
New Second-Preimage Attacks on Hash Functions?

Elena Andreeva1,2, Charles Bouillaguet3, Orr Dunkelman4,
Pierre-Alain Fouque5,6, Jonathan Hoch7, John Kelsey8, and

Adi Shamir7

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium
elena.andreeva@esat.kuleuven.be

2 iMinds, Belgium
3 Laboratoire d'Informatique Fondamentale de Lille, Univeristé Lille 1, France

charles.bouillaguet@lifl.fr
4 Computer Science Department, University of Haifa, Israel

orrd@cs.haifa.ac.il
5 Département d'Informatique, École Normale Supérieure, CNRS, INRIA, France

6 Université Rennes 1, France
Pierre-Alain.Fouque@ens.fr

7 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Israel
{Yaakov.Hoch,Adi.Shamir}@weizmann.ac.il

8 National Institute of Standards and Technology
john.kelsey@nist.gov

Abstract. In this work we present several new generic second-preimage attacks on hash functions. Our �rst
attack is based on the herding attack, and applies to various Merkle-Damgård-based iterative hash functions.
Compared to the previously known long-message second-preimage attacks, our attack o�ers more �exibility
in choosing the second-preimage message at the cost of a small computational overhead. More concretely,
our attack allows the adversary to replace only a few blocks in the original target message to obtain the
second-preimage. As a result, our new attack is applicable to constructions previously believed to be immune
to such second-preimage attacks. Among others, these include the dithered hash proposal of Rivest, Shoup's
UOWHF, and the ROX constructions. In addition, we also suggest several time-memory-data tradeo� attack
variants, allowing for a faster online phase, and even �nding second preimages for shorter messages.
We further extend our attack to sequences stronger than the ones suggested in Rivest's proposal. To this
end we introduce the kite generator as a new tool to attack any dithering sequence over a small alphabet.
Additionally, we analyze the second preimage security of the basic tree hash construction. Here we also
propose several second-preimage attacks and their time-memory-data tradeo� variants.
Finally, we show how both our new and the previous second-preimage attacks can be applied even more
e�ciently when multiple short messages, rather than a single long target message, are available.

Keywords: Cryptanalysis, Hash function, Dithering sequence, Second preimage attack, Herding attack,
Kite Generator.

1 Introduction

The recent years have been very active in the area of hash function cryptanalysis. Multiple results of signi�cant
importance, such as the ones by Wang et al. [52�55], Biham et al. [8], De Cannière et al. [12�14], Klima [33], Joux

? A preliminary version of this paper appeared in [2].

et al. [29], Mendel et al. [40, 41], Leurent [35, 36], and Sasaki et al. [39, 49], to name a few, have been developed
to attack a wide spectrum of hash functions. These attacks exploit vulnerabilities of the primitives underlying
the basic constructions. Another type of so called generic attacks target the general composite structure of the
hash function assuming no weaknesses of the underlying primitives. Important works in this direction are the
ones of Dean [19], Joux [27], Kelsey and Schneier [31], and Kelsey and Kohno [30], which explore the resistance
of the widely used Merkle-Damgård construction against generic attacks, such as the multicollision, herding, and
second-preimage attacks. Our work on second-preimage attacks has been motivated by these last advances, and
most notably by the development of generic second-preimage attacks and new hash function proposals attempting
to circumvent these attacks.

Informally, the goal of an adversary in a second-preimage attack on a hash function Hf with an underlying
compression function f is: for a given target message M the adversary has to come up with a second-preimage
message M ′, such that Hf (M ′) = Hf (M). The complexity of a second-preimage attack for an ideal (random)
hash function outputting a hash value of n bits is O (2n). The attacker is successful if the attack complexity is
signi�cantly lower than O (2n). The complexity of the attacks is estimated by counting the number of underlying
compression function f evaluations (with one call to f taking a single unit time).

One of the �rst works which describes a generic second-preimage attack against the Merkle-Damgård con-
struction is in the Ph.D. thesis of Dean [19]. The main idea of his attack is to e�ciently exploit �xed points
in the compression function. Dean's attack has a time complexity of about 2n/2 + 2n−κ compression function
evaluations for n-bit hash digests where the target message is of 2κ blocks.1 Kelsey and Schneier [31] extended
this result to general Merkle-Damgård hash functions (including those with no easily computable �xed points in
the compression function) by applying the multicollision technique of Joux's [27]. Their result allows an adversary
to �nd a second-preimage of a 2κ-block target message in about κ · 2n/2+1+2n−κ compression function calls. The
main idea is to build an expandable message: a set of messages of varying lengths yielding the same intermediate
hash result.

Variants of the Merkle-Damgård construction that aim to preclude the aforementioned attacks are the widepipe
hash function by Lucks [37], the Haifa mode of operation proposed by Biham and Dunkelman [9], and the
�dithered� construction by Rivest [47]. The widepipe strategy achieves the added-security by maintaining a double
internal state (whilst consuming more memory and resources). A di�erent approach is taken by the designers of
Haifa and the �dithered� hash function, that introduce an additional input to the compression function. While
Haifa uses the number of message bits hashed so far as the extra input, the dithered hash function decreases
the length of the additional input to either 2 or 16 bits by using special dithering values [47]. Additionally, in his
paper Rivest claimed that the the properties of the �dithering� sequence are su�cient to avoid the second-preimage
attacks of [19, 31] on the hash function.

1.1 Our Results

The main contribution of this paper is the development of new second-preimage attacks on the basic Merkle-
Damgård hash function and most of its �dithered� variants.

Our second-preimage attacks rely on the herding technique of Kelsey and Kohno [30]. Herding refers to a
method for performing a chosen-target preimage attack [3], with an o�ine computable diamond structure as its
main tool. The diamond structure, is a collision tree of depth `, with 2` leafs, i.e., 2` starting values, that by a
series of collisions, are all connected to a value ĥ� at the root of the tree. ĥ� is then published as a target value.
For a challenge message pre�x P , the adversary has to construct a su�x S, such that H(P ||S) = ĥ�. The su�x is
composed of a block that links P to the diamond structure and a series of blocks chosen according to the diamond

1 In this paper, we denote the length of a message M in terms of message blocks |M |bl, rather than bits.

2

Function Attack Complexity| Length
O�ine Online Memory Patch Message

MD5 Dean [19] 265 273 2 254 255

(128,55) Kelsey-Schneier [31] 271 273 110 254 255

New (Sect. 2.2) 293.5 274 256 57 255

Variant 1 (Sect. 2.3) 293 274 255 62 255

Variant 2 (Sect. 2.3) 287.7 284.7 240.3 241.3 255

TMDTO (Sect. 3.2) 298.3 265 265.6 66 232

SHA-1 Dean [19] 281 2105 2 254 255

(160,55) Kelsey-Schneier [31] 287 2105 110 254 255

New (Sect. 2.2) 2109.5 2106 256 57 255

Variant 1 (Sect. 2.3) 2109 2106 255 62 255

Variant 2 (Sect. 2.3) 2109 2106 251 252 255

TMDTO (Sect. 3.2) 2122.3 281 281.6 82 240

SHA-256 Dean [19] 2129 2138 2 2117 2118

(256,118) Kelsey-Schneier [31] 2136 2138 236 2117 2118

New (Sect. 2.2) 2189 2139 2119 120 2118

Variant 1 (Sect. 2.3) 2188.5 2139 2118 126 2118

Variant 2 (Sect. 2.3) 2173 2170 283 284 2118

TMDTO (Sect. 3.2) 2194.3 2129 2129.6 130 264

SHA-512 Dean [19] 2257 2394 2 2117 2118

(512,118) Kelsey-Schneier [31] 2264 2394 236 2117 2118

New (Sect. 2.2) 2317 2395 2119 120 2118

Variant 1 (Sect. 2.3) 2316.5 2395 2118 126 2118

Variant 2 (Sect. 2.3) 2394 2315 2117 2118 2118

TMDTO (Sect. 3.2) 2394 2257 2257.6 258 2118

Table 1. Comparison of the second-preimage attacks on existing hash functions (optimized for minimal online complexity).

structure. The herding attack on the Merkle-Damgård hash function iterating via f a state of n-bits requires
approximately 2(n+`)/2+2 and 2n−` o�ine and online computations of f , respectively, and 2` memory blocks.

The second-preimage attack we develop in this work uses a 2`-diamond structure [30] and work on messages
of length 2κ blocks in 2(n+`)/2+2 o�ine and 2n−` + 2n−κ online compression function evaluations. The attack
achieves minimal total running time for ` ≈ n/3, yielding a total attack complexity of about 5 · 22n/3 + 2n−κ.

Our attack is slightly less e�cient than the attack of Kelsey-Schneier [31], e.g., for SHA-1 our attack requires
2109 time compared to 2105 for the attack of [31]. However, we generate a much short message patch: the second-
preimage message di�ers from the original one in just ` + 2 blocks, compared to an average 2κ−1 blocks in [31],
e.g., 60 versus 254 blocks for SHA-1. Table 1 summarizes our results for various hash functions, such as MD5,
SHA-1, SHA-256, and SHA-512, and compares them with the previous second-preimage attacks of Dean [19] and
Kelsey-Schneier [31].

Furthermore, we consider ways to improve one of the basic steps in long-message second-preimage attacks. In
all previous results [19, 31, 42], as well as in ours, the attack makes a connection to an intermediate chaining value
of the target message.2 We show how to perform that connection with time-memory data tradeo� techniques.

2 Notice that the basic approach of the long-message attack [42, p. 337] computes second preimages of su�ciently long
messages when the Merkle-Damgård strengthening is omitted.

3

This approach reduces the online phase of the connection from 2n−κ time to 22(n−κ)/3 using an additional
2n−κ precomputation and 22(n−κ)/3 auxiliary memory. Moreover, using this approach, one can apply the second-
preimage attack for messages of lengths shorter than 2κ in time faster than 2n−λ for a 2λ-block message. For
example, for some reasonable values of n and κ, it is possible to produce second-preimages for messages of length
2n/4, in O

(
2n/2

)
online time (after an O

(
23n/4

)
precomputation) using O

(
2n/2

)
memory. In other words, after

a precomputation (equivalent to �nding a single second preimage), the adversary can generate second preimages
at the same time complexity as �nding a compression function collision.

An important target construction for our new attack is the �dithered� Merkle-Damgård hash function of [47].
We exploit the short patch and the existence of repetitions in the dithering sequences to show that the security of
the dithered Merkle-Damgård hash function depends on the min-entropy of the dithering sequence, and that the
sequence chosen by [47] is susceptible to this attack. For example, our attack against the proposed 16-bit dithering
sequence requires 2(n+`)/2+2 + 2n−κ+15 + 2n−` work (for ` < 213), which for dithered SHA-1 is approximately
2120.

We further show the applicability of our attack to the universal one way hash function designed by Shoup [50],
which exhibits some similarities with dithered hashing. The attack applies as well to constructions that derive
from this design, e.g., ROX [4]. This yields the �rst published attack against these hash functions and con-
�rms that Shoup's and ROX security bounds are tight, since there is asymptotically only a logarithmic factor
(namely, O (log(κ))) between the lower bounds given by their security proofs and our attack's complexity. To
this end, we introduce the multi-diamond attack, a new tool that can allow attacking several dithering sequences
simultaneously.

As part of our analysis on dithering sequences, we present a novel cryptographic tool � the kite generator.
This tool can be used for long message second-preimage attacks for any dithering sequence over a small alphabet
(even if the exact sequence is unknown during the precomputation phase). In exchange for a preprocessing of
O (|A| · 2n), we can �nd second preimages in time O

(
2κ + 2(n−κ)/2+1

)
for any dithering alphabet of size |A|.

Next, we present second-preimage attacks on tree hashes [43]. The naive version of the attack allows �nding a
second-preimage of a 2κ-block message in time 2n−κ+1. We develop a time-memory-data tradeo� with time and
memory 22(n−κ+1) = TM2, where T is the online time complexity and M is the memory (for T ≥ 22κ).

Finally, we show that both the original second-preimage attacks of [19, 31] and our attacks can be extended
to the case in which there are multiple target messages. We show that �nding a second-preimage for any one of
2t target messages of length 2κ blocks each, requires approximately the same work as �nding a second-preimage
for a message of 2κ+t blocks.

1.2 Organization of the Paper

We describe our new second-preimage attack against the basic Merkle-Damgård construction in Section 2. In
Section 3 we explore the use of time-memory-data tradeo� techniques in the connection step which is used in all
long-message second-preimage attacks and in Section 4 we discuss second-preimage attacks on tree hashes. We
introduce some terminology and describe the dithered Merkle-Damgård construction in Section 5, and then we
extend our attack to tackle the dithered Merkle-Damgård proposals of Rivest in Section 6. We then o�er a series
of more general cryptanalytic tools that can attack more types of dithering sequences in Section 7. In Section 8,
we show that our attacks work also against Shoup's UOWHF construction (and its derivatives). We conclude
with Section 9 showing how to apply second-preimage attacks on a large set of target messages.

