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Disclaimer	 

Commercial equipment and	 materials are identified	 in order to	 adequately specify certain
procedures. In	 no case does such identification	 imply recommendation or endorsement by	
the National Institute of Standards and Technology, nor does it	 imply that	 the materials or
equipment identified are	 necessarily	 the	 best available	 for the	 purpose. 

Abstract 

An overview of the challenges associated with robot workcell calibration and registration is
presented,	 with a particular focus on the challenges faced by small- and medium-sized 
manufacturing enterprises (SMEs).	 Considerations for the barriers to integrating systems-
of-systems	 workcells	 are described, and the proposed solutions from literature are 
presented. We discuss the impacts that calibration	 and registration	 have on	 many common	
robot applications, and highlight specific use cases	 of robot-sensor	 and robot-robot system
registration. 
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Introduction	

A	new	vision	for	U.	S.	manufacturing	is	emerging	to	strengthen	U.	S.	competitiveness	in	the	
face	 of	 global	 trends	 that	 are	 driving	 manufacturers	 towards	 dramatically	 greater	
responsiveness	 and	 innovation	 in	 their	 enterprises.	 	 This	 vision	 requires	 development	 of	
fully-integrated,	 collaborative	manufacturing	 systems	which	 respond	 in	 real	 time	 to	meet	
changing	 demands	 and	 conditions	 in	 the	 factory,	 in	 the	 supply	 network,	 and	 in	 meeting	
customer	needs.		Because	of	their	inherent	flexibility	and	reusability,	robotic	systems	are	an	
essential	 part	 of	 achieving	 this	 vision.	 	 To	 succeed,	 robotic	 systems	 need	 to	 be	 highly-
capable,	 perceptive,	 dexterous,	 mobile,	 and	 relocatable	 and	 be	 able	 to	 operate	 safely	 in	
collaboration	with	humans	or	other	robots,	easily	 tasked	and	re-tasked,	and	be	 integrated	
into	 the	 rest	 of	 the	 enterprise	 seamlessly	 and	 quickly;	 in	 other	words,	 the	 robot	 systems	
need	 to	 be	 smart.	 	 The	 National	 Institute	 of	 Standards	 and	 Technology	 (NIST)	 is	
contributing	 standards	 and	measurement	 science1	to	 enable	 dynamic	 production	 systems	
and	 rapid	 design-to-product	 transformation,	 with	 an	 emphasis	 on	 assembly-centric	
manufacturing.	

These	smarter	robots	will	be	able	to	(1)	perform	assembly-centric	tasks	in	less-structured	
surroundings	 by	 relying	 on	 distributed	 and	 sensor-derived	 information	 about	 the	
workspace	rather	than	on	rigid	fixturing	of	components,	(2)	work	collaboratively	with	other	
robots	and	with	humans,	and	(3)	will	be	able	to	navigate	around	the	shop	floor,	bringing	the	
tools	and	functionality	to	where	they	are	needed.						

In	addition	to	executing	a	Program	that	seeks	to	provide	the	missing	measurement	science	
to	enable	attaining	the	vision	and	benefits	of	robotic	systems	for	smart	manufacturing,	NIST	
has	 launched	 a	 project	 to	 specifically	 investigate	 the	 technical	 barriers	 that	 limit	 the	
adoption	 of	 robotic	 systems	 by	 small	 and	 medium	 enterprises	 (SMEs).	 Installing	 and	
maintaining	robotic	systems	is	challenging	and	will	become	more	so	as	the	robots	become	
more	 sophisticated.	 	 The	 calibration	 of	 robots	 and	 registration	 of	 multiple	 sensors,	 in	
particular,	 requires	 expertise	 and	 equipment	 that	 many	 small-	 and	 medium-sized	
manufacturers	typically	may	not	have.	

Calibration	 refers	 to	 the	 process	 of	 measuring	 the	 characteristics	 and	 performance	 of	 a	
system,	 developing	 a	 mathematical	 model	 of	 the	 system	 from	 those	 measurements,	 and	
then	verifying	and	validating	the	model’s	accuracy	in	representing	the	system.		This	model	
is	then	used	to	evaluate	and	tune	the	performance	and	behavior	of	the	system	through	the	
continuous	 assessment	 of	 the	 errors	 between	 the	 ideal	 (model)	 and	 actual	 performance.		
For	robotic	systems,	these	models	capture	the	kinematic	and	dynamic	characteristics	of	the	
physical	 robot.	 	 These	 models	 are	 then	 verified	 through	 detailed	 measurements,	 and	 a	
subset	 of	 parameterized	 controls	 that	 represent	 the	 robot’s	 behaviors	 are	 selected	 and	
integrated	into	the	motion	control	loop.			

For	robot	users,	calibration	is	essential	for	reaping	the	full	advantages	from	robotic	systems.	

1	Measurement	 Science	 includes	 development	 of	 performance	 metrics,	 measurement	 and	 testing	 methods,	
predictive	 modeling	 and	 simulation	 tools,	 knowledge	 modeling,	 protocols,	 technical	 data,	 and	 reference	
materials	 and	 artifacts;	 Evaluation	 of	 technologies,	 systems,	 and	 practices,	 including	 uncertainty	 analysis;	
Development	 of	 the	 technical	 basis	 for	 standards,	 codes,	 and	 practices—in	 many	 instances	 via	 testbeds,	
consortia,	 standards	 and	 codes	 development	 organizations,	 and/or	 other	 partnerships	 with	 industry	 and	
academia;	and	Conduct	of	inter-comparison	studies	and	calibrations	
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Calibration	 enhances	 robot	 positioning	 accuracy,	 enables	 vision	 systems	 to	 accurately	
report	 object	 identification	 and	 localization	 information,	 and	 ensures	 that	 force	 sensors	
within	 the	 robotic	 system	know	 the	difference	between	a	 slight	 tap	on	 its	human	partner	
and	an	impact	that	could	result	in	injury.	Calibration	procedures	allow	users	to	“retune”	the	
robot	back	to	its	original,	stock	configuration	even	as	the	system	ages	through	mechanical	
wear,	 dimensional	 drifts	 due	 to	 environmental	 changes,	 and	 even	 through	 component	
replacements.	 	 Referring	 to	 the	 robot	 arm,	 “calibration	 errors	 can	 be	 classified	 in	 five	
categories:	 environmental	 (such	 as	 those	 caused	 by	 temperature	 drifts),	 parametric	 (for	
example,	manufacturing	and	assembly	errors),	measurement	(caused	by	limited	resolution	
of	 the	 motor	 encoders),	 computational	 (computer	 round-off,	 and	 steady	 state	 control	
errors),	and	application	(such	as	installation	errors)”	[1].		Similar	categories	of	errors	exist	
for	 sensors:	 	 environmental	 (e.g.,	 lighting),	 parametric	 (such	 as	 lens	 distortion	 due	 to	
manufacturing	errors),	measurement	(caused	by	limited	resolution	of	the	sensor	or	limited	
frequency	 of	 data	 capture),	 computational	 (e.g.,	 algorithmic	 limitations,	 round-off),	 and	
application	(e.g.,	reflectivity	and	other	properties	of	the	parts;	field	of	view	being	offset	by	
being	bumped).				
	
Another	 term	 related	 to	 calibration	 that	 is	 frequently	 used	 with	 respect	 to	 robots	 is	
“registration.”	 	Registration	 refers	 to	 the	process	of	measuring	and	mapping	 the	 feedback	
from	 one	 system	 to	 the	 model	 of	 another,	 correcting	 for	 differences	 in	 resolution,	 scale,	
direction,	 and	 timing.	 	 Such	 feedback	 includes,	 but	 is	 not	 limited	 to,	 position	 data,	
coordinate	 frame	data,	 raw	sensor	data,	and	complex	world	models.	 	For	robotic	systems,	
such	registration	includes	mapping	sensor	outputs	such	as	images	or	torque	measurements	
to	the	kinematic	and	dynamic	profiles	of	the	robot,	and	vice	versa.		In	multi-robot	systems,	
registration	also	refers	to	mapping	the	coordinate	frames	and	motion	characteristics	of	the	
robots	to	one	another.	
	
Without	proper	periodic	calibration,	robotic	systems	will	not	perform	adequately,	causing	
failures	and	expensive	down	time.		In	addition	to	giving	the	user	faith	that	the	robot	will	go	
to	its	assigned	position	when	requested,	a	well-qualified	robotic	system	(in	other	words,	a	
calibrated	one)	enables	users	 to	 implement	off-line	programming	and	 simulation.	 	With	a	
well-calibrated	 robotic	 system,	 users	 can	 avoid	 costly	 mistakes	 by	 testing	 out	 the	 robot	
program	prior	to	implementation	of	the	program	on	the	shop	floor	and	in	being	able	to	plan	
out	the	next	program	offline	while	the	robot	is	still	in	use	with	the	first	task.			
	
The	 competitive	 advantages	 that	 smart	 robot	 systems	promise	 are	mostly	out	of	 reach	of	
most	 small	 and	 medium	 enterprises	 until	 the	 barriers	 to	 adopting	 robotic	 systems	 are	
reduced	significantly.	 	Of	 course,	 larger	manufacturers	will	 also	benefit	 from	reducing	 the	
technical	barriers	for	installing	and	maintain	robot	systems.		Calibration	is	one	such	major	
technical	barrier.	
	
