-A). We simulate attackers with different capabilities (sets
of resources they can compromise) and the level of such
capabilities (that is, the number of resources they can com-
promise) follows the Gamma distribution [27]. Similarly, we
also repeat each experiment 500 times and we examine two
different cases corresponding to different percentages of first-
level exploits. In Figure 10, S2 is the result of simulated

10

attacker, which means the percentages of attackers who cannot
reach the randomly selected goal condition. From the results
we can observe similar results as with the simulated worms.
Specifically, increasing diversity can more effectively mitigate
the damage caused by simulated attackers for well guarded
networks (the left figure) than for less guarded networks (the
right figure). Also, in the left figure, the simulated attackers’
results are closer to that of d2 than the other two metrics,
whereas it is closer to both d2 and d3 in the right figure.
In addition, by comparing the results in Figure 10 (targeted
attack) to that in Figure 9 (worm), we can see that the same
level of diversity can more effectively mitigate worm than it
can do to simulated attackers. This can be explained by the
fact that a worm is assumed to have much less capability (set
of resources it can compromise) than a simulated attacker.

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s2

0.0 0.2 0.4 0.6 0.8 1.0
of types/# of instances

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

d2

d3

s2

Fig. 10. Targeted Attack (Left 10% Initially Satisfied Vulnerabilities, Right
50% Initially Satisfied Vulnerabilities)

We now study the third use case, the Moving Target Defense
(MTD). The MTD approach attempts to achieve better security
by varying in time the configurations of networks, in which
diversity plays a critical role. Our goal here is to study the
effect of varying diversity on the effectiveness of MTD, and
also on evaluating our metric when applied to MTD. To the
best of our knowledge, this is among the first efforts on
studying MTD using simulations (another similar effort by
Zhuang et al. [45] also employs simulation results, but our
goal is to evaluate the proposed network diversity metric under
MTD applications, which is different from their study). Our
simulations are based on following assumptions.

• We assume attackers do not initially have full details
about the network but may gradually learn about such
details as the configuration is changed over time. Specif-
ically, attackers can learn about the change of a configu-
ration (e.g., either through the failure of their attacks, or
by observing special features of a configuration).

• We assume attackers’ capabilities, which are sets of re-
sources they can compromise, follow gamma distribution.
Moreover, having the capabilities does not mean the
attacker can immediately compromise the resource, since
he/she may still need certain amount of time to actually
implement the attack on specific instances of the resource.
Therefore, in our simulations, we assign each resource
an attack window, and only a resource whose duration
of appearing inside a configuration is longer than the
corresponding attack window may be compromised by
attackers who have the capability.

• We assume the MTD approach employs dynamically

changing network configurations. Specifically, the net-
work topology remains the same but resources of each
host may change. Also, we assume a fixed frequency
of changes in our simulations (e.g., in Figure 11, the
left figure shows the frequency of configuration change
is 1 configuration/per day). We leave other ways for
changing network configurations, such as using a varying
frequency, as future work.

In Figure 11, the left figure shows the average success rates
of attackers after 40 days of exposure to the network in the
number of days before a configuration changes (e.g., 5 day
means there is one configuration change per five days). We
can see that a more frequent change of network configurations
does not necessarily equal to better security (lower success
ratio), since too fast or too slow changes can both increase
the exposure of a resource and hence increase an attacker’s
chance in compromising that resource. In fact, the left figure
indicates no clear trend in the success rate as the number
of days for a change increases. The small drops in both
lines indicate that the lowest success rates coincident with the
average size of attack windows (in this case we assume 10
or 15 days are required to compromise a resource), which
may not be meaningful in reality since different resources
may have different attack windows. The right figure shows
the attack success rates (the left Y -axis represents the success
rate of worms and the right for targeted attacks) in the number
of days since the network is exposed, with the frequency of
changes set at one configuration change per day. We can see
that, before 15 days, there is zero success rate for both worm
propagation and targeted attack, due to the assumed 10 to 15
days of attack windows. After 15 days, there is a jump in both
lines, which means, with accumulated efforts, both worms and
attackers will be able to compromise more and more resources,
and the success rates do not change much after about 20 days
since now they will depend more on the capability of worms
(attackers).