4

2 A New Generic Second-Preimage Attack

2.1 The Merkle-Damgård Hash Function

The Merkle-Damgård hash function was proposed in [43, 18]. We denote it by Hf where Hf : {0, 1}∗ → {0, 1}n.
Hf iterates a compression function f : {0, 1}n × {0, 1}m → {0, 1}n taking as inputs an n-bit chaining value and
an m-bit message block. Throughout the paper, T = {hi} denotes the set of all chaining values resulting from
the hashing of a message M .

The Merkle-Damgård hash function uses a common padding rule padMD (Merkle-Damgård strengthening)
which works by appending to the original message M a single '1' bit followed by as many '0' bits as needed to
complete an m-bit block after embedding the message length at the end of the padded message. The Merkle-
Damgård hash function Hf (M) is de�ned as follows:

x1‖x2‖ . . . ‖xr ← padMD(M)

h0 = IV

For i = 1 to r compute hi = f (hi−1, xi)

Hf (M) , hr

Merkle [43] and Damgård [18] show that the Merkle-Damgård scheme is collision-resistance preserving, i.e., a
collision on Hf implies a collision on f . As a side e�ect, the strengthening used de�nes a limit on the maximal
length for admissible messages. In many deployed hash functions, this limit is 264 bits, or equivalently 255 512-bit
blocks. In the sequel, we denote the maximal number of admissible blocks by 2κ.

2.2 Our Second-Preimage Attack on Merkle-Damgård Hash

Our new technique to �nd second-preimages on Merkle-Damgård hash functions heavily relies on the diamond
structure introduced by Kelsey and Kohno [30].

Diamond Structure. Let ♦` be a diamond structure of depth `. ♦` is a multicollision with the shape of a
complete binary tree (hence often referred to as a collision tree) of depth ` with L� = {ĥi} the set of 2` leaves ĥi.
The tree nodes are labeled by the n-bit chaining values, and the edges are labeled by the m-bit message blocks.
A message block x is mapped between two evolving states of the chaining value by the compression function f .
Thus, there is a path labeled by the ` message blocks from any one of the 2` starting leaf nodes that leads to the
same �nal chaining value ĥ� at the root of the tree. We illustrate a diamond structure in Figure 1.

Our Attack. To illustrate our new second-preimage attack, let M with |M |bl = 2κ be the target message. The

attack starts with the precomputation of a diamond structure ♦` with a root value ĥ� taking time 2n/2+`/2+2.
The next step takes only 2n−κ online calls to f and consists of connecting ĥ� to an intermediate chaining value of
the target message M by varying an arbitrary message block B. This connection, determines the position where
a pre�x of M is next connected back to ♦`, which is done by varying an arbitrary message block (with time
complexity 2n−`). We describe the attack in detail in Algorithm 1 (and illustrate it in Figure 2).
The messages M ′ and M are of equal length and hash to the same value before strengthening, so they produce
the same hash value with the added Merkle-Damgård strengthening.

Our new second-preimage attack applies analogously to other Merkle-Damgård based constructions, such as
pre�x-free Merkle-Damgård [16], randomized hash [24], Enveloped Merkle-Damgård [6], etc. Keyed hash con-
structions like the linear and the XOR linear hash by [7] use unique per message block key, which foils this style
of attacks in the connection step (as well as the attack of [31]).

5

ĥ1

ĥ2

ĥ3

ĥ4

ĥ2` x2`

x1

ĥ�

Fig. 1. A Diamond Structure ♦`

Algorithm 1 Our New Attack Algorithm on the Merkle-Damgård Hash Function

1. Construct ♦` with a root value ĥ�.
2. Compute all chaining values in the computation of h(M) and store them in T .

3. Try arbitrary message blocks B, until f
(
ĥ�, B

)
∈ T . Let B↘ be the message block and let f

(
ĥ�, B

↘
)
= hi0 for some

i0, `+ 1 ≤ i0 < |M |bl.
4. Choose a pre�x P with |P |bl = i0 − `− 2, and let hP be the chaining value after processing P . Try arbitrary message

blocks B, until f (hP , B) = ĥj for some ĥj labeling a leaf of ♦`. Let B↗ denote this block, and let T be the chain of `
blocks from ĥj to ĥ�.

5. Output the second-preimage message M ′ = P ||B↗||T ||B↘||M≥i0+1.

Complexity. Step 1 of the attack allows for precomputation and its time and memory complexities is about
2(n+`)/2+2 (see [30]). The second step takes 2κ calls to the compression function. The third step is carried out
online with 2n−κ work in online time, and the fourth step takes 2n−` work. Thus, the total time complexity of
the attack is

2(n+`)/2+2 + 2κ + 2n−κ + 2n−`

and the total complexity is minimal when ` = (n− 4)/3 for a total of about 5 · 22n/3 + 2n−κ computations.

2.3 Attack Variants on Merkle-Damgård Hash Function

Variant 1: The basic second-preimage attack allows connecting in the third step of the attack to only 2` chaining
values in L�. It is possible, however, to use all the 2`+1−1 chaining values of♦` if ĥ� is extended with an expandable
message Z with |Z|bl ∈ [log2(`), `+log2(`)−1]. Thus, once the pre�x P is connected to some chaining value in ♦`,
it is possible to extend the length of Z to be of a �xed length (as required by the attack). This variant requires
slightly more work in the precomputation step and a slightly longer patch (of log2(`) additional message blocks).
The o�ine computation cost is about 2(n+`)/2+2 + log2(`) · 2n/2+1 + ` ≈ 2(n+`)/2+2, while the online computation
cost is reduced to 2κ + 2n−`−1 + 2n−κ compression function calls.

Variant 2: A di�erent variant of the attack suggests constructing ♦` by reusing the chaining values of the target
message M as the starting leaf points ĥi ∈ L�. Here, the diamond structure is computed in the online phase and

6

ĥ�

x1

x3

x4

x2

x5

x6

` blocks

IV
hi0

H(M)
M

B↘

M≥i0

hP

P

B↗

f
(
ĥ�, B

↘
)
= hi0

f
(
hP , B

↗)
= ĥj

Fig. 2: Representation of our New Attack on the Merkle-Damgård Hash Function.

the herding step becomes more e�cient, as there is no need to �nd a block connecting to the diamond structure.
In exchange, we need an expandable message at the output of the diamond structure (i.e., starting from ĥ�). The
complexity of this variant is 2(n+κ)/2+2 + 2n−κ + κ · 2n/2+1 + 2κ ≈ 2(n+κ)/2+2 + 2n−κ + 2κ online compression
function calls (note that 2κ is also the size of the diamond structure).

2.4 Comparison with Dean [19] and Kelsey and Schneier [31]

The attacks of [19, 31] are slightly more e�cient than ours. We present the respective o�ine and online complexities
for our new and existing second-preimage attacks in Table 2 (the comparison of these attacks for MD5 (n =
128, κ = 55), SHA-1 (n = 160, κ = 55), SHA-256 (n = 256, κ = 118), and SHA-512 (n = 512, κ = 118) was
given in Table 1). In comparison, our technique gives the adversary more control over the second-preimage. For
example, she could choose to reuse most of the target message M , leading to a second preimage that di�ers from
M by only `+ 2 blocks.

The main di�erence between the previous techniques and ours is that the previous attacks build on the use
of expandable messages, while we use a diamond structure, a technique which enables us to come up with a
shorter message patch. At the same time, our attack can also be viewed as a new, more �exible technique to
build expandable messages, by choosing a pre�x of the appropriate length and connecting it to the collision tree.
This can be done in time 2(n+`)/2+2 +2n−`. Although it is more expensive, due to the use of a shorter patch, our
new technique can be adapted to work even when an additional dithering input is given, as we demonstrate in
Section 6.

3 Time-Memory-Data Tradeo�s for Second-Preimage Attacks

In this section we discuss the �rst connection step (from the diamond structure to the message) and we show that
it can be implemented using time-memory-data tradeo�. This allows speeding up the online phase in exchange

7

Attack Complexity Length
O�ine Online Memory Patch Message

Dean [19] 2n/2+1 2κ + 2n−κ 2 2κ−1 2κ

Kelsey-Schneier [31] κ · 2n/2+1 + 2κ 2κ + 2n−κ 2 · κ 2κ−1 2κ

Our Attack (Sect. 2.2) 2(n+`)/2+2 2κ + 2n−` + 2n−κ 2`+1 `+ 2 2κ

Variant 1 (Sect. 2.3) 2(n+`)/2+2 2κ + 2n−`−1 + 2n−κ 2`+1 `+ log2(`) + 2 2κ

Variant 2 (Sect. 2.3) � 2(n+κ)/2+2+ 2(n+κ)/2 + 2κ+1 2κ−1 2κ

2n−κ + 2κ

First connection with 2(n+`)/2+2 + 2n−λ 2κ + 2n−` + 22λ 2`+1 + 2n−2λ `+ 2 2λ

TMDTO (Sect. 3.2)

Table 2. Comparison of Long Message Second-Preimage Attacks

for an additional precomputation and memory. An additional and important advantage is our ability to �nd
second-preimages of signi�cantly shorter messages.

3.1 Hellman's Time-Memory Tradeo� Attack

Time-memory Tradeo� attacks (TMTO) were �rst introduced in 1980 by Hellman [25]. The idea is to improve
brute force attacks by trading the online time for memory and precomputation when inverting the function
f : {0, 1}n → {0, 1}n. Suppose we have an image y and we wish to �nd a pre-image x ∈ f−1(y). One extreme
would be to try exhaustively all possible x until we �nd f(x) = y, while the another extreme would be to
precompute a huge table containing all the pairs (x, f(x)) sorted by the second element. Hellman's idea is to
apply f iteratively. Starting from a random element x0, compute xi+1 = f(xi) for t steps saving only the start
and end points (x0, xt). By repeating this process with di�erent initial points a total of c chains are generated.
Now given the image y, one generates an iterative chain from y and checks if one of the endpoints is reached. In
that case, one recomputes the chain from the corresponding starting point trying to �nd the preimage of y.

Notice that as the number of chains, c, increases beyond 2n/t2, the contribution (i.e., the number of new
values that can be inverted) from additional chains decreases. To counter this birthday paradox e�ect, Hellman
suggested to construct a number of tables, each using a slightly di�erent function fi, such that knowing a preimage
of y under fi implies knowing such a preimage under f . Thus, for d = 2n/3 tables each with di�erent fi's, such
that each table contains c = 2n/3 chains of length t = 2n/3, about 80% of the 2n points will be covered by at
least one table. Notice that the online time complexity of Hellman's algorithm is t · d = 22n/3 while the memory
requirements are d · c = 22n/3.

It is worth mentioning, that when multiple preimages need to be inverted (i.e., a set of yi = f(xi)), where it
is su�cient to identify only one of the preimages (xi for some i), one could o�er even better tradeo� curves. For
example, given m preimages, it is possible to reduce the number of tables stored by a factor of m, and trying for
each of the possible targets, the attack (i.e., compute the chain). This reduces the memory complexity (without
a�ecting the online time complexity or the success rate), as long as m ≤ d (see [10] for more details concerning
this constraint).

8

3.2 Time-Memory-Data Tradeo�s for Merkle-Damgård Second-Preimage Attacks

Both known long-message second-preimage attacks and our newly proposed second-preimage attack assume that
the target message M is long enough (up to the 2κ limit). This enables the connection to M to be done with
complexity about 2n−κ calls to f .

Our time-memory-tradeo� is applied to this connection phase of the attack and results in an expensive pre-
computation with complexity essentially that of �nding a second-preimage. On the hand, the cost of �nding
subsequent second-preimages becomes roughly only that of �nding a collision.

The goal here is to �nd a message block x such that f(ĥ�, x) = hi. As there are 2κ targets (and �nding
the preimage for one hi's is su�cient), then we can run a time-memory-data tradeo� attack with a search
space of N = 2n, and D = 2κ available data points, time T , and memory M such that N2 = TM2D2, after
P = N/D preprocessing (and T ≥ D2). Let 2c be the online complexity of the time-memory-data tradeo�, and
thus,2c ≥ 22κ, and the memory consumption is 2n−κ−c/2 blocks of memory. The resulting overall complexities
are: 2n/2+`/2+2 + 2n−κ preprocessing, 2c + 2n−` online complexity, and 2`+1 + 2n−κ−c/2 memory, for messages of
2c/2 blocks.

Given the constraints on the online complexity (i.e., c ≥ 2κ), it is sometimes bene�cial to consider shorter
messages, e.g., of 2λ blocks (for λ ≤ κ). For such cases, the o�ine complexity is 2n/2+`/2+2 + 2n−λ, the online
complexity is 2c + 2n−`, and the memory consumption 2n−λ−c/2 + 2`+1. We can balance the online and memory
complexities (as commonly done in time-memory-data tradeo� attacks), which results in picking c such that
2c+2n−` ≈ 2n−λ−c/2+2`+1. By picking λ = n/4, c = 2λ = n/4, and ` = n/2, the online complexity is 2n/2+1, the
memory complexity is 3 · 2n/2, and the o�ine complexity is 5 · 23n/4. This of course holds as long as n/4 = λ ≤ κ,
i.e., 4κ > n.