This	report	provides	a	high-level	overview	of	the	various	calibration-related	challenges	that	
currently	 exist	 and	 are	 expected	 to	multiply	with	more	 advanced	 robots	 that	 are	mobile,	
sensor-laden,	and	required	to	work	safely	 in	collaboration	with	other	robots	and	humans.		
In	 the	 following	 sections,	 we	 will	 briefly	 discuss	 the	 importance	 of	 calibration	 and	
registration	in	sensor-driven	robot	applications,	and	the	application	challenges	faced	by	all	
scales	of	manufacturers.		We	also	provide	a	high-level	overview	of	various	techniques	used	
to	calibrate	and	register	robots,	sensors,	and	virtual	models.		We	conclude	with	a	discussion	
regarding	 how	 toolkits	 for	 reducing	 the	 burden	 of	 calibrating	 and	 registering	 workcell	
elements	will	enable	a	broader	adoption	of	robot	systems	in	manufacturing	applications.	
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Background	

Robot	systems	have	altered	the	face	of	manufacturing	on	many	fronts.	They	have	increased	
quality	 and	 throughput	 through	 their	 superhuman	 repeatability	 and	 speed.	 These	
advantages	follow	lengthy	and	expensive	up-front	preparations.					
	
One	 of	 the	 most	 pressing	 issues	 identified	 at	 a	 workshop	 exploring	 Opportunities	 in	
Robotics,	Automation,	and	Computer	Science	held	at	the	White	House	Conference	Center	in	
2013	[2]	was	related	to	the	cost	of	deploying	and	managing	a	production	line:		“According	to	
the	[International	Federation	of	Robotics]	IFR	World	Robotics	2009	the	cost	of	deploying	an	
automation	 system	 can	be	 split	 into	20	%	 to	25	%	 for	 the	 robot,	 20	%	 to	30	%	auxiliary	
hardware,	and	45	%	to	60	%	systems	integration.	This	fraction	appears	to	have	not	changed	
significantly	over	the	last	four	years.	The	cost	of	systems	integration	is	significant	and	there	
is	 very	 limited	 reuse	 of	 software	 from	 one	 application	 to	 the	 next.	 In	 addition,	 the	 time	
required	 to	 deploy	 a	 line	 can	 be	 significant.”	 A	 significant	 investment	 in	 effort	 and	
intellectual	 capital	 is	 required	 to	 integrate	 robots	 and	 sensors	 into	 the	 manufacturing	
workflow.	 	 These	 systems	 must	 be	 both	 individually	 and	 collectively	 calibrated	 and	
registered	together.	Calibration	and	registration	errors	and	uncertainties	must	be	identified	
and	measured,	and	compensations	for	these	errors	and	uncertainties	must	be	put	into	effect.		
These	 steps	must	 be	 taken	 periodically	 as	 robots	 and	 sensors	 age,	 or	more	 frequently	 as	
process	 flows	 change,	 product	 lines	 evolve,	 new	 manufacturing	 uncertainties	 are	
introduced	 (e.g.,	 as	 a	 new	batch	 of	 components	 is	 delivered	 from	 an	 external	 vendor),	 or	
equipment	and	tools	are	replaced.		Such	an	investment	is	particularly	challenging	to	small-	
and	medium-sized	enterprises,	whose	business	models	are	more	likely	to	involve	custom	or	
one-off	manufacturing	of	products	[3].	 	The	report	from	the	Opportunities	Workshop	goes	
on	 to	 note	 that	 the	 European	 Union	 is	 starting	 a	 program	 to	 counter	 this	 hindrance	 to	
robotics	adoption,	especially	by	SMEs:		The	“factory	in	a	day”	project	[4,	5]	aims	to	develop	
technologies	 and	 tools	 that	 reduce	 the	 installation	 and	 startup	 time.	 	 Among	 the	 areas	
highlighted	 as	 being	 essential	 to	 achieve	 this	 is	 auto-calibration	 by	 the	 robots	 and	 their	
sensors.	
	
The	IFR	figure	quoted	in	the	Opportunities	Workshop	report	correlates	to	other	estimates,	
such	as	that	the	cost	of	installation	and	supporting	infrastructure	in	a	cell	is	normally	up	to	
ten	 times	 the	 cost	of	 the	 robot	 [6].	 	Another	 significant	 statistic	 is	 that	45	%	of	 the	 robot	
supply	is	taken	up	by	10	%	of	the	industry,	primarily	by	companies	that	have	more	than	500	
employees	(mostly	automotive)	[7],	and	that	90	%	of	the	potential	users	have	not	adopted	
robotics	 for	manufacturing	 [8].	 	 Given	 that	 it	 is	 estimated	 that	 98	%	of	 all	manufacturing	
enterprises	 are	 considered	 small-	 or	 medium-sized,	 it	 is	 clear	 that	 SMEs	 represent	 the	
principal	demographic	that	can	benefit	from	automation.		Even	if	the	situation	has	improved	
significantly	 since	 these	 figures	 were	 estimated,	 it	 is	 unlikely	 that	 the	 installation	 and	
infrastructure	costs	have	dropped	sufficiently	to	foster	dramatically	greater	penetration	by	
robots,	especially	in	small	to	medium	enterprises.		Many	experts	believe	that	SMEs	hold	the	
future	 of	 U.S.	 manufacturing.	 	 However,	 SMEs	 are	 the	 least	 likely	 to	 adopt	 the	 newest	
technologies	due	to	limited	capital	investment	funds,	engineering	staff,	and	limited	proof	of	
performance	of	the	technologies	themselves.	
	
In	 the	 subsequent	 sections,	we	will	 examine	 the	 contributors	 to	 these	 disproportionately	
large	installation	and	maintenance	costs	that	dissuade	greater	use	of	robot	systems.		
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Barriers	to	Ease	of	Adoption	of	Robotics		

The	domain	of	industrial	robots	use	and	integration	has	been	dominated	by	the	large-scale	
automotive	 and	 electronics	 industries	 [9].	 	 These	 industries	 fall	 into	 the	 “large	 volume”	
(with	 high	 product	mix,	 and/or	 short	 product	 life)	 [2].	 	 Although	 recent	 trends	 show	 an	
expansion	 of	 robot	 adoption	 outside	 of	 these	 areas,	 progression	 into	 these	 new	 fields	 is	
slow.	
	
As	mentioned	 previously,	 sources	 cite	 the	 cost	 of	 integration	 as	 being	 a	 key	 factor	 in	 the	
hesitancy	 for	 introducing	 robotics	 into	 production	 lines	 that	 currently	 see	 little	 to	 no	
automation.	 	 Cost	 alone,	 however,	 cannot	 account	 for	 this	 limited	 adoption	 of	 robotics	
outside	of	the	automotive	and	electronics	domains.		Many	industrial	robots	currently	on	the	
market	 are	 clearly	 intended	 for	 targeted	 applications	 within	 these	 two	 domains.		
Application-specific	 packages	 and	design	 features	 have	 limited	use	 outside	 of	 these	 niche	
uses.	 	 Recent	 market	 trends,	 however,	 witness	 new	 designs	 of	 robots	 emerging	 in	 the	
market	 that	 are	 more	 general	 purpose,	 and	 focus	 on	 human-robot	 collaboration	 and	
modularity	rather	than	single	purpose	task	performance.		Although	these	new	robot	designs	
are	correlated	with	the	growing	expansion	of	robots	outside	of	automotive	and	aerospace	
manufacturing,	any	form	of	causality	is	not	evident.	
	
These	new	robot	designs	 and	applications	pose	an	 interesting	 challenge.	 	Trends	 indicate	
that	they	are	becoming	increasingly	easier	to	use,	but	ultimately	more	difficult	to	integrate	
due	to	the	sacrifices	incurred	by	efforts	to	reduce	cost	and	broaden	application	scope.		Some	
collaborative	 robot	 designs,	 for	 instance,	 sacrifice	 accuracy	 and	 repeatability	 in	 favor	 of	
inherent	safety,	which	impacts	the	robots’	reliability	on	the	production	floor.		Other	designs	
tout	 flexibility	 and	modularity	 of	 design	 of	 components,	 but	 suffer	 in	 terms	 of	 optimized	
path	 planning	 and	 compromised	 structural	 rigidity	 due	 to	 the	 open-ended	 nature	 of	 the	
robots’	 designs.	 	 Clearly,	mechanisms	 for	 providing	 calibration	 and	 registration	 in	 a	 clear	
and	accessible	manner	would	benefit	these	new	robot	technologies,	and	ease	the	process	of	
adoption	into	new	markets.	
	
It	is	also	evident	that	the	broad	field	of	manufacturing	robotics	is	too	vast	for	NIST’s	Robotic	
Systems	for	Smart	Manufacturing	(RSSM)	program	to	tackle	all	at	once.		Instead,	we	need	to	
focus	 on	 a	 specific,	 example	 domain	 that	 represents	 a	 significant	 area	 for	 growth	 across	
multiple	markets.		As	manufacturers	are	looking	towards	automation	in	general	as	part	of	a	
strategy	to	help	reshore	or	retain	jobs	here	in	the	United	States	(US),	they	are	considering	
automation	 in	 their	 assembly	 tasks.	 While	 the	 automotive	 industry	 is	 the	 predominant	
industry	 for	assembly,	other	 industries	 such	as	durable	goods	 (e.g.,	household	appliances,	
lawn	 equipment),	 electronics,	 and	 medical	 devices	 industries	 are	 increasing	 their	 push	
towards	using	robotic	assembly	in	their	manufacturing	process.		NIST	has	identified	robotic	
assembly	 in	 its	 Smart	Manufacturing	portfolio	 as	 being	 an	 exemplar	domain	 that	 impacts	
multiple	industries	at	all	scales.	 	It	thus	follows	that	we	use	this	application	as	our	guiding	
inspiration	 for	 identifying	 approaches	 for	 calibration	 and	 registration.	 	 The	 calibration	
challenges	 posed	 by	 the	 assembly	 application	 are	 expected	 to	 generalize	 to	 many	 other	
robotic	applications.				
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We	begin	our	discussion	with	a	definition	of	assembly	from	Whitney	[10]:	
	

“An	 assembly	 is	 a	 chain	 of	 coordinate	 frames	 on	 parts	 designed	 to	 achieve	
certain	 dimensional	 relationships,	 called	 key	 characteristics,	 between	 some	
of	the	parts	or	between	features	on	those	parts.”	