0 5 10 15 20 25 30 35 40
#of Days

0.0

0.1

0.2

0.3

0.4

0.5

Su
cc
es
s
Ra

te
s

Worm Probagation
Targeted Attack

0 5 10 15 20 25 30 35 40
#of Days

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

Worm

0.00

0.02

0.04

0.06

0.08

0.10

Targeted Attack

Fig. 11. Success Rate of Attacks in Frequency of Changes (Left) and in
Time (Right)

In Figure 12, we only apply the d1 metric to MTD since all
three metrics will show similar trendsx1 as discussed above.
In the left figure, we can see that if the set of resources types
remains at a relatively small size (e.g., #ofResources

#ofDays < 20%),
then our d1 metric stays almost flat when the frequency of
configuration changes is relatively high, and it then drops
more dramatically when the frequency is lower (around one
change per 20 days). This indicates that, with limited num-
ber of resource types, a higher frequency of configuration

11

changes does not provide much security gain, unless if the
frequency is too low. The left figure also indicates that, when
the number of days per change increases over 20, diversity
drops while success rate increases, which means our diversity
metric effectively capture the effectiveness of MTD. The right
figure shows similar results under larger set of resources
(#ofResources

#ofDays > 80%). The successful rate and d1 shows
corresponding (reversed) trends. However, now with a large
enough set of resources to choose from, less frequent changes
in configurations mean lower diversity and hence less security.

0 5 10 15 20 25 30 35 40
of days per configuration change

0.00

0.02

0.04

0.06

0.08

0.10

M
et
ri
cs

d1

0.0

0.1

0.2

0.3

0.4

0.5

S
u
cc
es
s
R
at
e

s1

0 5 10 15 20 25 30 35 40
of days per configuration change

0.0

0.2

0.4

0.6

0.8

1.0

M
et
ri
cs

d1

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
es
s
R
at
e

s1

Fig. 12. d1 in Frequency of Changes, under Less Resource Types (Left) and
More Resource Types (Right)

In this last simulation, we study the relationship between
cost and security in MTD, as shown in Figure 13. For worm
propagation, we assign monetary values to all hosts, with
critical assets (goal conditions) having higher values, whereas
for targeted attack, we only assign a value to critical assets.
The red and green dashed lines on top of the figure shows
the total value for each scenario. Each time when worms
or attackers compromise a resource, its assigned value is
considered lost. Such lost value is the first part of overall
cost. The other part is the cost of changing configurations
in MTD (e.g., administrative cost of purchasing new software
or performance cost of delaying a client’s request). Figure 13
depicts the total cost (lost value due to compromised resources
plus cost of configuration changes) in the number of days for a
change of configuration. The results show that the overall cost
will first decrease and then increase. The optimal setting of
frequency is about one configuration change per 5 days, which
best balances the cost of changing new configuration with lost
values of compromised resources. Note that, according to our
discussions above, the optimal frequency will also depend on
the number of available resources.

0 5 10 15 20 25 30 35 40
of days per configuration change

0

1000

2000

3000

4000

5000

6000

7000

8000

V
al
u
e(
$)

Remaining Value

Remaining Value

Total Value

Total Value

Fig. 13. Total Cost in Frequency of Changes

VII. RELATED WORK

The research on security metrics has attracted much atten-
tion lately. Unlike existing work which aim to measure the
amount of network security [17], [41], this paper focuses on
diversity as one particular property of networks which may af-
fect security. Nonetheless, our work borrows from the popular
software security metric, attack surface [25], the general idea
of focusing on interfaces (remotely accessible resources) rather
than internal details (e.g., local applications). Our least attack-
ing effort-based diversity metric is derived from the k-zero day
safety metric [39], [38], and our probabilistic diversity metric
is based on the attack likelihood metric [11], [40]. Another
notable work evaluates security metrics against real attacks in a
controlled environment [16], which provides a future direction
to better evaluate our work. One limitation of our work lies in
the high complexity of analyzing a resource graph; high level
models of resource dependencies [21] may provide coarser but
more efficient solutions to modeling diversity.