When 4κ < n, we can still balance the memory and the online computation by picking T = 2n/2 and ` = n/2.
The memory consumption of this approach is still O

(
2n/2

)
, and the only di�erence is the preprocessing which

increases to 2n−κ. We note that in this case the balancing is due to the second connection phase. One can still
increase the memory consumption (and the preprocessing time) to reduce the online time complexity.

For this choice of parameters, we can �nd a second-preimage for a 240-block long message in SHA-1, with online
time of 281 operations, 281.6 blocks of memory, and 2122.2 steps of precomputation. The equivalent Kelsey-Schneier
attack takes 2120 online steps (and about 285.3 o�ine computation).

One may consider comparison with a standard time-memory attack for �nding preimages.3 For an n-bit
digests, for 2n preprocessing, one can �nd a (second-) preimage using time 2c and memory 2n−c/2. Hence, for the
same 240-block message, with 281.6 blocks of memory, the online computation is about 2156.8 SHA-1 compression
function calls.

4 Time-Memory-Data Tradeo�s for Tree Hash Second-Preimage Attacks

Time-memory-data tradeo�s for second-preimage attacks can also be applied on tree hash functions. Before
describing our attacks, we give a quick overview of tree hashes.

4.1 Tree Hashes

Tree hashes were �rst suggested in [43]. Let f : {0, 1}n × {0, 1}n → {0, 1}n be a compression function used
in the tree hash T f . To hash a message M of length |M | < 2n, M is initially padded with a single `1' bit

3 An attack that tries to deal with the multiple targets has to take care of the padding, which can be done by just starting
from an expandable message. In other words, this is equivalent to using our new connection step in the Kelsey-Schneier
attack.

9

and as many `0' bits as needed to obtain padTH(M) = x1‖x2‖ . . . ‖xL, where each xi is n-bit long, L = 2κ for
κ = dlog2(|M |+1)/ne. Consider the resulting message blocks as the leaves of a full binary tree of depth κ. Then,
the compression function is applied to any two leaves with a common ancestor, and its output is assigned to the
common ancestor. This procedure is followed in an iterative manner. A �nal compression function is applied to
the output of the root and an extra �nal strengthening block, normally containing the length of the input message
M . The resulting output is the �nal tree hash.

Formally, the tree hash function T f (M) is de�ned as:

x1‖x2‖ . . . ‖xL ← padTH(M)

For j = 1 to 2κ−1 compute h1,j = f(x2j−1, x2j)

For i = 2 to κ:

For j = 1 to 2κ−i compute hi,j = f(hi−1,2j−1, hi−1,2j)

hκ+1 = f(hκ,1, 〈|M |〉n)
T f (M) , hκ+1

4.2 A Basic Second-Preimage Attack on Tree Hashes

Tree hashes that apply the same compression function to each message block (i.e., the only di�erence between
f(x2i−1, x2i) and f(x2j−1, x2j) for i 6= j is the position of the resulting node in the tree) are vulnerable to a simple
long-message second-preimage attack where the change is in at most two blocks of the message.

Notice that given a target message M , there are 2κ−1 chaining values h1,j which can be used as target values
for connecting the second-preimage M ′. An adversary that inverts one of these chaining values, i.e., produces
(x′, x′′) such that f(x′, x′′) = h1,j for some 1 ≤ j ≤ 2κ−1, computes successfully a second-preimage M ′. Thus, our
attack for |M ′|bl = |M |bl = 2κ requires about 2n−κ+1 trial inversions for f(·).

More precisely, the adversary just tries message pairs (x′, x′′), until f(x′, x′′) = h1,j for some 1 ≤ j ≤ 2κ−1.
Then, the adversary replaces (x2j−1||x2j) with x′||x′′ without a�ecting the computed hash value forM amounting
to only two message blocks modi�cations in the original message. This result also applies to other parallel modes
where the exact position has no e�ect on the way the blocks are compressed.

4.3 Getting More for Less

The previous attack performs the second preimage message connection only at the �rst tree level. In order to
connect to a deeper tree level the whole resulting subtree has to be replaced.

Assuming that f is random enough, we can achieve this by building the queries carefully. Consider the case
where the adversary computes n1 = f(x′1, x

′
2) and n2 = f(x′3, x

′
4), for some message blocks x′1, . . . , x

′
4. If neither

n1 nor n2 are equal to some h1,j , compute o1 = f(n1, n2). Now, if o1 = h1,j for some j, we can o�er a second
preimage as before (replacing the corresponding message blocks by (n1, n2)). At the same time, if o1 = h2,j for
some j, we can replace the four message blocks x4j−3, . . . , x4j with x′1, . . . , x

′
4. The probability of a successful

connection is thus 3 · 2κ−1−n + 2κ−2−n = 3.5 · 2κ−1−n for 3 compression function calls (rather than the expected
3 · 2κ−1−n).

One can extend this approach, and try to connect to the third layer of the tree. This can be done by generating
o2 using four new message blocks, and if their connection fails, compute f(o1, o2) and trying to connect it to one of
the �rst three levels of the tree. Hence, for a total of 7 compression function calls, we expect a success probability
of 2 · 3.5 · 2κ−1−n + 2κ−1−n + 2κ−2−n + 2κ−3−n = 8.75 · 2κ−1−n.

10

This approach can be further generalized, each time increasing the depth of the subtree which is replaced (up
to κ). If the number of compression function calls needed to generate a subtree of depth t is Nt = 2t − 1 and the
probability of successful connection is pt, then pt follows the recursive formulas of:

pt+1 = 2pt +

t+1∑
i=1

2κ−i−n,

where p1 = 2κ−1−n. The time complexity advantage of this approach is pt+1/(Nt · 2κ−1−n), as for the basic
algorithm, after Nt compression function calls, the success rate is Nt ·2κ−1−n. Given that pt+1 < 2pt+2 ·2κ−1−n,
it is possible to upper bound the advantage over the original attack by a factor 2.

The main drawback of this approach is the need to store the intermediate chaining values produced by the
adversary. For a subtree of depth t this amounts to 2t+1 − 1 blocks of memory.

We notice that the utility of each new layer decreases. Hence, we propose a slightly di�erent approach, where
the utility is better. The improved variant starts by computing n1 = f(x′1, x

′
2) and n2 = f(x′3, x

′
4). At this point,

the adversary computes 4 new values � f(n1, n1), f(n1, n2), f(n2, n1), and f(n2, n2). For these 6 compression
function calls, the adversary has a probability of 6 · 2κ−1−n + 4 · 2κ−2−n = 8 · 2κ−1−n to connect successfully to
the message (either at the �rst level or the second level for the four relevant values). It is possible to continue this
approach, and obtain 16 chaining values that can be connected to the �rst, second, or third levels of the tree.

This approach yields the same factor 2 improvement in the total time complexity with less memory, and with
less restrictions on κ, namely, to obtain the full advantage, log2(n) levels in the tree are needed (to be compared
with n levels in the previous case).

4.4 Time-Memory-Data Tradeo�s

As in the Merkle-Damgård second-preimage attacks, we model the inversion of f as a task for a time-memory-data
attack [10]. The h1,j values are the multiple targets, which compose the available data points D = 2κ−1. Using
the time-memory-data curve of the attack from [10], it is possible to have an inversion attack which satis�es
the relation N2 = TM2D2, where N is the size of the output space of f , T is the online computation, and M
is the number of memory blocks used to store the tables of the attack. As N = 2n, we obtain that the curve
for this attack is 22(n−κ) = TM2 (with preprocessing of 2n−κ). We note that the tradeo� curve can be used
as long as M < N,T < N, and T ≥ D2. Thus, for κ < n/3, it is possible to choose T = M , and obtain the
curve T = M = 22(n−κ)/3. For n = 160 with κ = 50, one can apply the time-memory-data tradeo� using 2110

preprocessing time and 274 memory blocks, and �nd a second-preimage in 274 online computation.

5 Dithered Hashing

The general idea of dithered hashing is to perturb the hash process by using an additional input to the compression
function, formed by the consecutive elements of a �xed dithering sequence. This gives the adversary less control
over the inputs of the compression function, and makes the hash of a message block dependent on its position in
the whole message.

The ability to �copy, cut, and paste� blocks of messages is a fundamental ingredient in many generic attacks,
including for example the construction of expandable messages of [31] or of the diamond structure of [30]. To
prevent such generic attacks, the use of some kind of dithering is now widely adopted, e.g., in the two SHA-3
�nalists Blake [5] and Skein [22].

11

Since the dithering sequence z has to be at least as long as the maximal number of blocks in any message that
can be processed by the hash function, it is reasonable to consider in�nite sequences as candidates for z. Let A
be a �nite alphabet, and let the dithering sequence z be an eventually in�nite word over A. Let z[i] denote the
i-th element of z. The dithered Merkle-Damgård construction is obtained by setting hi = f (hi−1, xi, z [i]) in the
de�nition of the Merkle-Damgård scheme.

We demonstrate that the gained security (against our attack) of the dithering sequence is equal to its min-
entropy of z. This implies that to o�er a complete security against our attacks, the construction must use a
dithering sequence which contains as many di�erent dithering inputs as blocks, e.g., as suggested in HAIFA.

5.1 Background and Notations

Words and Sequences. Let ω be a word over a �nite alphabet A. We use the dot operator to denote concate-
nation. If ω can be written as ω = x.y.z (where x,y, or z can be empty), we say that x is a pre�x of ω and that
y is a factor of ω. A �nite non-empty word ω is a square if it can be written as ω = x.x, where x is not empty. A
�nite word ω is an abelian square if it can be written as ω = x.x′ where x′ is a permutation of x (i.e., a reordering
of the letters of x). A word is said to be square-free (respectively, abelian square-free) if none of its factors is a
square (respectively, an abelian square). Note that abelian square-free words are also square-free.

Sequences Generated by Morphisms. We say that a function τ : A∗ → A∗ is a morphism if for all words
x and y, τ(x.y) = τ(x).τ(y). A morphism is then entirely determined by the images of the individuals letters. A
morphism is said to be r-uniform (with r ∈ N) if for any word x, |τ(x)| = r · |x|. If, for a given letter α ∈ A, we
have τ(α) = α.x for some word x, then τ is non-erasing for α. Given a morphism τ and an initialization letter α,
let un denote the n-th iterate of τ over α: un = τn(α). If τ is r-uniform (with r ≥ 2) and non-erasing for α, then
un is a strict pre�x of un+1, for all n ∈ N. Let τ∞(α) denote the limit of this sequence: it is the only �xed point
of τ that begins with the letter α. Such in�nite sequences are called uniform tag sequences [15] or r-automatic
sequences [1].

An In�nite Abelian Square-Free Sequence. In�nite square-free sequences have been known to exist since
1906, when Axel Thue exhibited the Thue-Morse word over a ternary alphabet (there are no square-free sequences
longer than four on a binary alphabet).

The question of the existence of in�nite abelian square-free sequences was raised by 1961 by Erdös, and was
solved by Pleasants [46] in 1970: he exhibited an in�nite abelian square-free sequence over a �ve-letter alphabet.
In 1992, Keränen [32] exhibited an in�nite abelian square-free sequence k over a four-letter alphabet (there are no
in�nite abelian square-free words over a ternary alphabet). In this paper, we call this in�nite abelian square-free
word the Keränen sequence. Before describing it, let us consider the permutation σ over A de�ned by:

σ(a) = b, σ(b) = c, σ(c) = d, σ(d) = a

Surprisingly enough, the Keränen sequence is de�ned as the �xed point of a 85-uniform morphism τ , given
by:

τ(a) = ωa, τ(b) = σ (ωa) , τ(c) = σ2 (ωa) , τ(d) = σ3 (ωa) ,

where ωa is some magic string of length 85 (given in [32, 47]).

12

Sequence Complexity. The number of factors of a given length of an in�nite word gives an intuitive notion
of its complexity : a sequence is more complex (or richer) if it possesses a large number of di�erent factors. We
denote by Factz(`) the number of factors of length ` of the sequence z.

Because they have a very strong structure, r-uniform sequences have special properties, especially with regard
to their complexity:

Theorem 1 (Cobham, 1972, [15]). Let z be an in�nite sequence generated by an r-uniform morphism, and
assume that the alphabet size

∣∣A∣∣ is �nite. Then the linear complexity of z is bounded by:

Factz(`) ≤ r · |A|2 · `.