	
The	 focus	 in	 this	 definition	 is	 on	 dimensions	 and	 locations.	 	 Therefore	 an	 essential	
requirement	for	a	robot	performing	assembly	operations	is	its	ability	to	correctly	deal	with	
spatial	coordinates.		This	is	a	challenging	and	necessary	aspect	of	robotic	implementations,	
regardless	of	whether	they	are	the	more	traditional	industrial	arms	with	few,	if	any,	sensors	
beyond	those	measuring	joint	positions	or	state-of-the	art	collaborative	mobile	robots	that	
are	sensor-laden.	
	
A	mechanical	 assembly	 is	more	 traditionally	 defined	 as	 “the	 use	 of	 fastening	methods	 to	
mechanically	attach	parts	together.”		
	
The	 former	 definition	 is	 missing	 explicit	 mention	 of	 several	 other	 requirements	 for	
achieving	the	desired	dimensional	relationships	and	indeed	for	performing	the	attachment	
described	 in	 the	 latter	definition:	 	 the	 robot	has	 to	know	which	part(s)	 to	pick	up,	where	
they	are	located,	how	to	grasp	them,	where	to	move	them,	how	to	orient	them	to	perform	
the	join	(or	mate)	operation,	and	how	to	join	them	to	the	base	sub-assembly.	Fasteners	are	
special	 types	 of	 components	 whose	 role	 is	 to	 bind	 other	 components	 together.	 	 	 Join	
operations	may	require	use	of	fasteners.	The	steps	or	phases	in	one	assembly	join	operation	
are	 shown	 in	 Figure	 1.	 They	 are	 abstracted,	 simplified,	 and	 idealized	 for	 discussion	
purposes.	 	 For	 a	 more	 complete	 look	 at	 assembly	 operations	 and	 the	 performance	
requirement	implications	for	robot	systems,	see	[11].		We	now	review	each	of	these	phases	
with	 respect	 to	 the	 implications	 current	 and	 future	 practice	 may	 have	 on	 the	 setup	 and	
programming	of	robotic	workcells.		

	
Figure	1:		Simplified	View	of	Steps	in	an	Assembly	Operation	

Locating the Part  
In	typical	robot	systems,	great	care	is	taken	in	presenting	parts	to	the	robot	in	predictable	
and	repeatable	locations.	Traditional	industrial	arms	have	exquisite	repeatability	(meaning	
they	 will	 return	 to	 precisely	 the	 same	 location	 over	 and	 over)	 and	 no	means	 of	 sensing	
(either	by	vision,	haptic	feedback,	or	other	means)	if	a	part	is	not	where	it	is	expected.		No	
explicit	 “Locate	 Part”	 phase	 is	 necessary.	 Therefore,	 the	 position	 of	 the	 robot’s	 gripper	
(what	 it	uses	 to	pick	up	a	part)	has	 to	be	predictable	and	has	 to	match	where	 the	control	
software	believes	it	to	be.		To	ensure	that,	the	robot	gripper	positional	calibration	process	is	
used	 to	 identify	 the	 parameters	 for	 the	 kinematics	 of	 the	 robot,	 based	 on	 the	 physical	
geometries	and	relationships	of	its	links	and	joints.		
	
Next-generation	robots	 that	use	sensing	 to	 identify	and	 locate	parts	no	 longer	rely	on	 the	
repeatability	of	 the	arm	and	on	precise	positioning	of	parts.	 	 Instead,	 they	use	cameras	or	
other	 sensing	 means	 to	 identify	 and	 locate	 the	 correct	 part.	 	 The	 sensors	 need	 to	 be	
calibrated	so	that	their	errors	are	accounted	for	(e.g.,	distortion	in	their	field	of	view).		The	

Locate Part Grasp Part Move Part 
Reposition/
Re-orient 

Part 

Place part 
into 

assembly 
Release part 

Fasten  
(if required) 
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sensor’s	 frame	of	 reference	must	be	 registered	with	 that	 of	 the	 robot	 such	 that	 the	 robot	
knows	the	location	of	the	part.		If	there	are	multiple	sensors,	they	may	need	to	be	registered	
with	each	others’	 frames	of	 reference.	 	To	 this	end,	 it	 is	 important	 to	distinguish	between	
the	sensor’s	calibration	and	 the	robot’s	calibration.	 	Subsequent	sections	will	discuss	how	
camera	calibration	may	be	used	to	help	achieve	robot	calibration.	

Grasping the Part 
In	traditional	robotic	workcells,	as	discussed	in	the	previous	section,	the	part	to	be	grasped	
is	 assumed	 to	 be	 in	 a	 known	 pre-determined	 position.	 	 The	 end-of-arm	 tooling	 is	 often	
customized	 to	 be	 able	 to	 pick	 up	 the	 part.	 	 Indeed,	 the	 robot	 may	 need	 to	 change	 out	
grippers	 for	 different	parts	within	 the	 same	assembly.	 	 The	 robot’s	 calibration	procedure	
has	to	take	into	account	the	tool	center	point	(TCP),	which	is	a	key	position	on	the	gripper,	
often	 the	 center	 between	 the	 two	 jaws	 since	 this	 is	 usually	 the	 point	 whose	 position	 is	
controlled	during	the	arm’s	motion.	 	Therefore,	there	will	need	to	be	multiple	TCPs	stored	
with	the	robot’s	controller	if	there	are	multiple	grippers/end	effectors.		Grippers	that	have	
multiple	opening	positions	will	need	to	be	calibrated	to	ensure	that	the	100	%	open,	50	%	
open,	etc.	are	at	the	correct	aperture.				
	
As	more	 general-purpose	 end	 effectors	 enter	 the	marketplace,	 there	 are	 some	 additional	
sensor	 modalities	 that	 are	 becoming	 readily	 available.	 	 Embedded	 proximity	 sensors	
provide	confirmation	that	a	part	is	within	the	gripper.	Some	grippers	have	force	feedback,	
which	requires	calibration	to	avoid	exerting	too	much	force	(and	damaging	the	part)	or	too	
little	(and	not	having	a	secure	hold	on	it).		As	bio-inspired	robotic	hands	with	at	least	three	
fingers,	 very	 high	 degrees-of-freedom,	 and	 tactile	 sensing	 emerge,	 the	 calibration	
requirements	 and	 complexities	 increase.	 	 Each	 finger	 has	 to	 be	 calibrated	 for	 force	 and	
position.	 	 Specialized	 sensors,	 such	 as	 for	 shear	 force,	 vibration,	 and	 temperature,	 which	
assist	the	tactile	responsiveness	of	the	hand,	also	require	calibrations.				

Moving the Part 
During	assembly,	a	robot’s	motions	may	be	coarsely	classified	as	either	gross	or	 fine.	 	We	
will	cover	gross	motions	in	this	section.	Fine	motions	segue	into	insertion,	which	is	covered	
in	 the	 next	 section.	 	 Gross	 motions	 are	 used	 to	 bring	 a	 part	 to	 its	 destination	 assembly	
location	and	occur	over	distances	that	are	 large	compared	to	the	part	being	moved.	 	They	
tend	 to	 be	 as	 fast	 as	 possible	 and	 do	 not	 require	 high	 accuracy,	 hence,	 relatively	 large	
trajectory	errors	are	allowable.		
	
For	traditional	robotic	arms	that	do	not	have	sensors	to	detect	obstacles	or	part	locations,	
the	movements	will	be	performed	“blindly”	since	they	assume	that	conditions	are	controlled	
in	 their	 surroundings	 so	 their	 path	 will	 be	 obstacle-free.	 	 The	 TCP	 will	 follow	 the	
programmed	path,	assuming	that	the	robot	arm	and	end	effector	are	correctly	calibrated.	
	
A	next	generation	robot	may	rely	on	sensors	to	ensure	movements	do	not	cause	collisions	
with	obstacles.		Collaborative	robots	may	have	embedded	sensing	that	detects	the	presence	
and/or	 contact	 with	 an	 object	 and	 causes	 the	 arm	 to	 stop	 or	 “give	 way”	 to	 the	 object.	
Obstacle	 detection	 sensors	 require	 calibration	 and	 registration	 for	 the	 system	 to	 plan	
obstruction-free	motion	paths.	 	Contact	or	 force	sensing	for	collaborative	robots	will	need	
calibration	as	well.	
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Placing the Part within the Assembly 
Fine	motions	are	used	for	the	final	approach	towards	the	mating	phase	and	for	the	mating	
task	 itself.	 	 Fine	motions	 are	 small	with	 respect	 to	 the	part	 size	 and	may	occur	when	 the	
parts	 are	 in	 contact.	 	 Errors	 in	 position	 and	 orientation	 in	 this	 phase	 are	 usually	 small	
enough	that	they	are	detected	only	by	force	sensors.	
	