The idea of using design diversity for fault tolerance has
been investigated for a long time. The N-version programming
approach generates N ≥ 2 functionally equivalent programs
and compares their results to determine a faulty version [3],
with metrics defined for measuring the diversity of software
and faults [29]. The main limitation of design diversity lies in
the high complexity of creating different versions, which may
not justify the benefit [23]. The use of design diversity as a
security mechanism has also attracted much attention [26]. The
general principles of design diversity is shown to be applicable
to security as well in [24]. The N-Variant system extends
the idea of N-version programming to detect intrusions [8],
and the concept of behavioral distance takes it beyond output
voting [13]. Different randomization techniques have been
used to automatically generate diversity [4], [20], [36], [5].

In addition to design diversity and generated diversity,
recent work employ opportunistic diversity which already
exists among different software systems. The practicality of
employing OS diversity for intrusion tolerance is evaluated and
the feasibility of using opportunistic diversity already existing
between different OSes to tolerate intrusions is demonstrated
in [14]. Diversity has also been applied to intrusion tolerant
systems which usually implement some kinds of Byzan-
tine Fault Tolerant (BFT) replication as fault tolerance solu-
tions [7]. A generic architecture for implementing intrusion-
tolerant Web servers based on redundancy and diversifica-
tion principles is introduced in [34]. Components-off-the-shelf
(COTS) diversity is employed to provide an implicit reference
model, instead of the explicit model usually required, for
anomaly detection in Web servers [37]. Diversity could play
an important role in addressing various security issues in cloud
computing [33], such as using diverse authorities for efficient
decryption and revocation in cloud storage [44] and using
diverse access policies for increasing the security of cloud
data [43].

VIII. CONCLUSION

In this paper, we have taken a first step towards formally
modeling network diversity as a security metric for evaluating

12

networks’ robustness against zero day attacks. We first devised
an effective richness-based metric based on the counterpart
in ecology. We then proposed a metric based on the least
attacking effort required for compromising critical assets to
address causal relationships between resources, and a second
metric based on probabilistic models of repeated resources to
reflect the average attacking effort. We provided guidelines
for instantiating the proposed metrics and discussed how
software diversity may be estimated. Finally, we evaluated
our algorithms and metrics through simulations. Our study has
shown that an intuitive notion of diversity could easily cause
misleading results, and the proposed formal models provided
better understanding of the effect of diversity on network
security.

The main limitations of this work and corresponding future
directions are as follows.

• First, although we have applied several existing biodiver-
sity metrics, we believe more lessons could potentially
be borrowed from biodiversity and related areas for im-
proving network security, which comprises an interesting
future direction.

• Second, obtaining various inputs for instantiating the pro-
posed metrics can be challenging in practice. In addition
to the guidelines and case study presented in Section V,
our future work will develop practical tools for gathering
the inputs, e.g., estimated measures of software diversity.

• Third, we have focused on modeling diversity in this
paper, while diversity may also depend on other related
factors, such as the cost (in terms of deployment and
maintenance). Our future work will extend existing effort
on modeling the effect of those factors on diversity.

DISCLAIMER This paper is not subject to copyright in
the United States. Commercial products are identified in order
to adequately specify certain procedures. In no case does such
identification imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it
imply that the identified products are necessarily the best
available for the purpose.

REFERENCES

[1] M. Albanese, S. Jajodia, and S. Noel. A time-efficient approach to
cost-effective network hardening using attack graphs. In Proceedings of
DSN’12, pages 1–12, 2012.

[2] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based
network vulnerability analysis. In Proceedings of ACM CCS’02, 2002.