A polynomial algorithm which computes the exact set of factors of a given length ` can be deduced from
the proof of this theorem. It is worth mentioning that similar results exist in the case of sequences generated
by non-uniform morphisms [20, 45], although the upper bound can be quadratic in `. The bound given by this
theorem, although attained by certain sequences, is relatively rough. For example, since the Kera�nen sequence is
85-uniform, the theorem gives: Factk(`) ≤ 1360 · `. For ` = 50, this gives Factk(50) ≤ 68000, while the factor-
counting algorithm reveals that Factk(50) = 732. Hence, for small values of `, the following upper bound may be
tighter:

Lemma 1. Let z be an in�nite sequence over the alphabet A generated by an r-uniform morphism τ . For all `,
1 ≤ ` ≤ r, we have :

Factz(`) ≤ ` ·
(
Factz(2)− |A|

)
+
[
(r + 1) · |A| − Factz(2)

]
.

Proof. If ` ≤ r, then any factor of z of length ` falls in one of these two classes:

� Either it is a factor of τ(α) for some letter α ∈ A. There are no more than |A| · (r − `+ 1) such factors.
� Or it is a factor of τ(α).τ(β), for two letters α, β ∈ A (and is not a factor of either τ(α) or τ(β)). For any
given pair (α, β), there can only be `− 1 such factors. Moreover, α.β must be a factor of length 2 of z.

So Factz(`) ≤ |A| · (r − `+ 1) + Factz(2) · (`− 1). ut

For the particular case of the Keränen sequence k, we have r = 85,
∣∣A∣∣ = 4 and Factk(2) = 12 (all non-

repeating pairs of letters). This yields Factk(`) ≤ 8 · ` + 332 when ` ≤ 85, which is tight, as for ` = 50 it gives:
Factk(50) ≤ 732.

Factor Frequency. Our attacks usually target the factor of highest frequency. If the frequency of the various
factors is biased, i.e., non uniform, then the attack should exploit this bias (just like in any cryptographic attack).

Formally, let us denote by Nω(x) the number of occurrences of ω in x (which is expected to be a �nite word),
and by z[1..i] the pre�x of z of length i. The frequency of a given word ω in the sequence z is the limit of
Nω(z[1..i])/i when i goes to +∞.

We denote by 2−H∞(z,`) the frequency of the most frequent factor of length ` in the sequence z. It follows
immediately that H∞(z, `) ≤ log2 Factz(`). Hence, when the computation of H∞(z, `) is infeasible, log2 Factz(`)
can be used as an upper-bound.

It is possible to determine precisely the frequency of certain words in sequences generated by uniform mor-
phisms. For instance, it is easy to compute the frequency of individual letters: if x is some �nite word and α ∈ A,
then by de�nition of τ we �nd:

Nα (τ (x)) =
∑
β∈A

Nα (τ (β)) ·Nβ (x) (1)

13

In this formula, Nα(τ(β)) is easy to determine from the description of the morphism τ . Let us write:

A = {α1, . . . , αk} ,

Us =

(
Nαj (τ

s (a))

`s

)
1≤j≤|A|

,

M =

(
Nαi(τ(αj))

`

)
1≤i,j≤|A|

.

Then it follows from equation (1) that:

Us+1 =M · Us.

The frequency of individual letters is given by the vector U∞ = lims→∞ Us. Fortunately, this vector lies in
the kernel of M − 1 (and is such that its component sum up to one). For instance, for the Keränen sequence, and
because of the very symmetric nature of τ , we �nd that M is a circulant matrix:

85 ·M =


19 18 27 21
21 19 18 27
27 21 19 18
18 27 21 19


We quickly obtain: U∞ = 1

4 (1, 1, 1, 1), meaning that no letter occurs more frequently than the other � as
can be expected. The frequencies of digrams (i.e., two-letters words) are slightly more complicated to compute,
as the digram formed from the last letter of τ(α) and the �rst letter of τ(β) is automatically a factor of τ(αβ)
but is not necessarily a factor of either τ(α) or τ(β) individually. We therefore need a new version of equation (1)
that takes this fact into account.

Let us de�ne Ω2 = {ω1, . . . , ωr}, the set of factors of length two of z. If ω is such a factor, we obtain:

Nω (τ (x)) =
∑
γ∈A

Nω (τ (γ)) ·Nγ (x) +
∑
ωj∈Ω2

[
Nω (τ (ωj))−Nω (τ (ωj [1]))−Nω (τ (ωj [2]))

]
·Nωj (x) (2)

Again, in order to obtain a system of linear relations, we de�ne:

Vs =

(
Nωi (τ

s (a))

`s

)
1≤i≤|Ω2|

,

M1 =

(
Nωi (τ (αj))

`

)
1≤i≤|Ω2|,1≤j≤|A|

,

M2 =

(
Nωi (τ (ωj))−Nωi (τ (ωj [1]))−Nωi (τ (ωj [2]))

`

)
1≤i,j≤|Ω2|

,

and equation (2) implies:

Vs+1 =M1 · Us +M2 · Vs

Again, we are interested in the limit V∞ of Vs when s goes to in�nity, and this vector is a solution of the equa-
tion: V∞ =M2 ·V∞+M1 ·U∞. For the Keränen sequence k, where Ω2 = {ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc},
we observe that:

14

85 ·M1 =



6 3 9 9
8 5 8 5
4 10 10 7
7 4 10 10
9 6 3 9
5 8 5 8
8 5 8 5
10 7 4 10
9 9 6 3
3 9 9 6
5 8 5 8
10 10 7 4


Because the magic string that de�nes the Keränen sequence begins and ends with an �a�, the diagram formed

by the last letter of τ(α) and the �rst letter of τ(β) is precisely α.β. Thus, M2 is in fact 1/85 times the identity
matrix. We thus compute V∞, to �nd that:

Factor ab ac ad ba bc bd ca cb cd da db dc

Frequency 9
112

13
168

31
336

31
336

9
112

13
168

13
168

31
336

9
112

9
112

13
168

31
336

Here, a discrepancy is visible, with �ba� being nearly 15% more frequent than �ab�. Computing the frequency
of factors of length less than ` is not harder, and the reasoning for factors of length two can be used as-is. In fact,
equation (2) holds even if ω is a factor of z of length less than `. Let us de�ne:

S =

(
Nω (τ (αj))

`

)
1≤j≤|A|

,

T =

(
Nω (τ (ωj))−Nω (τ (ωj [1]))−Nω (τ (ωj [2]))

`

)
1≤j≤|Ω2|

.

Equation (2) then brings:

Nω
(
τs+1 (a)

)
`s+1

= S · Us + T · Vs

And the frequency of ω in z is then S ·U∞+T ·V∞. The frequency of any word could be computed using this
process recursively, but we will conclude here, as we have set up the machinery we need later on.

5.2 Rivest's Dithered Proposals

Keränen-DMD. In [47] Rivest suggests to directly use the Keränen sequence as a source of dithering inputs. The
dithering inputs are taken from the alphabet A = {a, b, c, d}, and can be encoded by two bits. The introduction
of dithering thus only takes two bits from the input datapath of the compression function, which improves the
hashing e�ciency (compared to longer encodings of dithering inputs). We note that the Keränen sequence can be
generated online, one symbol at a time, in logarithmic space and constant amortized time.

15

Rivest's Concrete Proposal. To speed up the generation of the dithering sequence, Rivest proposed a slightly
modi�ed scheme, in which the dithering symbols are 16-bit wide. Rivest's concrete proposal, which we refer to as
DMD-CP (Dithered Merkle-Damgård � Concrete Proposal) reduces the need to generate the next Keränen letter.
If the message M is r blocks long, then for 1 ≤ i < r the i-th dithering symbol has the form:(

0,k
[⌊
i/213

⌋]
, i mod 213

)
∈ {0, 1} × A× {0, 1}13

The idea is to increment the counter for each dithering symbol, and to shift to the next letter in the Keränen
sequence, when the counter over�ows. This �diluted� dithering sequence can essentially be generated 213 times
faster than the Keränen sequence. Finally, the last dithering symbol has a di�erent form (recall that m is the
number of bits in a message block):

(1, |M | mod m) ∈ {0, 1} × {0, 1}15

6 Second-Preimage Attacks on Dithered Merkle-Damgård

In this section, we present the �rst known second-preimage attack on Rivest's dithered Merkle-Damgård con-
struction. We �rst introduce the adapted attack in Section 6.1, and present the novel multi-diamond construction
in Section 6.2 that o�ers a better attack on the dithered Merkle-Damgård construction. In Section 6.3, we adapt
the attack of section 2 to Keränen-DMD, obtaining second-preimages in time 732 · 2n−κ + 2(n+`)/2+2 + 2n−`.
We then apply the extended attack to DMD-CP, obtaining second-preimages with about 2n−κ+15 evaluations of
the compression function. We conclude this section by suggesting some examples of sequences which make the
corresponding dithered constructions immune to our attack.

6.1 Adapting the Attack to Dithered Merkle-Damgård

Let us now assume that the hash function uses a dithering sequence z. When building the collision tree, we must
choose which dithering symbols to use. A simple solution is to use the same dithering symbol for all the edges at
the same depth of the tree, as shown in Figure 3. A word of ` letters is then required for building the collision
tree. We also need an additional letter to connect the collision tree to the message M . This way, in order to build
a collision tree of depth `, we have to �x a word ω of length ` + 1, use ω[i] as the dithering symbol of depth i,
and use the last letter of ω to realize the connection to the given message.

The dithering sequence makes the hash of a block dependent on its position in the whole message. Therefore,
the collision tree can be connected to its target only at certain positions, namely, at the positions where ω and z
match. The set of positions in the message where this is possible is then given by:

Range =
{
i ∈ N

∣∣∣ (`+ 1 ≤ i
)
∧
(
z[i− `] . . . z[i] = ω

)}
.

The adversary tries random message blocks B, computing f(ĥ�, B, ω[`]), until some hi0 is encountered. If
i0 ∈ Range, then the second-preimage attack may carry on. Otherwise, another block B needs to be found.
Therefore, the goal of the adversary is to build the diamond structure with a word ω which maximizes the
cardinality of Range.

To attain the objective of maximizing the size of the range, ω should be the most frequent factor of z (amongst
all factors of the same length). Its frequency, the log of which is the min-entropy of z for words of length `, is

16

a
b

a
c ĥ�

IV

M
H(M)

d

z[1] z[2] a b a c d

Fig. 3: A Diamond Built on Top of a Factor of the Dithering Sequence, Connected to the Message.

Algorithm 2 Attack Algorithm for Dithered Merkle-Damgård Hash Functions

1. Let ω be the most frequent factor of length `+ 1 of z.
2. Generate a diamond structure ♦` using the �rst ` symbols of ω as the dithering symbols in all the leaf-to-root paths.

Let ĥ� be the target value (root of the tree).
3. Compute all chaining values in the computation of h(M) and store then in T .

4. Try arbitrary message blocks B, until f
(
ĥ�, B, ω[`]

)
= hi0 for i0 ∈ Range. Let B↘ be a message block satisfying this

condition, i.e.,, hi0 = f(ĥ�, B
↘, ω[`]) for i0 ∈ Range.

5. Pick a pre�x P of length i0 − ` − 2 blocks, and let hP be the chaining value obtained after processing P by the hash
function, and let σ be the next dithering letter. Try arbitrary message blocks B, until f (hP , B, σ) = ĥj for some ĥj
labeling a leaf of ♦`. Let B↗ denote this block, and let T be the chain of ` blocks traversing ♦` from ĥj to ĥ�.

6. Form a message M ′ = P ||B↗||T ||B↘||M≥i0+1.

therefore very important in computing the complexity of our attack. We denote it by H∞(z, `). The cost of �nding
the second-preimage for a given sequence z is

2
n
2 + `

2+2 + 2κ + 2H∞(z,`+1) · 2n−κ + 2n−`.

When the computation of the exact H∞(z, `+1) is infeasible, we may use an upper-bound on the complexity
of the attack by using the lower-bound on the frequency of any factor given in Section 5: in the worst case, all
factors of length `+1 appear in z with the same frequency, and the probability that a randomly chosen factor of
length `+ 1 in z is the word ω is 1/Factz(`+ 1). This gives an upper bound on the attack's complexity:

2
n
2 + `

2+2 + 2κ + Factz(`+ 1) · 2n−κ + 2n−`.

A Time-Memory-Data Tradeo� Variant. As shown in Section 3, one can implement the connection into the
message (Step 3 of Algorithm 2) using a time-memory-data tradeo�. It is easy to see that this attack can also
be applied here, as the dithering letter for the last block is known in advance. This allows reducing the online
complexity to

2
n
2 + `

2+2 + 2κ + 22(n−κ+H∞(z,`+1)−t) + 2n−`.

17

in exchange for an additional 2t memory and 2n−κ+H∞(z,`+1) precomputation. As noted earlier, this may allow
applying the attack at the same complexity to shorter messages, which in turn, may change the value ofH∞(z, `+1)
(or the chosen dithering sequence ω).