In	current	practice,	passive	mechanical	devices,	such	as	a	remote	center	compliance,	may	be	
used	 to	 aid	 the	 final	motion	 if	 insertion	 is	 involved.	 	 Some	 robots	may	 have	 active	 force	
sensing	available	mounted	on	the	faceplate	prior	to	the	end	effector	and	if	so,	both	the	force	
sensing	and	its	effect	on	the	robot’s	motions	have	to	undergo	calibration.	
	
The	 force	 sensing	 options	 are	 expanding	 for	 future	 implementations.	 	 Robotic	 hands	will	
sense	 forces	 in	 the	normal	as	well	as	 the	 tangential	direction.	 	These	multi-modal	sensing	
systems	 have	 to	 be	 calibrated	 and	 registered	 together.	 	 Fine	 positioning,	 which	 includes	
being	 able	 to	maintain	 small	 angular	 resolutions,	 places	 exacting	 demands	 on	 calibration	
and	registration	of	the	positioning	and	sensing	systems	within	the	hand	and	the	arm.		

Manipulating (Reorienting or Repositioning) Parts 
In	 current	 implementations,	 the	 ability	 of	 robots	 to	 reposition	 parts	 once	 they	 have	
acquired	them	is	fairly	limited.	[12]		Parts	may	have	to	be	placed	in	an	intermediate	fixture	
to	allow	the	robots	to	grasp	them	in	a	different	orientation	prior	to	placing	the	part	within	
the	assembly.	 	The	principal	 calibration	need	 therefore	 is	 for	 the	arm’s	and	end	effector’s	
position.	
	
Dexterous	manipulation	 is	 an	 active	 area	 of	 research	 and	 promises	 robotic	 systems	with	
greater	flexibility.	 	The	ability	of	humans	to	manipulate	a	wide	range	of	objects	with	great	
dexterity	 and	 precision	 enables	 them	 to	 operate	 productively	 in	 the	 world.	 	 People	 can	
assemble,	 disassemble,	 and	 determine	 many	 part	 properties	 through	 touch.	 	 This	 is	
currently	 beyond	 the	 capabilities	 of	 even	 the	 most	 sophisticated	 robots,	 and	 is	 a	 major	
obstacle	to	moving	robots	into	small	and	medium-size	enterprises.		
	
One	 of	 the	 essential	 capabilities	 needed	 to	 address	 the	 challenges	 in	 next-generation	
automation	 is	 believed	 to	 be	 robots	 that	 are	 equipped	with	 dexterous	manipulators	 [13].		
Dexterous	manipulation	 is	 an	 area	of	 robotics	 in	which	multiple	manipulators,	 or	 fingers,	
cooperate	 to	 grasp	 and	 manipulate	 objects	 [14].	 While	 the	 definition	 emphasizes	 the	
“fingers”,	(i.e.,	the	end	effector),	whole-arm	dexterity	may	be	required	in	certain	operations,	
such	as	when	the	robot	is	to	access	confined	or	hard-to-reach	locations	on	a	workpiece.		The	
definition	reflects	that	many	references	to	dexterous	manipulation	imply	bio-inspired,	more	
general-purpose	robotic	hands,	rather	than	the	arm	itself.	Dexterous	manipulation	requires	
the	user	to	consider	the	object	to	be	manipulated	in	terms	of	force(s)	on	the	object	and	what	
movements	are	needed.			
	
Participants	in	the	2013	Dexterous	Manipulation	for	Manufacturing	Applications	Workshop	
[15]		identified	several	key	challenges,	most	of	which	apply	to	the	future	vision	for	assembly	
robotic	systems:		

1. Making	it	easier	to	train	robots	in	challenging	and	dynamic	environments;		
2. Developing	 a	 general-purpose	 end	 of	 the	 arm	 device	 that	 is	 able	 to	 grasp	 and	

manipulate	a	wide	range	of	parts	reliably	in	any	orientation;		
3. A	robot	being	more	 “human-like”	 in	 its	 capabilities	 to	 grasp	and	manipulate	parts	
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based	on	past	learned	knowledge;		
4. The	 ability	 to	 use	 tactile	 sensors	 (i.e.,	 force/pressure,	 shear,	 temperature,	 and	

vibration)	that	provide	the	robot	a	sense	of	touch;		
5. Robotics	 systems	 having	 the	 flexibility	 to	 support	 large-scale	 manufacturing	

products	as	well	as	detailed	small-scale	ones;		
6. Robotic	 systems	 attaining	 the	 ability	 to	 work	 in	 confined	 spaces	 (and	 possibly	

hazardous	environments)	with	close	tolerances.			
	
Future	robot	systems	will	be	able	to	perform	in-hand	manipulation	to	re-orient	parts	prior	
to	insertion	or	join	operations	and	be	able	to	dexterously	access	difficult-to-reach	assembly	
geometries.	 	This	ability	will	be	highly	dependent	on	multi-finger	mechanical	designs	 that	
are	rich	in	sensor	cues,	including	normal	and	tangential	forces,	vibration,	and	thermal	flux.		
The	arm	 itself	may	require	an	array	of	 force	or	 tactile	 sensors.	 	Therefore,	 the	calibration	
and	registration	requirements	 for	 this	breed	of	dexterous	manipulators	(arms	and	hands)	
will	be	rigorous	and	demanding.	

Fastening  
Assemblies	 use	 a	 wide	 range	 of	 fastening	 methods.	 	 Methods	 range	 from	 snap	 or	 press	
fitting,	 to	 use	 of	 ancillary	 components	 such	 as	washers,	 pins,	 screws,	 nuts,	 and	 rivets,	 to	
processes	 such	 as	 soldering,	 welding,	 or	 gluing.	 Robotic	 implementations	 today	 rely	 on	
specialized	 end	 effectors	 and	 precise	 positioning	 for	 fastening	 operations.	 	 These	 include	
drill	 and	 screw	 spindles	 or	 multi-function	 end	 effectors	 that	 house	 drills,	 screwdriver	
spindles,	 rivet	 guns,	 glue	 dispensers,	 and	 other	 tools	 in	 various	 combinations.	 	 Positional	
accuracy	is	paramount	for	placement	of	end	effectors	such	as	drills.	 	 In	some	applications,	
such	as	for	aircraft	assemblies,	accuracies	on	the	order	of	0.25	mm	or	better	are	required.	
[16]	 For	 certain	 tools,	 particularly	 those	 that	 are	 rotational,	 orientation	 accuracy	 is	 also	
essential.	[17]	For	tightening	fasteners,	force	sensing	may	be	incorporated	in	the	specialized	
end	 effectors.	 	 Some	 current	 implementations	 use	 vision	 to	 more	 precisely	 locate	 the	
fastening	 position,	 e.g.,	 a	 hole	 or	 a	 bolt	 onto	which	 to	 place	 a	washer	 or	 nut.	 	 Again,	 the	
coordinate	 frame	 of	 the	 vision	 system	 must	 be	 well-calibrated	 with	 that	 of	 the	 robot’s	
position.	 	 Some	 advocate	 re-calibrating	 very	 frequently,	 in	 case	 the	 camera	 gets	 bumped	
between	operations.		[18]	
	
As	 robotic	 systems	 become	 more	 widely	 deployed	 for	 assembly	 operations,	 the	 use	 of	
specialized	 fastening	end-of-arm	 tooling	will	 continue.	 	The	sensitivity	and	adaptability	of	
these	tools	will	 increase.	 	Furthermore,	their	sensing	will	be	fused	with	that	of	the	robot’s	
arm	to	provide	unified	feedback	on	position,	torque,	forces,	and	other	criteria	for	effective	
and	 efficient	 fastening.	 Therefore,	 sensors	 embedded	 in	 specialized	 tools	 (drills,	
screwdrivers,	 riveters,	 etc.)	 will	 need	 calibration	 with	 those	 on	 the	 arm	 (which	 could	
include	cameras	for	position	determination	as	well	as	force	and	torque,	vibration,	etc.).				

Integrated System Considerations 
Beyond	 the	 basic	 principles	 of	 material	 handling	 in	 single-robot	 workcells,	 integrating	
robots	into	larger	manufacturing	chains	presents	additional	challenges	requiring	calibration	
and	registration.	 	Such	challenges	are	centered	on	the	coordination	of	multiple	automated	
systems,	 including	robotic	vehicles,	conveyor	and	feeding	systems,	monitoring	systems,	as	
well	as	other	robots	and	even	human	operators.		
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Transporting	Materials	

Automated	 or	 automatic	 guided	 vehicles	 (AGVs)	 are	 mobile	 robots	 used	 in	 industrial	
applications	 to	 transport	 materials	 in	 a	 manufacturing	 facility	 or	 warehouse.	 	 	 Current	
models	typically	use	markers	in	the	environment	(embedded	in	the	floor,	ceilings,	or	walls)	
to	 guide	 their	 paths.	 Some	 AGV	 models	 have	 on-board	 sensing,	 particularly	 to	 detect	
humans	or	objects	in	their	paths	and	halt	their	motion.	Depending	on	the	type	of	guidance	
approach	 used	 by	 the	 AGV,	 there	will	 be	 differing	 calibration	 requirements.	 Examples	 of	
guidance	 technologies	 include	 magnetic,	 inductive,	 retro-reflective,	 and	 visual	 fiducial	
markers.		For	the	simplest	guidance	approach,	which	has	the	vehicle	follow	embedded	paths	
in	the	floor,	for	example,	there	is	minimal	calibration/registration	required.	However,	if	the	
vehicle’s	 navigation	 relies	 on	 reference	 markers	 in	 the	 environment	 (possibly	 in	
conjunction	 with	 its	 own	 internal	 position	 estimate	 based	 on	 dead	 reckoning	 or	 other	
technique),	 then	 a	 lengthy	 calibration	 process	 is	 necessary	 upon	 installation.	 	 Should	 the	
environmental	 conditions	 change	 (some	 markers	 may	 become	 covered	 by	 equipment	 or	
bumped,	the	paths	are	extended	into	new	areas,	etc.),	recalibration	may	be	needed	as	well.		
Calibrations	must	be	performed	for	any	additional	onboard	sensors,	particularly	 for	 those	
for	 safety.	 	 If	multiple	 sensors	 are	 to	 be	 used	 to	 detect	 or	 confirm	 an	 obstacle,	 then	 they	
must	be	 registered	 together	 to	 ensure	 that	 their	different	perspectives	map	 to	 a	 common	
coordinate	frame.				
	