[3] A. Avizienis and L. Chen. On the implementation of n-version
programming for software fault tolerance during execution. In Proc.
IEEE COMPSAC, volume 77, pages 149–155, 1977.

[4] S. Bhatkar, D.C. DuVarney, and R. Sekar. Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.
In Proceedings of the 12th USENIX security symposium, volume 120.
Washington, DC., 2003.

[5] S. Bhatkar and R. Sekar. Data space randomization. In Proceedings of
the 5th International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, DIMVA ’08, pages 1–22, Berlin,
Heidelberg, 2008. Springer-Verlag.

[6] J. Caballero, T. Kampouris, D. Song, and J. Wang. Would diversity really
increase the robustness of the routing infrastructure against software
defects? In Proceedings of the Network and Distributed System Security
Symposium, 2008.

[7] B.G. Chun, P. Maniatis, and S. Shenker. Diverse replication for
single-machine byzantine-fault tolerance. In USENIX Annual Technical
Conference, pages 287–292, 2008.

[8] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems: A secretless
framework for security through diversity. Defense Technical Information
Center, 2006.

[9] C. Elton. The ecology of invasion by animals and plants. University Of
Chicago Press, Chicago, 1958.

[10] N. Falliere, L. O. Murchu, and E. Chien. W32.stuxnet dossier. Symantec
Security Response, 2011.

[11] M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring network
security using dynamic bayesian network. In Proceedings of 4th ACM
QoP, 2008.

[12] K. Gaitanis and E. Cohen. Open bayes 0.1.0.
https://pypi.python.org/pypi/OpenBayes, 2013.

[13] D. Gao, M. Reiter, and D. Song. Behavioral distance measurement using
hidden markov models. In Recent Advances in Intrusion Detection,
pages 19–40. Springer, 2006.

[14] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. OS
diversity for intrusion tolerance: Myth or reality? In 2011 IEEE/IFIP
41st International Conference on Dependable Systems & Networks
(DSN), pages 383–394, 2011.

[15] M.O. Hill. Diversity and evenness: a unifying notation and its conse-
quences. Ecology, 54(2):427–432, 1973.

[16] H. Holm, M. Ekstedt, and D. Andersson. Empirical analysis of
system-level vulnerability metrics through actual attacks. IEEE Trans.
Dependable Secur. Comput., 9(6):825–837, November 2012.

[17] N. Idika and B. Bhargava. Extending attack graph-based security metrics
and aggregating their application. IEEE Transactions on Dependable
and Secure Computing, 9:75–85, 2012.

[18] S. Jajodia, A.K. Ghosh, V. Swarup, C. Wang, and X.S. Wang. Moving
Target Defense: Creating Asymmetric Uncertainty for Cyber Threats.
Springer, 1st edition, 2011.

[19] S. Jajodia, S. Noel, and B. O’Berry. Topological analysis of network
attack vulnerability. In V. Kumar, J. Srivastava, and A. Lazarevic, editors,
Managing Cyber Threats: Issues, Approaches and Challenges. Kluwer
Academic Publisher, 2003.

[20] G.S. Kc, A.D. Keromytis, and V. Prevelakis. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th
ACM conference on Computer and communications security, pages 272–
280. ACM, 2003.

[21] N. Kheir, N. Cuppens-Boulahia, F. Cuppens, and H. Debar. A service
dependency model for cost-sensitive intrusion response. In ESORICS,
pages 626–642, 2010.

[22] T. Leinster and C.A Cobbold. Measuring diversity: the importance of
species similarity. Ecology, 93(3):477–489, 2012.

[23] B. Littlewood, P. Popov, and L. Strigini. Modeling software design
diversity: A review. ACM Comput. Surv., 33(2):177–208, June 2001.

[24] B. Littlewood and L. Strigini. Redundancy and diversity in security.
Computer Security–ESORICS 2004, pages 423–438, 2004.