6.2 Multi-Factor Diamonds

So far we only used a single diamond built using a single factor of the dithering sequence. As mentioned earlier, this
diamond can only be used at speci�c locations, speci�ed by its range (which corresponds to the set of locations of z
where the chosen factor appears). We note that while the locations to connect into the message are determined by
the dithering sequence, the complexity of connecting to the diamond structure depends (mostly) on the parameter
`, which can be chosen by the adversary. Hence, to make the online attack faster, we try to enlarge the range
of our herding tool at the expense of a more costly precomputation and memory. We also note that this attack
is useful for cases where the exact dithering sequence is not fully known in advance to the adversary, but there
is a set of dithering sequences whose probabilities are su�ciently �high�. Our tool of trade for this task, is the
multi-factor diamond presented in the sequel.

Let ω1 and ω2 be two factors of length `+2 of the dithering sequence. Now, assume that they end with the same
letter, say α, i.e., ω1[`+1] = ω2[`+1] = α. We can build two independent diamondsD1 andD2 using ω1[1 . . . `] and
ω2[1 . . . `], respectively, to feed the dithering symbols. Assume that the root of D1 (respectively, D2) is labelled by

ĥ1� (respectively, ĥ
2
�). Now, we could �nd a colliding pair (x1, x2) such that f(ĥ

1
�, x1, ω1[`+1]) = f(ĥ2�, x2, ω2[`+1]).

Let us denote by ĥ�� the resulting chaining value. Figure 4 illustrates such a 2-word multi-diamond. Now, this last
node can be connected to the message using α as the dithering symbol. We have �herded� together two diamonds
with two di�erent dithering words, and the resulting �multi-factor diamond� is more useful than any of the two
diamonds separately. This claim is justi�ed by the fact that the range of the new multi-factor diamond is the
union of the two ranges of the two separate diamonds.

ω1[1 . . . `]

ω2[1 . . . `]

ĥ1
�

ĥ2
�

ĥ��

ω
1 [`+1]

ω2
[`+

1]

α

Fig. 4: A �Multi-Diamond� with 2 Words.

This technique, which is also applicable to unbalanced trees, can be used to provide an even bigger range, as
long as there are four factors of z of length `+ 3 such that:ω1[`+ 3] = ω2[`+ 3] = ω3[`+ 3] = ω4[`+ 3] = α

ω1[`+ 2] = ω2[`+ 2] = β
ω3[`+ 2] = ω4[`+ 2] = γ

18

A total number of 3 colliding pairs are needed to assemble the 4 diamonds together into this new multi-factor
diamond.

Let us generalize this idea. We say that a set of 2k words is su�x-friendly if all the words end by the same
letter, and if after chopping the last letter of each word, the set can be partitioned into two su�x-friendly sets of
size 2k−1 each. A single word is always su�x-friendly, and thus the de�nition is well-founded. Of course, a set of 2k

words can be su�x-friendly only if the words are all of length greater than k. If the set of factors of length `+k+1
of z contains a su�x-friendly subset of 2k words, then the technique described here can be recursively applied k
times.

Determining the biggest k such that a given set of words, Ω, contains a su�x-friendly subset of size 2k is
possible in time polynomial in the sizes of Ω and A.

Additionally, given a word ω, we de�ne the restriction of a multi-factor diamond to ω by removing nodes from
the original diamond until all the paths between the leaves and the root are labelled by ω. For instance, restricting
the multi-factor diamond of Figure 4 to ω1 means keeping only the �rst sub-diamond and the path ĥ1� → ĥ1��.

Now, assume that the set of factors of length ` + k + 1 of z contains a su�x-friendly subset of size 2k,
Ω = {ω1, . . . , ω2k}. The multi-factor diamond formed by herding together the 2k diamonds corresponding to the
ωi's can be used in place of any of them, as mentioned above. Therefore, its �frequency� is the sum of the frequency
of the ωi. However, once connected to the message, only its restriction to the (`+ k + 1)th letter of z before the
connection can be used. This restriction is a diamond with 2` leaves (followed by a �useless� path of k nodes).

The cost of building a 2k-multi-factor diamond is 2k the time of building a diamond of length ` plus the cost
of �nding 2k−1 additional collisions. Hence, the complexity is 2k · (2(n+`)/2+2+2n/2) ≈ 2k+(n+`)/2+2 compression
function calls. The cost of connecting the pre�x to the multi-factor diamond is still 2n−` (this step is the same as
in the original attack).

Lastly, the cost of connecting the multi-factor diamond to the message depends on the frequency of the factors
chosen to build it, which ought to be optimized according to the actual dithering sequence. Similarly to the
min-entropy, we denote by Hk

∞(z, ` + 1) the min-entropy associated with a 2k su�x-friendly set of length ` + 1
(i.e.,, the set of 2k su�x-friendly dithering sequences of length `+1 which o�ers the highest probability). Hence,

the cost of the �rst connection step is 2n−κ+H
k
∞(z,`+1) compression function calls.

The multi-factor diamond attack is demonstrated against Keränen-DMD in Section 6.3 and against Shoup's
UOWHF in Section 8.3. In both cases, it is more e�cient than the basic version of the attack.

6.3 Applications of the New Attacks

We now turn our attention to concrete instantiations of dithered hashing to which the attack can be applied
e�ciently.

Cryptanalysis of Keränen-DMD. The cost of the single-diamond attack against Keränen-DMD depends on
the properties of the sequence k that have been outlined in Section 5. Let us emphasize again that since it has a
very regular structure, k has an unusually low complexity, and despite being strongly repetition-free, the sequence
o�ers an extremely weak security level against our attack. Following the ideas of section 5.1, the min-entropy of k
for words of length ` ≤ 85 can be computed precisely: for 29 ≤ ` ≤ 85, the frequency of the most frequent factor
of length ` + 1 is 1/(4 · 85) = 2−8.4 (if all the factors of length, say, 50 were equally frequent, this would have
been 1/732 = 2−9.5). Therefore, H∞(z, `+ 1) = 8.4, and the cost of our attack on Keränen-DMD, assuming that
29 ≤ ` ≤ 85, is:

2
n
2 + `

2+2 + 2n−κ+8.4 + 2n−`.

19

If n is smaller than 3κ − 8.4, the optimal value of ` is reached by �xing ` = (n − 4)/3. For n in the same
order as 3κ, all the terms are about the same (for n > 3κ, the �rst term can be ignored). Hence, to obtain the
best overall complexity (or to optimize the online complexity) we need to �x ` such that 2n−κ+8.4 = 2n−`, i.e.,
` = κ−8.4. For example, for κ = 55 the optimal value of ` is 46.6. The online running time (which is the majority
of the cost for n > 3κ) is in this case 2n−46.6 which is signi�cantly smaller than 2n in spite of the use of dithering.
For larger values of `, i.e., 85 ≤ ` < 128, we empirically measured the min-entropy to be H∞(k, `+1) = 9.8, i.e.,
` = κ− 9.8 can be used when n ≈ 3κ.

We also successfully applied the multi-factor diamond attack to Keränen-DMD. We determined the smallest
` such that the set of factors of length ` of the Keränen sequence k contains a 2k su�x-friendly set, for various
values of k:

k min ` Factz(`)

4 4 88
5 6 188
6 27 540
7 109 1572
8 194 4256

From this table we conclude that our choice of k will most likely be 6, or maybe 7 if κ is larger than 109
(e.g., for SHA-256 and SHA-512). Choosing larger values of k requires ` to be larger than 194, and at the time
of this writing most hash functions do not allow messages of 2194 blocks to be hashed. Thus, these choices would
unbalance the cost of the two connection steps.

Amongst all the possible su�x-friendly sets of size 26 found in the factors of length about 50 of k, we chose
one having a high frequency using a greedy algorithm making use of the ideas exposed in Section 5.1. We note
that checking whether this yields optimal multi-factor diamonds is out of the scope of this paper. In any case,
we found the frequency of our multi-factor diamond to be 2−3.97. We provide an illustration of a slightly smaller
multi-factor diamond of size 25 in Figure 5.

If n is su�ciently large (for instance, n = 256), the o�ine part of the attack is still of negligible cost. Then,
the minimal online complexity is obtained when 2n−κ+3.97 = 2n−`, i.e., ` = κ−3.97. The complexity of the attack
is then roughly 2 · 2n−κ+4 for su�ciently large values of n. This represents a speed-up of about 21 compared to
the single-diamond attack.

Cryptanalysis of DMD-CP. We now apply our attack to Rivest's concrete proposal. We �rst need to evaluate
the complexity of its dithering sequence. Recall from Section 5.2 that it is based on the Keränen sequence, but
that we move on to the next symbol of the sequence only when a 13-bit counter over�ows (we say that it results
in the dilution of k with a 13-bit counter). The original motivation was to reduce the cost of the dithering, but
it has the unintentional e�ect of increasing the resulting sequence complexity. It is possible to study this dilution
operation generically, and to see to which extent it makes our attack more di�cult.

Lemma 2. Let z be an arbitrary sequence over A, and let d denote the sequence obtained by diluting z with a
counter over i bits. Then for every ` not equal to 1 modulo 2i, we have:

Factd(`) =
(
2i − (` mod 2i) + 1

)
· Factz

(⌈
` · 2−i

⌉)
+
((
` mod 2i

)
− 1
)
· Factz

(⌈
(`− 1) · 2−i

⌉
+ 1
)

Proof. The counter over i bits splits the diluted sequence c into chunks of size 2i (a new chunk begins when the
counter reaches 0). In a chunk, the letter from z does not change, and only the counter varies. To obtain the

20

c

a

d

b

c

c

a

da

ab
cb
db
c

bcd

b

cb

ca

c

db
d

a

b

cabadb

bcdbdadcdad
badac

c

d

a

bdc

dbcba

d

bcd

ab

daba

abcacdcb
cd

cda

bc

abacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcac

acdcbdcdadbdadcadabacadcdbcdcacbadabacabdad

abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacb

dbdacdcbdcdadbdadcadabacadcdbabcacdcbcdcadc

adabacabadbabcbdbadacdadbdcbabcbd

adcadabacadcdbabcacdcbcdcadcdbdab

cbacbcdcacdcbdcdadbdcbc

adcadabacabadbabcbdbada

abadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcb

dcadcdbdabacabadbabcbdbcbacbcdcacbabdabaca

dacabadabacbabdbcdcacdcbdcdadbdadcadabacad

dbcabadbabcbdbcbacbcdcacbabdcdacabadabacba

bdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcd

cadcdbcdcacbadabacabdadcadabacabadbabcbdbada

bcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcda

cbcdcacdbcbacbcdcacdcbdcdadbdcbcadabdbcbab

acabadbabcbdbadacdadbdcbabcbdbcabadbabc

acabadbabcbdbcbacbcdcacbabdabacadcbcdca

bcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabac

bcbdbadcdadbdacdcbdcdadbdadcadabacadcdbabca

adbabcbdbcbacbcdcacbabdabacadcbcdcacdbcba

cabadbabcbdbcbacbcdcacbabdcdacabadabacbab

cbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcd

dcdbcdcacbadabacabdadcadabacabadbabcbdbada

cbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadc

acdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba

dbadcdadbdacdcbdcdadbdadcadabacadcd

acbadabacabdadcadabacabadbabcbdbada

acbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcb

bcbacbcdcacdcbdcdadbdcbcadabdbcbabcbdcbc

abdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbc

cdbcdcacbadabacabdadcadabacabadbabcbdbada

b

c

a

d
b

a
a

c

a

d
c

b
b

c

d

c

b

c

a

c

c

d
b

c

a

b
b

c

d

a

a

c

Fig. 5: A Su�x-Friendly Set of 32 Factors of Length 50 from the Keränen Sequence.

number of factors of length `, let us slide a window of length ` over d. This window overlaps at least
⌈
` · 2−i

⌉
chunks (when the beginning of the window is aligned at the beginning of a chunk), and at most

⌈
(l − 1) · 2−i

⌉
+1

chunks (when the window begins just before a chunk boundary). These two numbers are equal if and only if ` ≡ 1
mod 2i. When this case is avoided, then these two numbers are consecutive integers.

This means that by sliding this window of length ` over d we observe only factors of z of length
⌈
` · 2−i

⌉
and⌈

` · 2−i
⌉
+1. Given a factor of length

⌈
` · 2−i

⌉
of z, there are

(
2i − (` mod 2i) + 1

)
positions of a window of length

` that allow us to observe this factor with di�erent values of the counter. Similarly, there are
((
` mod 2i

)
− 1
)

positions of the window that contain a given factor of z of length
⌈
` · 2−i

⌉
+ 1. ut

21

By taking 2 ≤ ` ≤ 2i, we have that
⌈
` · 2−i

⌉
= 1. Therefore, only the number of factors of length 1 and 2 of z

come into play. The formula can be further simpli�ed into:

Factd(`) = ` ·
(
Factz(2)− Factz(1)

)
+ (2i + 1) · Factz(1)− Fact2(z).

For the Keränen sequence with i = 13, this gives: Factd(`) = 8 · ` + 32760. Diluting over i bits makes the
complexity 2i times higher, but it does not change its asymptotic expression: it is still linear in `, even though
the constant term is bigger due to the counter. The cost of the attack is therefore:

2
n
2 + `

2+2 + (8 · `+ 32760) · 2n−κ + 2n−`.