Future	 mobility	 advances	 in	 sensing	 and	 planning	 will	 enable	 AGVs	 to	 have	 greater	
autonomy	and	flexibility.		They	will	have	a	greater	variety	of	onboard	sensors	for	safety,	for	
localizing	 themselves,	 and	 for	 planning	 and	 adapting	 paths	 around	 obstacles.	 	 Safe	 and	
effective	use	will	require	verification	and	validation	that	the	mobile	platform’s	position	and	
velocity	 sensors	 are	 calibrated	 and	 registered	 together,	 especially	 for	 safety	 reasons.		
Furthermore,	mobile	manipulators	 (articulated	 robot	 arms	mounted	 on	mobile	 platforms	
[19])	are	anticipated	as	being	critical	technologies	for	agile	manufacturing	applications,	and	
ultimately	pose	the	greatest	uncertainty	and	risk	in	human-occupied	factory	environments.		
Hence,	mobile	manipulators	will	pose	significant	demands	on	ensuring	that	all	components	
are	calibrated	and	registered.					

Offline	Programming	

Due	to	the	time	and	expense	required	to	bring	a	new	robotic	workcell	online,	end	users	and	
integrators	 prefer	 to	 design	 and	 program	 a	 workcell	 in	 a	 computer-aided	 design	 (CAD)	
system	 prior	 to	 even	 beginning	 workcell	 construction	 (e.g.,	 [17,	 20,	 21]).	 	 This	 is	 called	
offline	 programming	 and	 provides	 the	 opportunity	 to	 reduce	 the	 programming	 time	 and	
improve	productivity.	Neto,	Pires,	and	Moreira	 [21]	note	 that	a	good	offline	programming	
tool	 	 is	 an	 important	 tool	 for	SMEs	who	do	not	have	personnel	 trained	 to	operate	 robots.		
However,	the	CAD	layout	of	the	workcell	–	as	well	as	the	models	of	the	robot(s)	–	represent	
idealized	 versions	 of	 the	 system	 as	 a	 whole,	 and	 minor	 uncertainties	 and	 measurement	
imperfections	cause	the	real	and	virtual	workcells	and	robot	motions	to	be	misaligned.			
	
In	 current	 practice,	 considerable	post-construction	 effort	may	be	 required	 to	 compensate	
for	these	translational	errors	prior	to	deploying	in	the	physical	world	[22,	23].		One	example	
noted	 that	productivity	 improved	significantly	when	combining	offline	programming	with	
effective	and	efficient	calibration:	both	production	downtime	and	cost	to	program	the	robot	
were	decreased	by	73	%	after	they	reduced	the	need	for	extensive	“touch	up”	[24].	
	
The	future	will	bring	greater	depth	and	breadth	in	the	simulation	capabilities	that	support	
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off-line	programming.	 	Current	simulation	systems	do	not	 typically	have	very	high-fidelity	
sensor	models,	for	example.		Modeling	the	uncertainties	and	realistic	responses	of	a	sensor	
to	 different	 surface	 textures,	 geometries,	 and	 ambient	 conditions	 will	 be	 essential	 for	
designing	and	programming	sensor-rich	robotic	workcells	offline.		Similarly,	tactile	sensors	
and	 hand	 kinematics	 must	 be	 well-modeled	 and	 well-calibrated	 to	 their	 physical	
counterparts.	 	 Hence,	 leveraging	 the	 advanced	 capabilities	 of	 next-generation	 robotic	
systems	 through	 offline	 programming	 raises	 the	 importance	 of	 accurate	 calibrations	 of	 a	
robot’s	arm	kinematics,	sensors,	and	advanced	hands.	

Collaborative	Robots	

Robot	 collaboration	 (either	with	 humans	 or	with	 other	 robots)	 is	 often	 characterized	 by	
four	levels	of	interaction	[25]:		independent,	synchronous,	simultaneous,	and	supportive.		In	
independent	 collaboration,	 the	 robot	and	 its	 collaborator	operate	on	separate	workpieces	
without	 any	 interaction.	 	 In	 synchronous	 collaboration,	 the	 robot	 and	 its	 collaborator	
operate	on	sequential	components	on	the	same	workpiece.	 	In	simultaneous	collaboration,	
the	 robot	 and	 its	 collaborator	 are	 co-located,	 and	 operate	 on	 separate	 tasks	 on	 the	 same	
workpiece(s)	 at	 the	 same	 time.	 	 And	 in	 supportive	 collaboration,	 the	 robot	 and	 its	
collaborator	 work	 ‘cooperatively’	 to	 complete	 the	 processing	 of	 a	 single	 workpiece.		
Simultaneous	 and	 supportive	 tasks	 are	 expected	 to	 have	 the	 highest	 potential	 for	 risk	 of	
injury	[26],	so	most	state-of-the-art	 industrial	operations	requiring	robot	collaboration	do	
so	 using	 synchronous	 interactions.	 	 In	 assembly	 tasks,	 for	 instance,	 multi-robot	 systems	
perform	 the	 component	manipulations	 in	 a	 series	 of	 workstation	 operations	 rather	 than	
simultaneously	to	reduce	risks	to	the	robots,	parts,	and	humans	in	the	work	environment.		
Specifically,	one	robot	will	perform	its	programmed	task	on	the	shared	workpiece,	and	then	
that	 workpiece	 is	 passed	 to	 the	 next	 station	 for	 additional	 processing.	 	 Each	 robot	 is	
assigned	a	single	task	role,	and	parts	are	presented	in	fixtures.			
	
When	multiple	robots	must	operate	simultaneously,	the	scheduling	of	the	system	is	the	
principal	concern	for	integrators	[27].		Such	scheduling	includes	resource	allocations	[28-
30],	process	distribution	[29-32],	logistical	controls	(i.e.,	part	presentations	[28,	33]),	and	
collision	avoidance	[33].		In	many	of	these	test	cases,	the	physical	interaction	between	
robots	is	restricted	or	nonexistent,	and	the	robots	operate	simultaneously	in	the	shared	
workcell,	but	in	a	non-supportive	manner.		Supportive	collaborations	require	the	three-
dimensional	location	and	time-based	coordination	and	synchronization	of	motions	to	
minimize	positioning	and	trajectory	errors.		Such	errors	may	negatively	impact	the	robots	
themselves,	damage	parts	or	tooling,	or	present	hazards	to	human	operators	working	in	the	
area.		Figure	2	shows	an	example	of	different	robots	collaborating.		When	programming	
robots	in	heterogeneous	configurations	(i.e.,	when	the	robots	have	separate,	incompatible	
controllers),	the	robots’	joint-	and	Cartesian-space	motions,	data	access,	communication,	
and	processing	delays,	and	system	processing	timings	must	be	characterized	and	registered	
to	enable	synchronization	(see	Figure	2	and	Figure	3).	
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Figure	2:	 	Illustrative	Vignette	of	Two	Heterogeneous	Supportive	Collaborating	Robots.	 	 	The	red	robot	
(left)	is	handing	a	part	to	the	orange	robot	(right).		Note	that	their	geometries	and	capabilities	are	very	
different,	yet	they	must	have	a	common	frame	of	reference	about	space	and	time	to	achieve	this	handoff.	

	

A	

	

B	
	

C	
	

	

Figure	3:	The	 synchronized	 timing	of	 individual	robots’	motion	 commands	 consists	of	 the	 signal	 transit	
time,	the	command	execution	time,	and	the	time	necessary	to	move	the	robot	(A).		Traditional	approaches	
for	 coordinating	 robots	 results	 in	 a	 serialization	 of	 motion	 commands	 (B),	 whereas	 timing	 the	
independent	motions	of	robots	can	result	in	defined	states	being	reached	simultaneously	(C).		
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Calibration	Requirements	and	Techniques	

The	field	of	robot	and	sensor	calibration	is	both	vast	and	long-lived,	and	as	such	we	cannot	
provide	an	exhaustive	survey	of	all	possible	calibration	techniques.		Instead,	we	will	attempt	
to	 give	 a	 broad	 overview	 of	 many	 of	 the	 more	 common	mechanisms	 for	 calibrating	 and	
registering	robots	and	sensors,	both	as	stand-alone	platforms	and	as	integrated	systems.		
	
In	general,	a	calibration	process	consists	of	four	sequential	steps:			

1. Choosing	a	mathematic	model	
2. Taking	lots	of	measurement	data	(this	step	implies	a	decision	on	the	measurement	

device)	
3. Calculating	the	appropriate	control	parameter	errors	to	be	minimized,	and	finally	
4. Integrating	the	error	compensation	into	the	system.	