[25] P.K. Manadhata and J.M. Wing. An attack surface metric. IEEE Trans.
Softw. Eng., 37(3):371–386, May 2011.

[26] R.A. Maxion. Use of diversity as a defense mechanism. In Proceedings
of the 2005 Workshop on New Security Paradigms, NSPW ’05, pages
21–22, New York, NY, USA, 2005. ACM.

[27] Miles A McQueen, Wayne F Boyer, Mark A Flynn, and George A
Beitel. Time-to-compromise model for cyber risk reduction estimation.
In Quality of Protection, pages 49–64. Springer, 2006.

[28] P. Mell, K. Scarfone, and S. Romanosky. Common vulnerability scoring
system. IEEE Security & Privacy, 4(6):85–89, 2006.

[29] S. Mitra, N.R. Saxena, and E.J. McCluskey. A design diversity metric
and analysis of redundant systems. IEEE Trans. Comput., 51(5):498–
510, May 2002.

[30] National vulnerability database. available at: http://www.nvd.org, May
9, 2008.

[31] X. Ou, W.F. Boyer, and M.A. McQueen. A scalable approach to attack
graph generation. In Proceedings of the 13th ACM conference on
Computer and communications security, CCS’06, pages 336–345, New
York, NY, USA, 2006. ACM.

[32] E.C. Pielou. Ecological diversity. Wiley New York, 1975.
[33] Kui Ren, Cong Wang, Qian Wang, et al. Security challenges for the

public cloud. IEEE Internet Computing, 16(1):69–73, 2012.
[34] A. Saı̈dane, V. Nicomette, and Y. Deswarte. The design of a generic

intrusion-tolerant architecture for web servers. IEEE Trans. Dependable
Sec. Comput., 6(1):45–58, 2009.

[35] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J.M. Wing. Automated
generation and analysis of attack graphs. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, 2002.

13

[36] The PaX Team. PaX address space layout randomization. http://pax.
grsecurity.net/.

[37] E. Totel, F. Majorczyk, and L. Mé. Cots diversity based intrusion
detection and application to web servers. In RAID, pages 43–62, 2005.

[38] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day
safety: A network security metric for measuring the risk of unknown
vulnerabilities. IEEE Transactions on Dependable and Secure Comput-
ing, 11(1):30–44, 2013.

[39] L. Wang, S. Jajodia, A. Singhal, and S. Noel. k-zero day safety:
Measuring the security risk of networks against unknown attacks. In
Proceedings of the 15th European Symposium on Research in Computer
Security (ESORICS), pages 573–587, 2010.

[40] L. Wang, A. Singhal, and S. Jajodia. Measuring the overall security
of network configurations using attack graphs. In Proceedings of 21th
IFIP DBSec, 2007.

[41] L. Wang, A. Singhal, and S. Jajodia. Toward measuring network security
using attack graphs. In Proceedings of 3rd ACM QoP, 2007.

[42] L. Wang, M. Zhang, S. Jajodia, A. Singhal, and M. Albanese. Modeling
network diversity for evaluating the robustness of networks against zero-
day attacks. In Proceedings of ESORICS’14, pages 494–511, 2014.

[43] Kan Yang, Xiaohua Jia, Kui Ren, Ruitao Xie, and Liusheng Huang.
Enabling efficient access control with dynamic policy updating for big
data in the cloud. In INFOCOM, 2014 Proceedings IEEE, pages 2013–
2021. IEEE, 2014.

[44] Kan Yang, Xiaohua Jia, Kui Ren, Bo Zhang, and Ruitao Xie. Dac-macs:
Effective data access control for multiauthority cloud storage systems.
Information Forensics and Security, IEEE Transactions on, 8(11):1790–
1801, 2013.

[45] Rui Zhuang, Su Zhang, Scott A DeLoach, Xinming Ou, and Anoop
Singhal. Simulation-based approaches to studying effectiveness of
moving-target network defense. In National Symposium on Moving
Target Research, 2012.

14