At the same time, for any ` ≤ 2i, the most frequent factor of d is (α, 0), (α, 1), . . . , (α, ` − 1) when α is the
most frequent letter of the Keränen sequence. However, as shown in Section 5.1, all the letters have the same
frequency, so the most frequent factor of the diluted Keränen sequence d has a frequency of 2−15. Hence, the cost
of the above attack is:

2
n
2 + `

2+2 + 2n−κ+15 + 2n−`.

This is an example where the most frequent factor has a frequency which is very close to the inverse of the number
of factors (2−15 vs. 1/(8 · ` + 32760)). In this speci�c case it may seem that the gain of using the most frequent
element is small, but in some other cases, such as Shoup's construction discussed in Section 8, we expect much
larger gains.

As before, if n is greater than 3κ (in this speci�c case n ≥ 3κ − 41), the optimal value of ` is κ − 15, and
the complexity of the attack is then approximately: 2 · 2n−κ+15. For settings corresponding to SHA-1, a second
preimage can be found in expected time of 2120 (for 78 > ` > 40).

6.4 Countermeasures

We just observed that the presence of a counter increases the complexity of the attack. If we simply use a counter
over i bits as the dithering sequence, the number of factors of length ` is Fact(`) = 2i (as long as i ≤ `). The

complexity of the attack would then become: 2
n
2 + `

2+2 + 2n−κ+i + 2n−`. By taking i = κ, we obtain a scheme
which is resistant to our attack. This is essentially the choice made by the designers of Haifa [9] and the UBI
modes [23], but such a dithering sequence consumes (at least) κ bits of bandwidth.

Using a counter (i.e., a big alphabet) is a simple way to obtain a dithering sequence of high complexity.
Another, somewhat orthogonal, possibility to improve the resistance of Rivest's dithered hashing to our attack
is to use a dithering sequence of high complexity over a small alphabet (to preserve bandwidth). However, in
Section 7 we show how to attack dithering sequences over small alphabets, after a one-time heavy computation
that can then be used to �nd second preimages faster than exhaustive search, independent of the actual sequence.

There are Abelian Square-Free Sequences of Exponential Complexity. It is possible to construct an
in�nite abelian square-free sequence of exponential complexity, although we do not know how to do it without
slightly enlarging the alphabet.

We start with the abelian square-free Kera�nen sequence k over {a, b, c, d}, and with another sequence u
over {0, 1} that has an exponential complexity. For example, such a sequence can be built by concatenating
the binary encoding of all the consecutive integers. Then we can create a sequence z̃ over the union alphabet
A = {a, b, c, d, 0, 1} by interleaving k and u: z̃ = k[1].u[1].k[2].u[2]. . . . The resulting shu�ed sequence inherits

22

both properties: it is still abelian square-free, and has a complexity of orderΩ
(
2`/2

)
. Using this improved sequence,

with ` = 2κ/3, the total cost of the online attack is about 2n−2κ/3 (for n > 8κ/3).
As a conclusion, we note that even with this exponentially complex dithering sequence, our attack is still more

e�cient than brute-force in �nding second-preimages. Although it may be possible to �nd square-free sequences
with even higher complexity, it is probably very di�cult to achieve optimal protection, and the generation of the
dithering sequences is likely to become more and more complex.

Pseudorandom Sequences. Another possible way to improve the resistance of Rivest's construction against
our attack is to use a pseudo random sequence over a small alphabet. Even though it may not be repetition-free, its
complexity is almost maximal. Suppose that the alphabet has size

∣∣A∣∣ = 2i. Then the expected number of `-letter

factors in a pseudo random word of size 2κ is lower-bounded by: 2i·` ·
(
1 − exp−2

κ−i·`)
(refer to [26], theorem 2,

for a proof of this claim). The total optimal cost of the online attack is then at least 2n−κ/(i+1)+2 and is obtained
with ` = κ/(i + 1). With 8-bit dithering symbols for κ = 55, the complexity of our attack is about 2n−5, which
still o�ers a small advantage over the generic exhaustive search.

7 Dealing with High Complexity Dithering Sequences

As discussed before, one possible solution to our proposed attacks is to use a high complexity sequence. In this
section, we explore various techniques that can attack such sequences. We start with a simple generalization of
our proposed attack. We then follow with two new attacks which have an expensive precomputation, in exchange
for a signi�cantly faster online phases: The kite generator and a variant of Dean's attack tailored to these settings.

7.1 Generalization of the Previous Attack

The main limiting factor of the previous construction is the fact that the diamond structure can be positioned
only in speci�c locations. Once the sequence is of high enough complexity, then there are no su�cient number
of �good� positions to apply the attack. To overcome this, we generate a converging tree in which each node is
a 2|A|-collision. Speci�cally, for a pair of starting points ĥ0 and ĥ1 we �nd a 2|A|-collision under di�erent dithering
letters, i.e., we �nd x10, . . . , x

|A|
0 and x11, . . . , x

|A|
1 such that

f(ĥ0, x
1
0, α1) = f(ĥ0, x

2
0, α2) = . . . = f(ĥ0, x

|A|
0 , α|A|) = f(ĥ1, x

|A|
1 , α|A|) =

. . . = f(ĥ1, x
2
1, α2) = f(ĥ1, x

1
1, α1).

This way, we can position the diamond structure in any position, unrelated to the actual dithering sequence,
as we are assured to be able to �move� from the i'th level to the (i + 1)'th one, independently of the dithering
sequence.

To build the required diamond structure we propose the following algorithm: First for each starting point
(out of the 2`) �nd a |A|-collision (under the di�erent dithering letters). Now, it is possible to �nd collisions
between di�erent starting points (just like in the original diamond structure, where we use a |A|-collision rather
than one message). Hence, the total number of |A|-collisions which are needed from one speci�c starting point (in
order to build the next layer of the collision tree) is 2n/2−`/2. The cost for building this number of |A| collisions
is 2

2|A|−1
2|A| n−

`
2|A| for two chaining values ĥ0 and ĥ1, or a total of 2

2|A|−1
2|A| (n+`)+2 for the preprocessing step.

After the computation of the diamond structure (which may take more than 2n), one can connect to any point
in the message, independent of the used dithering letter. Hence, from the root of the diamond structure we try

23

the most common dithering letter, and try to connect to all possible locations (this takes time 2n−κ+H∞(z,1) ≤∣∣A∣∣ · 2n−κ). Connecting from the message to the diamond structure takes 2n−` as before.

The memory required for storing the diamond structure is O
(
|A| · 2`

)
. We note that the generation of the |A|-

collision can be done using the results of [28], which allow balancing between the preprocessing's time and its
memory consumption.

Finally, given the huge precomputation step, it may be useful to consider a time-memory-data tradeo� for
the �rst connection. This can be done by exploiting the 2n−κ+H∞(z,1) possible targets as multiple data points.
The analysis of this approach is the same as for the simple attack, and the resulting additional preprocessing
is 2n+H∞(z,1)−λ, which along with an additional 2n+H∞(z,1)−2λ memory reduces the online connection phase
to 2n−` + 22λ (for λ < κ−H∞(z, 1)).

7.2 The Kite Generator�Dealing with Small Dithering Alphabets

Even though the previous attack could handle any dithering sequence, it still relies on the ability to connect to the
message. We can further reduce the online complexity (as well as the o�ine) by introducing a new technique, called
the kite generator. The kite generator shows that a small dithering alphabet is an inherent weakness, and after
an O (2n) preprocessing, second-preimages can be found for messages of length 2l ≤ 2n/4 in O

(
22·(n−l)/3

)
time

and space for any dithering sequence (even of maximal complexity). Second-preimages for longer messages can
be found in time max

(
O
(
2k
)
,O
(
2n/2

))
and memory O

(∣∣A∣∣ · 2n−k) (where k is determined by the adversary).

Outline of the Attack. The kite generator uses a di�erent approach, where the connections to and from the
message are done for free, independent of the dithering sequence. In exchange, the precomputation phase is
more computationally intensive, and the patch is signi�cantly longer. In the precomputation phase the adversary
builds a static data structure, the kite generator: she picks a set of 2n−κ chaining values, B, that contains the IV .
For each chaining value ĥ ∈ B and any dithering letter α ∈ A, the adversary �nds two message blocks xĥ,α,1
and xĥ,α,2, such that f(ĥ, xĥ,α,1, α), f(ĥ, x,α,2, α) ∈ B. The adversary then stores all xĥ,α,1 and all xĥ,α,2 in the
data structure.

In the online phase of the attack, given a message M , the adversary computes h(M), and �nds with high

probability (thanks to the birthday paradox) an intermediate chaining value ĥi ∈ B that equals to hj obtained
during the processing of M (for n − κ < j < 2κ). The next step of the attack is to �nd a sequence of j blocks

from the IV that leads to this ĥi = hj . This is done in two steps. In the �rst step, the adversary performs a
random walk in the kite generator, by just picking random xĥ,α,i one after the other (according to the dithering

sequence), until ĥ′i−(n−κ) is computed (this ĥi−(n−κ) is independent of ĥi = hj). At this point, the adversary stops

her random walk, and computes from ĥi−(n−κ) all the possible 2(n−κ)/2 chaining values reachable through any
sequence of xĥ,α,1 or xĥ,α,2 (which agrees with the dithering sequence)�this amounts to consider all the paths
starting from where the random walk stopped inside the kite generator and trying all the paths whose labels
agree with the dithering sequence. Then, the adversary computes the �inverse� tree, starting from ĥi, and listing
the expected 2(n−κ)/2 values4 that may lead to it following the dithering sequence. If there is a collision between
the two lists (which happens with high probability due to the birthday paradox), then the adversary just found

the required path�she �connected� the IV to ĥi. Fig 6 illustrates the process.
The precomputation takes O

(∣∣A∣∣ · 2n−κ · 2κ) = O
(∣∣A∣∣ · 2n). The memory used to store the kite generator

is O
(∣∣A∣∣ · 2n−κ). The online phase requires O (2κ) compression function calls to compute the chaining values

4 See [21] for a formal justi�cation of the size of the inverse �tree�.

24

IV H(M)hj = ĥi
M

MitM

hi−(n−κ)

Fig. 6: A �Kite� Connected to and from the Message.

associated with M , and O
(
2(n−κ)/2

)
memory and time for the meet-in-the-middle phase.5 We conclude that the

online time is max
(
O (2κ) ,O

(
2(n−κ)/2

))
and the total used space is O

(∣∣A∣∣ · 2n−κ). For the SHA-1 parameters
of n = 160 and κ = 55, the time complexity of the new attack is 255, which is just the time needed to hash the
original message. However, the size of the kite generator for the above parameters exceeds 2110.

To some extent, the �converging� part of the kite generator can be treated as a diamond structure (for each
end point, we can precompute this �structure�). Similarly, the expanding part, can be treated as the trials to

connect to this diamond structure from ĥ′i−(n−κ).

We note that the attack can also be applied when the IV is unknown in advance (e.g., when the IV is time
dependent or a nonce), with essentially the same complexity. When we hash the original long message, we have
to �nd two intermediate hash values hi and hj (instead of IV and hi) which are contained in the kite generator
and connect them by a properly dithered kite-shaped structure of the same length.

The main problem of this technique is that for the typical case in which κ < n/2, it uses more space than
time, and if we try to equalize them by reducing the size of the kite generator, we are unlikely to �nd any common
chaining values between the given message and the kite generator.

A �Connecting� Kite Generator In fact, the kite generator can be seen as an expandable message tolerating
the dithering sequence, and we can use it in a more �traditional� way.

We �rst pick a special chaining value N in the kite generator. From this N we are going to connect to the
message (following the approaches suggested earlier, as if N is the root of a diamond structure). Then, it is
possible to connect from the IV to N inside the kite generator.

For a kite of 2` chaining values, the o�ine complexity isO
(∣∣A∣∣ · 2n), and the online complexity is 2n−κ+H∞(z,1)+

2κ+2`/2+1. The memory required for the attack is O
(
2`
)
. It is easy to see that for κ < n/2, the heavy computation

is the connection step, which seems a candidate for optimization.
We can also connect from N to the message using a time-memory-data tradeo� (just like in Section 3). In

this case, given the 2κ−H∞(z,1) targets, the precomputation is increased by 2n−κ+H∞(z,1) (which is negligible with

5 The meet-in-the-middle can be done using memoryless variants as well, possibly in exchange for an increased time
complexity.

25

Attack
Complexity Avg.