	
Calibrations	can	be	time-consuming	and	can	be	performed	at	various	levels	of	complexity.					
General	challenges	include:			

• Determining	 which	measurements	 to	 take	 (location	 and	 number)	 to	 ensure	 good	
results	while	minimizing	resources	required	

• Deciding	which	metrology	 system	 or	measurement	 approach	 to	 use	 for	 collecting	
the	data	

• Deciding	which	algorithm	and	tools	to	use	for	processing	the	data,	and		
• Knowing	when	the	system	is	out	of	calibration.	

	
For	 example,	 for	 robot	 arm	 kinematics,	 depending	 on	 the	 type	 of	 error	 modeled,	 the	
calibration	 can	 be	 classified	 as	 Level-1	 (only	 joints	 are	 modeled	 to	 determine	 the	
relationship	 between	 the	 signal	 to	 the	 joint	 and	 its	 actual	 joint	 displacement),	 Level-2	
(entire	kinematic	calibrations	–	determine	the	basic	kinematic	geometry	of	the	robot	as	well	
as	 the	 correct	 joint-angle	 relationship),	 and	 Level-3	 (non-kinematic	 calibrations	 where	
errors	 in	 positioning	 of	 the	 end	 effector	 are	 due	 to	 non-geometric	 errors	 such	 as	 joint	
compliance,	 friction,	 and	 clearance,	 link	 compliance,	 stiffness,	 temperature,	 and	 dynamic	
modeling	could	be	in	this	level	too)	[1,	34].		
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Figure	 4	 is	 a	 highly	 abstracted	 and	 idealized	 representation	 of	 a	 robot	 workcell	 with	 an	
articulated	arm	on	a	mobile	base.	 	The	arm	has	a	multi-fingered	hand	with	tactile	sensors	
and	 the	 cell	 includes	 two	 external	 sensors.	 	 To	 function	 correctly,	 all	 the	 different	
components	 must	 be	 calibrated	 and	 many	 must	 have	 the	 relationships	 between	 their	
coordinate	frames	established	(“registered”).					
	
In	the	next	sections,	we	will	provide	a	brief	summary	of	the	calibration	practices	and	issues	
for	the	main	components	in	Figure	4.	

Camera Calibration 
Computer	 vision	 techniques	 precisely	 calculate	 and	mathematically	 represent	 a	 camera’s	
various	 property	 values	 --	 both	 intrinsic	 and	 extrinsic.	 The	 extrinsic	 parameters	 define	
exactly	where	 in	 the	3D	space	 that	a	camera	 is	 located	 in	 the	physical	world	(translation)	
and	which	way	that	the	camera	lens	is	pointing	(rotation).	 	The	 intrinsic	parameters	cover	
the	camera	model-specific	attributes	such	as	the	camera’s	focal	 length,	 lens	distortion,	etc.	
[35].	 	Knowing	 these	properties	 then	 lets	us	determine	how	 the	 camera’s	 reported	 image	
pixel	values	correspond	to	the	real	world	(three-dimensional,	3D,	space)	that	it	is	observing.	
	
The	entire	process	poses	many	difficulties.		As	described	in	[36]:	
	

	
	
Figure	 4:	 Conceptual	 View	 of	 the	 Different	 Coordinate	 Frames	 and	 Calibration/Registration	
Requirements	
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“Complex	 robots	 can	 also	 pose	 many	 challenges	 for	 the	 calibration	
procedure.	 	 The	 robot	may	 have	many	 different	 sensors,	 and	 each	 sensor	
often	 has	 very	 different	 error	 characteristics.	 	 For	 instance,	 a	 laser	
rangefinder	detects	points	in	3D	very	differently	than	a	stereo	camera,	and	a	
camera’s	precision	in	resolving	points	is	very	dependent	on	its	focal	length.		
To	 complicate	 things	 further,	 if	 the	 camera	 is	mounted	 on	 a	 robot	 arm	 or	
other	actuated	linkage,	then	the	linkage’s	error	characteristics	must	also	be	
incorporated	into	the	sensor’s	uncertainties.”	

	
Once	these	property	values	have	been	calculated,	the	correspondence	between	the	camera’s	
image	view	(i.e.,	two	dimensional	–	2D	–	image	space)	and	the	real	world	(i.e.,	3D	Cartesian	
space)	position	can	be	mathematically	represented.	

Robot Calibration 
A	succinct	summary	of	robot	calibration	comes	from	Roth	et	al.	[37]:	
	

“Calibration	 involves	 identifying	 a	 more	 accurate	 functional	 relationship	
between	the	joint	transducer	readings	and	the	actual	workspace	position	of	
the	end	effector	and	using	 these	 identified	changes	 to	permanently	change	
(between	each	consecutive	calibration)	the	robot	positioning	software.”	

	
Before	a	robot	can	plan	a	trajectory	or	perform	any	kind	of	motion,	it	must	first	understand	
its	 own	 configuration.	 	 Encoder	 or	 resolver	 information	 is	 meaningless	 unless	 there	 is	 a	
reference	 frame	 against	which	 all	 subsequent	 readings	 can	 be	 compared.	 	 This	mastering	
process	involves	manually	moving	the	robot	into	an	a	priori	established	configuration,	and	
recording	 the	 sensor	 readings.	 	 This	 is	 a	 registration	 process,	 where	 the	 robot’s	
joint/encoder	readings	are	mapped	to	a	known	pose	of	the	robot.		This	information	is	then	
used	 to	 establish	 a	 kinematic	 mapping	 of	 the	 totality	 of	 the	 joint	 values	 to	 a	 Cartesian	
coordinate	frame	at	the	robot’s	origin.	
	
At	 this	 point,	 assuming	 the	 mastering	 process	 was	 performed	 correctly,	 the	 robot	 is	
calibrated	only	to	 itself.	 	However,	the	robot	 is	otherwise	fully	functional	 in	that	Cartesian	
motions	to	the	robot’s	tool	flange	can	be	commanded	relative	to	that	base	frame.		Programs	
can	 be	 written	 and	 executed	 without	 issue	 provided	 that	 the	 robot	 does	 not	 have	 to	
coordinate	 with	 another	 system	 (such	 as	 external	 sensors	 or	 other	 robots),	 or	 perform	
actions	 using	 an	 attached	 tool.	 	 Such	 actions	 require	 quality	 calibration	 of	 the	 robot,	 and	
then	registering	the	robot	to	an	external	coordinate	frame.	

Articulated	Robot	Calibration	

Ultimately,	a	 robot	must	be	precisely	aware	of	 its	own	position,	and	 the	position	of	all	 its	
constituent	components,	within	its	operating	volume.		This	is	the	crux	of	robot	calibration.		
A	 robot’s	 exact	 position,	 and	 its	 components’	 positions,	 can	 be	 affected	 by	 a	multitude	 of	
factors	 including	machine	 wear,	 joint	 friction,	 and	manufacturing	 imperfections	 [38,	 39].		
Robot	 calibration	 uses	 a	 combination	 of	 techniques	 to	 help	 compensate	 for	 any	 or	 all	 of	
these	 factors.	 	 That	 is,	 given	 a	 perfect	 robot	 calibration,	 a	 robot’s	 end	 effector	 will	 be	
positioned	in	Cartesian	space	with	high	accuracy	and	repeatability.			
	
The	current	techniques	to	achieve	robot	calibration	involve	procedures	such	as	

• Using	precision	measurement	techniques	to	observe	the	differences	between	actual	
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robot	position	and	 the	position	 the	 robot	 	 calculates	 it	 is	 at	 to	observe	 repeatable	
and/or	predictable	translation	and	rotation	errors,	and	

• Modeling	 the	 capabilities	 of	 the	 robot	 in	 software	 and	 factoring	 in	 any	 known	
observable	errors.	

Figure	 5	 illustrates	 some	 of	 the	 parameters,	 such	 as	 joint	 angles	 and	 link	 lengths,	 which	
must	be	factored	into	calibration	procedures.		
	

	
Traditional	 calibration	 techniques	 vary	 in	 accuracy,	 ease	 of	 use,	 and	 cost	 to	 implement.		
Moreover,	they	share	many	of	the	following	challenges	[38]:	

• Trained	personnel	are	needed	to	operate	the	measuring	equipment	properly.	
• Data	collection	is	boring,	time-consuming,	and	may	be	difficult	to	automate	fully.	
• Some	 calibration	 techniques	 were	 developed	 for	 laboratory	 use,	 and	 are	 not	

intended	for	shop	floors	with	uncontrolled	environmental	conditions.	
• The	 initial	 setup	 and	 measurement	 collection	 requires	 considerable	 human	

intervention,	as	most	current	technology	does	not	enable	dynamic	self-calibration.	
	

In	general,	 there	are	 two	different	 types	of	calibration	commonly	employed:	 	1)	dynamics	
calibration,	and	2)	kinematics	calibrations.	 	Dynamics	calibrations	focus	on	the	motions	of	
the	 robot,	 and	 consist	 principally	 of	 computing	 the	 Jacobian	matrix.	 	 The	 Jacobian	matrix	
maps	 the	 velocities	 of	 the	 robot’s	 individual	 axes	 to	 the	 velocity	 of	 the	 robot’s	 tool	 as	 it	
moves	through	Cartesian	space.		This	process	is	well	documented	in	robotics	textbooks	(e.g.,	
[40,	41])	 for	robot	systems	with	known	properties,	and	can	otherwise	be	approximated	 if	
the	robots’	characteristics	are	not	well	known	(e.g.,	[42]).	
	
In	 contrast,	 kinematic	 calibrations	 are	 aimed	 at	 mapping	 the	 joint	 configuration	 to	 the	
position	 of	 the	 robot’s	 individual	 axes,	 links,	 and	 tools	 in	 Cartesian	 space.	 	 Typically	
kinematic	 calibrations	are	performed	one	axis	at	a	 time,	making	 them	 lengthy	 to	perform	
and	cumbersome	to	analyze.	 	While	technology	has	advanced	considerably	since	the	dawn	
of	robotics,	many	of	the	basic	kinematic	calibration	techniques	are	still	the	same.		The	only	
distinction	between	legacy	and	modern	methods	is	simply	that	current	techniques	employ	
modern	and	more	advanced	 sensors	and	computer	 systems.	 	The	array	of	 tools	 available,	

	

	

Figure	5:	The	more	complex	a	robot,	the	more	errors	(joint	offsets	and	link-length)	that	must	be	
compensated.		
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though	 providing	 more	 options,	 may	 complicate	 the	 selection	 process	 for	 calibrations:		
Measurement	devices	[1]	used	for	calibration	include:	

1. Touch	probes	with	a	reference	artifact	[44,	45]	
2. Telescoping	ball	bar	
3. Camera-based	3D	(positioning)	devices	
4. Acoustic	sensors		
5. Large-range	 3D	 measurement	 devices	 such	 as	 laser-trackers	 [46],	 coordinate	

measuring	 machines,	 theodolites	 [47],	 laser	 interferometry	 [35,	 48,	 49],	 and	
photogrammetry	[50].	
	

Each	 comes	 with	 its	 own	 advantages	 and	 disadvantages.	 	 Touch	 probe	 with	 	 reference	
artifact	 is	 one	 of	 the	 oldest	 methods	 and	 simplest	 to	 use;	 however,	 it	 is	 best	 used	 in	 a	
controlled	environment	and	is	not	ideal	for	large	volume	systems.		Telescoping	ballbars	use	
embedded	 sensors	 and	 analysis	 software	 to	 give	 a	 relatively	 simple,	 rapid	 check	 of	
positioning	 performance	 that	 is	 tied	 to	 international	 standards	 and	 are	 quite	 familiar	 to	
machine	tool	calibraters	across	the	manufacturing	floor;	however,	they	are	usually	limited	
to	approximately	300	mm	in	length	and	can	only	calibrate	one-dimension	at	a	time.		Large-
range	3D	measurement	devices	provide	 extremely	 accurate,	 large	 volume	measurements;	
however,	 the	 equipment	 is	 expensive,	 needs	 to	 be	 calibrated	 itself,	 and	 needs	 a	 trained	
operator	to	set	up	and	use	the	device	before	calibrating	the	robot	system.		Rather	having	to	
calibrate	each	joint	of	the	robot	individually	and	then	reference	each	one	back	to	a	common	
reference	point,	 the	robot’s	end	effector	could	be	the	only	point	calibrated.	This	may	have	
its	own	advantage	(shorter	time	period	to	calibrate)	and	disadvantage	(the	robot	may	not	
know	its	own	volume	space,	i.e.,	how	big	it	is!).	
	
Researchers	are	constantly	trying	to	find	easier	and	quicker	ways	to	calibrate	robots.	 	For	
example,	one	group	developed	a	6D	(complete	pose,	consisting	of	location	and	orientation)	
measurement	 system	 comprised	 of	 a	 camera-based	 system	 or	 a	 laser	 tracker	 with	 a	 6D	
probe	(e.g.,	telescoping	ballbar	system)	[1].	By	combining	calibration	techniques,	they	were	
able	 to	accomplish	 the	calibration	 in	about	an	hour,	at	a	 relatively	 low	cost.	However,	 the	
system	only	has	a	small	working	volume	of	300	mm	and	 it	does	not	 factor	 in	any	sensors	
(e.g.,	 vision,	 touch)	 that	 the	user	may	want	 to	use.	 	The	hunt	 is	 still	on	 for	 the	calibration	
methods	that	is	easy	to	use,	inexpensive,	and	quick	enough	to	perform	on	a	regular	basis.		
	
A	 robot’s	 position	 is	 a	 combination	 of	 the	 requested	 location	 and	 the	 robot	 errors.	 	 The	
measurement	device	mentioned	above	will	 provide	 lots	of	data;	however,	 it	 still	 does	not	
necessarily	provide	a	repeatable	position	response.		The	measurement	data	combined	with	
an	 appropriate	 mathematical	 model	 (e.g.,	 Denavit-Hartenberg	 and	 Denavit-Hartenberg	
Modified	Conventions	 [43],	Complete	and	Parametrically	Continuous	Model	 [44,	45],	Product	
of	Exponentials	[46,	47])	will	improve	the	representation	of	the	position	and	orientation	(i.e.,	
the	pose)	of	the	robot	end-effector.		These	mathematical	models	are	a	function	of	the	robot	
joint	angles	and	the	error	parameters	that	need	to	be	modeled.		

Robot-Camera	Calibration	
	

Another	method	 to	 approximate	 robot	 calibration	 is	 through	 observations	 of	 the	 robot’s	
workspace	of	specific	target	points	using	calibrated	cameras.			If	the	observational	camera’s	
intrinsic	 and	 extrinsic	 properties	 can	 be	 calculated,	 then	 interpretation	 of	 objects	 in	 the	
camera’s	view	can	be	used	to	map	out	where	objects	are	in	the	3D	space	being	observed.	
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Standard	checkerboard	patterns	placed	in	the	robot	workspace	can	be	used	to	calculate	a	
camera’s	specific	intrinsic	and	extrinsic	properties.	An	example	of	such	a	checkerboard	is	
shown	in	Figure	6.		A	series	of	multi-image	captures	are	collected	of	the	checkerboard	in	
various	areas	of	the	camera’s	frame.			These	images	are	then	used	to	calculate	the	values	of	
the	camera’s	specific	properties	including:		position,	rotation,	focal	point,	skew,	and	
distortion	properties.				Once	these	properties	are	known,	then	the	camera	is	considered	to	
be	a	fully	calibrated	camera.	
	

Two	methods	have	been	developed	for	determining	a	robot	arm’s	position	and	pose	based	
on	calibrated	cameras:	 	one	method	has	the	calibrated	camera	attached	to	the	robot’s	end	
effector	 to	 be	 able	 to	 calculate	 a	 precise	 view	 of	 where	 the	 camera	 is	 in	 3D	 space	 and	
correspondingly	where	 the	robot’s	end	effector	 is	 in	3D	space.	 	The	other	method	has	 the	
calibrated	camera	as	a	stationary	camera	(or	stereo	camera	pairs)	at	the	base	of	the	robot	
observing	the	robot’s	pieces	as	they	move	through	the	robot	space	[48-51].		

Robot	Calibration	using	Calibrated	Cameras	

Generally	speaking,	there	is	a	lack	of	a	general-purpose	framework	for	calibrating	all	of	the	
sensors	and	actuators	of	a	 robot	 together	 that	accounts	 for	each	sensor’s	 individual	error	
characteristics.	 A	 promising	 new	 technique	 [36]	 allows	 the	 combination	 of	 data	 from	 a	
variety	of	observational	sensors	(laser	range-finders,	cameras,	stereo	cameras,	etc.)	 in	 the	
robot’s	workspace	 to	be	used	 along	with	 the	 classic	 computer	 vision	 technique	of	 bundle	
adjustment2	to	 solve	 the	 intrinsic	and	extrinsic	properties	along	with	error	estimations	of	
each	 individual	 sensor	 used.	 	 	 Once	 determined,	 these	 can	 be	 used	 together	 to	 get	 an	
accurate	calculation	of	the	robot’s	position	and	pose.	
	
If	these	new	techniques	are	proven	to	be	consistently	reliable	and	accurate	and	if	straight-
forward	methods	and	instructions	can	be	created	for	robot	manufacturers	and/or	SMEs	to	
replicate	 these	 techniques,	 then	all	 the	advantages	of	having	a	precision	 robot	 calibration	
will	 be	 gained.	 	 	 One	 such	 attempt	 at	 accomplishing	 this	 is	 available	 for	 the	 ROS	 (Robot	
Operating	System)	environment.	[52]	

																																								 																					
2	Bundle	adjustment	is	a	technique	for	deriving	jointly	optimal	3D	structure	and	viewing	parameter	
(camera	pose	and/or	calibration)	estimates.		“Bundle”	refers	to	the	group	of	light	rays	that	emanate	
from	each	object	feature	and	converge	on	the	camera’s	center.	

	

Figure	6:	Checkboard	patterns	can	be	used	to	register	multiple	sensors	at	one	time.		
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Robot-Vehicle	Calibration	

It	is	anticipated	that	robotic	vehicles	will	be	integral	to	the	future	of	large-scale	and	flexible	
factory	automation	of	assembly	tasks.	 	As	noted	above,	automated	guided	vehicles	(AGVs),	
mobile	 robots,	 and	 mobile	 manipulators	 (articulated	 robot	 arms	 mounted	 on	 mobile	
platforms	 [19])	 are	 anticipated	 as	 being	 critical	 technologies	 for	 agile	 manufacturing	
applications,	and	ultimately	pose	the	greatest	risk	in	human-occupied	factory	environments.		
Ensuring	that	their	position	and	sensor	systems	are	correctly	calibrated	is	essential.	
	