O�ine Online Memory Patch

Adapted (Sect. 6.1) 2(n+`)/2+2 2κ + 2n−κ+H∞(z,`+1) + 2n−` 2`+1 `+ 2

Multi-Factor Diamond (Sect. 6.2) 2k+(n+`)/2+2 2κ + 2n−κ+H
k
∞(z,`+1) + 2n−` 2k+`+1 k + `+ 2

Generalized (Sect. 7.1)
2

2

∣∣A∣∣−1

2

∣∣A∣∣ ·(n+`)+2 2κ + 2n−κ+H∞(z,1) + 2n−`
∣∣A∣∣ · 2`+1 `+ 2

Kite Generator (Sect. 7.2)
∣∣A∣∣ · 2n 2κ + 2(n−κ)/2+1

∣∣A∣∣ · 2n−κ+1 2κ−1

�Connecting� Kite (Sect. 7.2)
∣∣A∣∣ · 2n 2κ + 2n−κ+H∞(z,1) + 2`/2+1

∣∣A∣∣ · 2`+1 2κ−1

�Self-loop� (Sect. 7.3)
∣∣A∣∣ · 2n 2κ + 2n−κ+H∞(z,1)

∣∣A∣∣ 2κ−1

Hk
∞(z, `+ 1) � the min-entropy of all sets of 2k su�x-friendly dithering sequences of length `+ 1.

Table 3. Comparison of Long Message Second-Preimage Attacks on Dithered Hashing

respect to the kite's precomputation). The online complexity is reduced to 22(n−t−κ+H∞(z,1)) for an additional 2t

memory (as long as 2(n− t− κ+H∞(z, 1)) ≥ 2(κ−H∞(z, 1)), i.e., t ≤ n− 2(κ−H∞(z, 1))). The overall online
complexity is thus 2`/2+1 + 22(n−t−κ+H∞(z,1)), which is lower bounded by 2`/2+1 + 22(κ−H∞(z,1)).

7.3 A Variant of Dean's Attack for Small Dithering Alphabet

Given the fact that the connection into the message is the most time consuming part of the attack, we now
present a degenerate case of the kite generator. This construction can also be considered as an adaptation of
Dean's attack to the case of small dithering alphabet.

Assume that the kite generator contains only one chaining value, namely, IV . For each dithering letter α, we
�nd a message block xα such that f(IV, xα, α) = IV . Then, we can �move� from IV to IV under any dithering
letter. At this point, we connect from the IV to the message (either directly, or using time-memory-data tradeo�),
and �traverse� the degenerate kite generator under the di�erent dithering letters.

Hence, a standard implementation of this approach would requireO
(∣∣A∣∣ · 2n) precomputation and 2n−κ+H∞(z,1)

online computation (with
∣∣A∣∣ memory). A time-memory-data variant can reduce the online computation to

22(n−t−κ+H∞(z,1)) in exchange for 2t memory (as long as t ≤ n− 2(κ−H∞(z, 1))).
Table 3 compares all the techniques suggested for dithered hashing.

8 Matching the Security Bound on Shoup's UOWHF

In this section, we show that the idea of turning the herding attack into a second-preimage attack is generic
enough to be applied to Shoup's Universal One-Way Hash Function (UOWHF) [50]. A UOWHF is a family of
hash functions H for which any computationally bounded adversary A wins the following game with negligible
probability. First, A chooses a message M , then a key K is chosen at random and given to A. The adversary wins
if she generates a message M ′ 6= M such that HK(M) = HK(M ′). This security property, also known as target
collision security or everywhere second preimage security [48] of a hash function, was �rst introduced in [44].

Bellare and Rogaway studied the construction of variable input length TCR hash functions from �xed input
length TCR compression functions in [7]. They also demonstrated that the TCR property is su�cient for a
number of signing applications. Shoup [50] improved on the former constructions by proposing a simpler scheme

26

that also yields shorter keys (by a constant factor). It is a Merkle-Damgård-like mode of operation, but before
every compression function evaluation in the iteration, the state is updated by XORing one out of a small set of
possible masks into the chaining value. The number of masks is logarithmic in the length of the hashed message,
and the order in which they are used is carefully chosen to maximize the security of the scheme. This is reminiscent
of dithered hashing, except that here the dithering process does not decrease the bandwidth available to actual
data (it just takes an additional XOR operation).

We �rst brie�y describe Shoup's construction, and then show how our attack can be applied against it. The
complexity of the attack demonstrates that for this particular construction, Shoup's security bound is nearly tight
(up to a logarithmic factor).

8.1 Description of Shoup's UOWHF

Shoup's construction has some similarities with Rivest's dithered hashing. It starts from a universal one way
compression function f that is keyed by a key K, fK : {0, 1}n × {0, 1}m → {0, 1}n. This compression function is

then iterated, as described below, to obtain a variable input length UOWHF Hf
K .

The scheme uses a set of masks µ0, . . . , µκ−1 (where 2κ − 1 is the length of the longest possible message),
each one being a random n-bit string. The key of the whole iterated function consists of K and of these masks.
After each application of the compression function, a mask is XORed to the chaining value. The order in which
the masks are applied is de�ned by a speci�ed sequence over the alphabet A = {0, . . . , κ− 1}. The scheduling
sequence is z[i] = ν2(i), for 1 ≤ i ≤ 2κ, where ν2(i) denotes the largest integer ν such that 2ν divides i. Let M be
a message that can be split into r blocks x1, . . . , xr of m bits each and let h0 be an arbitrary n-bit string. Shoup's
UOWHF is de�ned as hi = fK

(
hi−1 ⊕ µν2(i), xi

)
, with Hf

K(M) = hr.

8.2 An Attack (Almost) Matching the Security Bound

In [50], Shoup proves the following security result:

Theorem 2 (Shoup, 2000, [50]). If an adversary is able to break the target collision-resistance of Hf with
probability ε in time T , then one can construct an adversary that breaks the target collision-resistance of f in time
T , with probability ε/2κ.

In this section we show that this bound is almost tight. First, we give an alternate de�nition of the dithering
sequence zShoup. In fact, the alphabet over which the sequence zShoup[i] = ν2(i) is built is not �nite, as it is the
set of all integers. In any case, we de�ne:

ui =

{
0 if i = 1,

ui−1.(i− 1).ui−1 otherwise.

As an example, we have u4 = 010201030102010. The following facts about zShoup are easy to establish:

i) |ui| = 2i − 1
ii) The number of occurrences of ui in uj (with i < j) is 2j−i.
iii) The frequency of ui in the (in�nite) sequence zShoup is 2

−i.
iv) The frequency of a factor is the frequency of its highest letter.
v) Any factor of zShoup of length ` contains a letter greater or equal to blog2 (`)c.

27

Let us consider a factor of length ` of zShoup. It follows from the previous considerations that its frequency is
upper-bounded by 2−blog2(`)c−1, and that the pre�x of length ` of zShoup has a greater or equal frequency. The
frequency of this pre�x is lower-bounded by the expression: 2−blog2(`)c−1 ≥ 1/(2 · `).

Our attack can be applied against the TCR property of Hf as described above. Choose at random a (long)
target message M . Once the key is chosen at random, build a collision tree using a pre�x of zShoup of length
`, and continue as described in Section 6. The total cost of the attack is thus the sum of the o�ine and online
complexities of the attack6 of Section 6:

T = 2
n
2 + `

2+2 + 2 · ` · 2n−κ + 2n−`.

This attack breaks the target collision-resistance with a constant success probability (of about 63%). Therefore,
with Shoup's security reduction, one can construct an adversary against f with running time T and probability
of success 0.63/2κ. If f is a black box, the best attack against f 's TCR property is exhaustive search. Thus, the
best adversary in time T against f has success probability of T/2n. When n ≥ 3κ, T ' (2κ + 2) · 2n−κ (with
` = κ − 1), and thus the best adversary running in time T has success probability O (κ/2κ) when the success
probability of the attack is 0.63/2κ. This implies that there is no attack better than ours by a factor greater than
O (κ) or, in other words, there is only a factor O (κ) between Shoup's security proof and our attack.

We note that in this case, there is a very large gap between the frequency of the most frequent factor and the
upper-bound provided by the inverse of the number of factors. Indeed, it can be seen that:

Factui(`) =


0 if |ui| < `

2i − ` if |ui−1| < ` ≤ |ui|
`+ Factui−1

(`) if |ui−1| ≥ `

And the expression of the number of factors follows:

Factuκ(`) = 2dlog2(`+1)e +
(
κ− dlog2(`+ 1)e − 1

)
· `

Hence, if all of them would appear with the same probability, the time complexity of the attack would have been

T = 2
n
2 + `

2+2 +
(
2dlog2(`+1)e +

(
κ− dlog2(`+ 1)e − 1

)
· `
)
· 2n−κ + 2n−`,

which is roughly κ times bigger than the previous expression.
The ROX construction by [4], which also uses Shoup's sequence to XOR with the chaining values is susceptible

to the same type of attack, which is also provably near-optimal.

8.3 Application of the Multi-Factor Diamonds Attack

To apply the multi-factor diamond attack described in section 6.2, we need to identify a big enough su�x-friendly
subset of the factors of zShoup of a given size, and to compute its frequency.

We choose to have end diamonds of size ` = 22
i−1. Let us keep in mind that ` and κ must generally be of the

same order to achieve the optimal attack complexity, which suggests that i should be close to log2 log2 κ.
Now, we need to identify a su�x-friendly set of factors of zShoup in order to build a multi-factor diamond. In

fact, we focus on the factors that have ui as a su�x. It is straightforward to check that they form a su�x-friendly
set. It now remains to estimate its size and its frequency.

6 We note that in the TCR security game, the adversary obtains the masks after she commits to the target message.

28

Lemma 3. let Ωj be the set of words ω of size ` = 22
i−1 such that ω.ui is a factor of uj. Then:

i) If κ ≥ 2i, then |Ωκ| =
(
κ− 2i + 1

)
· 22

i−i−1.

ii) There are 22
i−i−1 (distinct) words in Ωκ whose frequency is 2−j (with 2i ≤ j ≤ κ).

Proof. We �rst evaluate the size of Ω, and for this we de�ne fi(κ), the number of factors of uκ that can be written

as ω.ui, with |ω| = 22
i−1:

|Ωκ| =

{
0 if 2κ < 22

i−1 + 2i

|Ωκ−1|+ 22
i−i−1 if 2κ ≥ 22

i−1 + 2i
(3)

The �rst case of this equality is rather obvious. The second case stems from the following observation: let x
be a factor of uj , for some j. Then either x is a factor of uj−1, or u contains the letter �j − 1� (both cases are
mutually exclusive). Thus, we only need to count the numbers of factors of Ωκ containing the letter �κ − 1� to
write a recurrence relation.

If 2κ ≥ 22
i−1+2i, then ui appears 2

κ−i times in uκ, at indices that are multiples of 2
i. The unique occurrence

of the letter �κ− 1� in uκ is at index 2κ−1 − 1. Thus, elements of Ωκ containing the letter �κ− 1� are present in
uκ at indices 2κ−1 − 22

i−1 + α · 2i, with 0 ≤ α < 22
i−i−1. Therefore, there are exactly 22

i−i−1 distinct elements
of Ωκ containing �κ − 1� in uκ (they are necessarily distinct because they all contain �κ − 1� only once and at
di�erent locations).

Now that Equation (3) is established, we can unfold the recurrence relation. We note that we have for i ≥ 1,⌈
log2

(
22
i−1 + 2i

)⌉
= 2i, and thus we obtain (assuming that κ ≥ 2i):

|Ωκ| =
(
κ− 2i + 1

)
· 22

i−i−1

Also, for 2i ≤ j ≤ κ, Ωκ contains precisely 22
i−i−1 words whose greatest letter is �j−1�, and thus whose frequency

in zShoup is 2
−j . ut

By just selecting the factors of Ωκ of the highest frequency, we would herd together 2
2i−i−1 = `/ (1 + log2 `) di-

amonds, each one being of frequency 1/(2`). The frequency of the multi-factor diamond then becomes 1/ (2 + 2 log2 `).
The cost of the multi-factor diamond attack is thus roughly:

`

1 + log2 `
·
(
2(n+`)/2+2 + 2

n
2

)
+ (1 + log2 `) · 2n−κ+1 + 2n−`.

If n � 3κ, the computation of the multi-diamond is negligible compared to the reminder of the attack, and
the cost of the attack is O (log κ · 2n−κ). Therefore, with the same proof as in the previous subsection, we can
show that there is a factor O (log κ) between Shoup's security proof and our attack. Note that, depending on the
parameters, this improved version of the attack may be worse than the basic version.

9 Second-Preimage Attack with Multiple Targets

Both the older generic second-preimage results of [19, 31] and our results can be applied e�ciently to multiple
target messages. The work needed for these attacks depends on the number of intermediate hash values of the
target message, as this determines the work needed to �nd a linking message from the collision tree (our attack)
or from the expandable message ([19, 31]). A set of 2R messages, each of 2κ blocks, has the same number of
intermediate hash values as a single message of 2R+κ blocks, and so the di�culty of �nding a second-preimage

29

for one of a set of 2R such messages is no greater than that of �nding a second-preimage for a single 2R+κ block
target message. In general, for the older second-preimage attacks, the total work to �nd one second-preimage
falls linearly in the number of target messages; for our attack, it falls also linearly as long as the total number of
message blocks, 2S , satis�es S < (n− 4)/3.

Consider for example an application which is using SHA-1 to hash 230 di�erent messages, each of 220 message
blocks. Finding a second-preimage for a given one of these messages using the attack of [31] requires about
2141 work. However, �nding a second-preimage for one of these of these 230 target messages requires 2111 work.
(naturally, the adversary cannot control for which target message he �nds a second-preimage.)

This works because we can consider each intermediate hash value in each message as a potential target to
which the root of the collision tree (or an expandable message) can be connected, regardless of the message it
belongs to, and regardless of its length. Once we connect to an intermediate value, we have to determine to which
particular target message it belongs to. Then we can compute the second-preimage of that message. Using similar
logic, we can extend our attack on Rivest's dithered hashes, Shoup's UOWHF, and the ROX hash construction
to apply to multiple target messages (we note that in the case of Shoup's UOWHF and ROX, we require that the
same masks are used for all the messages).

This observation is important for two reasons: First, simply restricting the length of messages processed by
a hash function is not su�cient to block the long-message attack; this is relevant for determining the necessary
security parameters of future hash functions. Second, this observation allows long-message second-preimage at-
tacks to be applied to target messages of practical length. A second-preimage attack which is feasible only for
a message of 250 blocks has little practical relevance, as currently there are probably no applications which use
messages of this length. A second-preimage attack which can be applied to a large set of messages of, say, 224

blocks each, can o�er a practical impact. While the computational requirements of these attacks are still infeasible,
this observation shows that the attacks can apply to messages of practical length. Moreover, for hashes which use
the same dithering sequence z in all invocations, this has an a�ect on the frequency of the most common factors
(especially when the most common factor is relatively in the beginning of the dithering sequence, e.g., Shoup's
UOWHF with the same set of keys).

The long-message second-preimage attack on tree-based hashes o�ers approximately the same improvement,
as the number of targets is increased. Thus, since a tree hash with an n-bit compression function output and 2s

message blocks o�ers a 2n−s+1 long-message second-preimage attack, a set of 2r messages, each 2s message blocks
long and processed with a tree hash, will allow a second-preimage on one of those messages with about 2n−s−r+1

work.

Acknowledgments. We thank Lily Chen and Barbara Guttman for their useful comments. We also thanks
Jean-Paul Allouche, Je�rey Shallit, and James D. Currie for pointing out the existence of abelian square-free
sequences of high complexity. In addition, we are grateful for the anonymous reviewers for their constructive
comments and suggestions.

This work has been funded in part by the Research Council KU Leuven: GOA TENSE (GOA/11/007) and
OT/13/071, the IAP Program P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and in part by the
European Commission through the ICT program under contract ICT-2007-216676 ECRYPT II. The �rst author
is supported by a Postdoctoral Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). The third
author was supported in part by the France Telecom Chair and in part by ISF grant 827/12.

References

1. Allouche, J.P.: Sur la complexité des suites in�nies. Bull. Belg. Math. Soc. 1, 133�143 (1994), citeseer.ist.psu.edu/
allouche94sur.html

30

2. Andreeva, E., Bouillaguet, C., Fouque, P., Hoch, J.J., Kelsey, J., Shamir, A., Zimmer, S.: Second preimage at-
tacks on dithered hash functions. In: Smart, N.P. (ed.) Advances in Cryptology - EUROCRYPT 2008, 27th An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings. Lecture Notes in Computer Science, vol. 4965, pp. 270�288. Springer (2008),
http://dx.doi.org/10.1007/978-3-540-78967-3_16

3. Andreeva, E., Mennink, B.: Provable chosen-target-forced-mid�x preimage resistance. In: Miri, A., Vaudenay, S. (eds.)
Selected Areas in Cryptography - 18th International Workshop, SAC 2011, Toronto, ON, Canada, August 11-12,
2011, Revised Selected Papers. Lecture Notes in Computer Science, vol. 7118, pp. 37�54. Springer (2011), http:
//dx.doi.org/10.1007/978-3-642-28496-0_3

4. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-Property-Preserving Iterated Hashing: ROX. In: Kurosawa,
K. (ed.) ASIACRYPT'07. Lecture Notes in Computer Science, vol. 4833, pp. 130�146. Springer (2007)

5. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE. Submission to NIST (2008), available
online at http://131002.net/blake/blake.pdf

6. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai and
Chen [34], pp. 299�314

7. Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Jr., B.S.K. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 1294, pp. 470�484. Springer (1997)

8. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of SHA-0 and Reduced SHA-1. In:
Cramer [17], pp. 36�57

9. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions � HAIFA (2006), http://www.csrc.nist.
gov/pki/HashWorkshop/2006/Papers/DUNKELMAN_NIST3.pdf, presented at the second NIST hash workshop (August
24-25, 2006)

10. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeo�s for Stream Ciphers. In: Okamoto, T. (ed.)
ASIACRYPT. Lecture Notes in Computer Science, vol. 1976, pp. 1�13. Springer (2000)

11. Brassard, G. (ed.): CRYPTO '89, Santa Barbara, California, USA, August 20-24, 1989, Proceedings, Lecture Notes in
Computer Science, vol. 435. Springer (1990)

12. de Cannière, C., Mendel, F., Rechberger, C.: Collisions for 70-Step SHA-1: On the Full Cost of Collision Search. In:
Adams, C.M., Miri, A., Wiener, M.J. (eds.) Selected Areas in Cryptography. Lecture Notes in Computer Science, vol.
4876, pp. 56�73. Springer (2007)

13. de Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai and Chen
[34], pp. 1�20

14. de Cannière, C., Rechberger, C.: Preimages for Reduced SHA-0 and SHA-1. In: Wagner, D. (ed.) CRYPTO. Lecture
Notes in Computer Science, vol. 5157, pp. 179�202. Springer (2008)

15. Cobham, A.: Uniform tag seqences. Mathematical Systems Theory 6(3), 164�192 (1972)
16. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In:

CRYPTO'05. pp. 430�448 (2005)
17. Cramer, R. (ed.): Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, Lecture Notes in
Computer Science, vol. 3494. Springer (2005)

18. Damgård, I.: A Design Principle for Hash Functions. In: Brassard [11], pp. 416�427
19. Dean, R.D.: Formal Aspects of Mobile Code Security. Ph.D. thesis, Princeton University (January 1999)
20. Ehrenfeucht, A., Lee, K.P., Rozenberg, G.: Subword Complexities of Various Classes of Deterministic Developmental

Languages without Interactions. Theor. Comput. Sci. 1(1), 59�75 (1975)
21. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, chap. 12. John Wiley & Sons (1971)
22. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Func-

tion Family. Submission to NIST (2008), available online at http://www.skein-hash.info/sites/default/files/

skein.pdf

23. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash Func-
tion Family. Submission to NIST (Round 1) (2008), http://www.skein-hash.info/sites/default/files/skein1.1.
pdf

31

24. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In: Dwork, C. (ed.) CRYPTO.
Lecture Notes in Computer Science, vol. 4117, pp. 41�59. Springer (2006)

25. Hellman, M.E.: A Cryptanalytic Time-Memory Trade O�. In: IEEE Transactions on Information Theory. vol. 26, pp.
401�406 (1980)

26. Janson, S., Lonardi, S., Szpankowski, W.: On average sequence complexity. Theor. Comput. Sci. 326(1-3), 213�227
(2004)

27. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M.K. (ed.)
CRYPTO'04. Lecture Notes in Computer Science, vol. 3152, pp. 306�316. Springer (2004)

28. Joux, A., Lucks, S.: Improved Generic Algorithms for 3-Collisions. In: Matsui [38], pp. 347�363
29. Joux, A., Peyrin, T.: Hash Functions and the (Ampli�ed) Boomerang Attack. In: Menezes, A. (ed.) CRYPTO. Lecture

Notes in Computer Science, vol. 4622, pp. 244�263. Springer (2007)
30. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In: Vaudenay, S. (ed.) EUROCRYPT.

Lecture Notes in Computer Science, vol. 4004, pp. 183�200. Springer (2006)
31. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less than 2n Work. In: Cramer [17], pp.

474�490
32. Keränen, V.: Abelian Squares are Avoidable on 4 Letters. In: Kuich, W. (ed.) ICALP. Lecture Notes in Computer

Science, vol. 623, pp. 41�52. Springer (1992)
33. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology ePrint Archive, Report 2006/105

(2006), http://eprint.iacr.org/
34. Lai, X., Chen, K. (eds.): Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory

and Application of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings, Lecture
Notes in Computer Science, vol. 4284. Springer (2006)

35. Leurent, G.: Md4 is not one-way. In: Nyberg, K. (ed.) FSE. Lecture Notes in Computer Science, vol. 5086, pp. 412�428.
Springer (2008)

36. Leurent, G.: Practical key-recovery attack against APOP, an MD5-based challenge-response authentication. IJACT
1(1), 32�46 (2008)

37. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B.K. (ed.) ASIACRYPT. Lecture Notes in
Computer Science, vol. 3788, pp. 474�494. Springer (2005)

38. Matsui, M. (ed.): Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, Lecture Notes
in Computer Science, vol. 5912. Springer (2009)

39. Matusiewicz, K., Naya-Plasencia, M., Nikolic, I., Sasaki, Y., Schlä�er, M.: Rebound attack on the full lane compression
function. In: Matsui [38], pp. 106�125

40. Mendel, F., Peyrin, T., Rechberger, C., Schlä�er, M.: Improved Cryptanalysis of the Reduced Grøstl Compression
Function, ECHO Permutation and AES Block Cipher. In: Jr., M.J.J., Rijmen, V., Safavi-Naini, R. (eds.) Selected
Areas in Cryptography. Lecture Notes in Computer Science, vol. 5867, pp. 16�35. Springer (2009)

41. Mendel, F., Rechberger, C., Schlä�er, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool
and Grøstl. In: Dunkelman, O. (ed.) FSE. Lecture Notes in Computer Science, vol. 5665, pp. 260�276. Springer (2009)

42. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography, citeseer.ist.psu.edu/428600.
html

43. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard [11], pp. 428�446
44. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: STOC. pp. 33�43.

ACM (1989)
45. Pansiot, J.J.: Complexité des Facteurs des Mots In�nis Engendrés Par Morphismes Itérés. In: Paredaens, J. (ed.) 11th

ICALP, Antwerpen. LNCS, vol. 172, pp. 380�389. Springer (july 1984), http://lsiit.u-strasbg.fr/Publications/
1984/Pan84a

46. Pleasants, P.A.: Non-repetitive sequences. Mat. Proc. Camb. Phil. Soc. 68, 267�274 (1970)
47. Rivest, R.L.: Abelian Square-Free Dithering for Iterated Hash Functions. Presented at ECRYPT Hash Function Work-

shop, June 21, 2005, Krakow, and at the Cryptographic Hash workshop, November 1, 2005, Gaithersburg, Maryland
(2005)

32

48. Rogaway, P., Shrimpton, T.: Cryptographic Hash-Function Basics: De�nitions, Implications, and Separations for Preim-
age Resistance, Second-Preimage Resistance, and Collision Resistance. In: Roy, B.K., Meier, W. (eds.) FSE. Lecture
Notes in Computer Science, vol. 3017, pp. 371�388. Springer (2004)

49. Sasaki, Y., Aoki, K.: Finding preimages in full md5 faster than exhaustive search. In: Joux, A. (ed.) EUROCRYPT.
Lecture Notes in Computer Science, vol. 5479, pp. 134�152. Springer (2009)

50. Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: Preneel, B. (ed.) EUROCRYPT'00.
Lecture Notes in Computer Science, vol. 1807, pp. 445�452. Springer (2000)

51. Shoup, V. (ed.): Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings, Lecture Notes in Computer Science, vol. 3621. Springer
(2005)

52. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In: Cramer
[17], pp. 1�18

53. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup [51], pp. 17�36
54. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer [17], pp. 19�35
55. Wang, X., Yu, H., Yin, Y.L.: E�cient Collision Search Attacks on SHA-0. In: Shoup [51], pp. 1�16

33

A A Su�x-Friendly Set for zShoup

0

1

2

0

010

3

2

3

4

0102010

010

0102010

010201030102010

6

5

5

4

5

4

4

3

010201030102010401020103010201050102010301020104010201030102010

0102010301020104010201030102010

0102010301020104010201030102010

010201030102010

0102010301020104010201030102010

010201030102010

010201030102010

0102010

8

7

7

6

7

6

6

5

7

6

6

5

6

5

5

4

0102010301020104010201030102010

0102010301020104010201030102010

0102010301020104010201030102010

0102010301020104010201030102010

010201030102010

7

6

7

6

7

6

7

6

6

5
0102010301020104010201030102010

7

6

The numbers mentioned in the �gure refer to the masks in use (i.e., 0 corresponds to µ0 and 0102 corresponds to four
invocations of the compression function using µ0, µ1, µ0, µ2 as masks (in that order)).

Fig. 7: A Su�x-Friendly Set of 2k Factors for zShoup.

34