Many	 approaches	 exist	 for	 the	 calibration	 and	 evaluation	 of	 marker-less	 methods	 for	
localization,	more	commonly	known	as	simultaneous	localization	and	mapping	(SLAM,	[53,	
54],	discussed	in	more	detail	later).		Within	the	manufacturing	realm,	however,	SLAM	does	
not	provide	localization	robust	enough	to	ensure	optimal	positioning	performance	or	safety,	
but	 some	 results	 imply	 such	 performance	 may	 be	 eventually	 possible	 [55].	 	 Other	
approaches	use	active	mechanisms	to	project	 fiducials	 into	the	environment	 that	are	used	
for	range	measurement	and	localization	(e.g.,	[56]).		However,	such	methods	have	not	found	
much	 application	within	 industry.	 	 Instead,	 typical	mobile	 platform	 installations	 focus	 on	
providing	fixed	references	(e.g.,	visual	targets	or	easily-identifiable	structural	components)	
within	 the	 environment	 to	 provide	 suitable	 localization	 and	 navigational	 support.		
Commercial	 options	 for	 such	 fiducials	 include	 retro-reflective	 markers	 [57],	 ceiling-
mounted	bar	codes	[58],	and	wires,	visual	markers,	or	magnets	embedded	in	the	floor	(e.g.,	
[59]).	
	
Commercial	AGV	systems	have	known	performance	accuracies,	though	the	performance	of	
the	mobile	 system	 is	 dependent	 on	 the	 extrinsic	 calibration	 between	 the	 tracking	 system	
and	 the	 robot	 itself.	 	Typically,	 the	AGV	will	have	some	 form	of	onboard,	odometry-based	
system	 that	 attempts	 to	 localize	 itself	 through	 dead	 reckoning.	 	 Odometry-based	 systems	
are	 dependent	 on	 accurate	 measurements	 of	 wheel	 radii,	 the	 baseline	 between	 wheels,	
wheel	 slip	 models,	 and	 the	 accuracy	 and	 precision	 of	 the	 steering	 mechanism	 (e.g.,	
differential-steering	versus	Ackerman-steering).	
	
Gyro-based	 internal	 localization	 systems	 (e.g.,	 inertial	 odometric	 navigation	 -	 ION)	 go	
through	a	series	of	known	motions	to	calibrate	the	control	laws.		De	Cecco	[60],	for	instance,	
assumes	the	ION	knows	nothing	about	the	AGV,	and	commands	the	AGV	to	move	through	a	
series	of	rounded	rectangular	paths	to	automatically	generate	estimates	for	the	1)	steering	
angle	at	which	the	instantaneous	center	of	rotation	is	at	infinity,	2)	the	driving	wheel	radius,	
3)	the	distance	between	the	wheel	rotation	axes,	and	4)	the	characteristics	of	the	gyroscope	
itself.	 	An	infrared	absolute	triangulation	system	(with	an	angular	uncertainty	of	±	47	arc-
seconds	 and	 positional	 accuracy	 of	 ±2	 mm)	 provided	 the	 inputs	 into	 the	 calibration	
procedure.	 	 As	 a	 verification	metric,	 the	 calibration	 values	 for	 these	 characteristics	were	
compared	 with	 the	 nominal	 values	 provided	 by	 the	 AGV	 and	 gyro	 vendors.	 In	 his	
experiment,	this	technique	made	it	possible	to	achieve	a	mean	difference	in	the	end	position	
estimation	between	the	absolute	system	and	the	navigation	algorithm	of	εx	=	6	mm,	εy	=	4	
mm,	εδ	=	0.2	degrees.	The	variance	achieved	was	σx=12	mm,	σy	=	8	mm,	σδ	=	0.6	degrees	over	
a	path	of	25	m	long.	
	
Censi	 et	 al.	 [61]	 provide	 a	 mobile	 platform	 calibration	 technique	 for	 calibrating	 robot	
odometry	as	well	as	the	extrinsic	parameters	for	a	laser-based	localization	system	relative	
to	 its	 location	on	the	robot.	 	Unlike	many	other	approaches,	 this	method	does	not	require	
the	 robot	 to	 move	 through	 known	 trajectories,	 though	 the	 authors	 do	 recommend	
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trajectories	 be	 chosen	 that	 result	 in	 closed	 loops	 in	 confined	 spaces	 with	 relatively	 low	
speeds	 to	 maximize	 the	 sample	 density.	 	 Their	 evaluations	 were	 performed	 on	 a	 small,	
differentially-steered	mobile	robot	with	an	onboard	laser	range	finder,	and	the	calibration	
verification	 was	 done	 by	 means	 of	 comparing	 the	 calibrated	 estimates	 with	 values	
measured	manually	(when	possible)	and	provided	in	product	specifications.	
	
Kelly	 and	 Sukhatme	 [62]	 solve	 the	 problem	of	 extrinsically	 calibrating	 sensors	 to	 inertial	
measurement	units	onboard	mobile	robot	platforms.		Parameters	recovered	during	the	self-
calibration	 include	 sensor-to-sensor	 transformations,	 inertial	 measurement	 unit	 (IMU)	
biases,	 local	 gravity	 vector,	 and	 scene	 structure	 by	 utilizing	 structure	 from	 motion	 (i.e.,	
SLAM).		The	approach	was	evaluated	in	simulation	and	in	experiments.	Verification	took	the	
form	of	comparing	the	self-calibration	methodology	with	hand-measured	results.	

Robot-Gripper/Hand	Calibration	

A	highly	 coveted	 functionality	 regarding	multi-fingered,	 general	 purpose	 robotic	 hands	 is	
their	 ability	 to	 efficiently	 and	effectively	grasp	objects	within	unstructured	environments.	
Without	accurate	knowledge	and	control	over	the	environment,	perception	and	reactivity	is	
of	paramount	necessity	to	robust	interactivity.	Neurophysiological	research	has	repeatedly	
shown	 that	 humans	 possess	 a	 suite	 of	 finger-embedded	 mechanoreceptors	 that	 provide	
sensory	information	that	is	ultimately	responsible	for	our	ability	to	properly	force	modulate	
our	 grasps	 in	 the	 presence	 of	 uncertainty	 and	 disturbances	 [63,	 64].	 Consequently,	many	
state-of-the	 art	 techniques	 in	 robotic	 grasping	 and	 manipulation	 exploit	 the	 feedback	
capabilities	of	many	different	kinds	of	finger	sensors.	For	instance,	contemporary	strategies	
rely	 heavily	 on	 measuring	 contact	 forces	 [65-70].	 Finger	 sensors	 can	 provide	 this	
information	 through	 sensory	 layouts	 such	 as	 load	 cells,	 barometers,	 accelerometers,	
electrodes,	 hydrophones,	 cameras,	 or	 some	 combination	 thereof.	 The	 complexity	 of	 these	
sensors	 with	 application	 to	 touch-related	 events	 not	 only	 lies	 with	 their	 design	 and	
integration,	but	also	with	their	calibration.	That	is,	inherently	they	are	designed	to	respond	
to	certain	perturbations	during	contact,	but	 their	responses	are	made	meaningful	 through	
the	 application	 of	mathematical	models.	 These	models	 can	 be	 complex,	 and	 are	 typically	
applied	offline	on	large	reference	datasets	that	have	been	collected.	Furthermore,	many	of	
these	sensors	can	exhibit	nonlinear	response	dynamics	that	can	complicate	the	calibration	
process.		
	
Generally	speaking,	 the	difficulty	of	 the	calibration	process	 for	 these	contact	sensors	rests	
with	data	collection	and	data	analysis.	The	particular	experience	in	each	of	these	categories	
can	vary	significantly	depending	on	the	particular	design	and	implementation	of	the	sensor	
and	its	desired	application.		
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In	 the	data	 collection	process,	 raw	 sensory	data	 from	 the	 touch	 sensor	must	 be	 collected	
against	a	pre-calibrated	reference.	For	 force	calibration,	 this	stage	 is	 typically	achieved	by	
mounting	 the	 sensor	 directly	 to	 an	 external	 load	 cell	 as	 shown	 in	 Figure	 7.	 This	 step	 is	
tedious	in	nature	for	many	reasons.	First,	data	collection	is	conducted	on	a	per-sensor	basis.	
Since	 general	 purpose	 robotic	 hands	 often	 possess	 many	 contact	 sensors,	 this	 process	
would	 have	 to	 be	 conducted	 for	 each	 one.	 Furthermore,	 particular	 care	 in	 properly	
exploring	the	sensor	response	range	is	necessary	to	ensure	proper	calibration.	This	includes	
sufficiently	 varying	 the	 points	 of	 application,	 contact	 direction,	 and	 force.	 Other	
complexities	 include	proper	 temporal	alignment	of	 sensory	output	data	 to	 reference	data,	
data	trimming,	and	possibly	filtering.	
	
In	 the	 data	 analysis	 process,	 a	 function	 needs	 to	 be	 created	 that	 establishes	 an	 accurate	
connection	between	the	outputs	of	the	contact	sensor	to	external	stimuli.	The	complexity	of	
this	process	varies	depending	on	the	response	dynamics	of	the	contact	sensor.	For	instance,	
load	 cell	 based	 sensors	 are	 well	 understood	 to	 be	 linear	 in	 nature,	 and	 ordinary	 linear	
regression	 can	be	 applied	 to	 establish	 the	mapping	of	 strain	 gage	 voltages	 to	 forces.	 This	
method	 does	 not	work	 for	 others	 such	 as	 electrodes	 in	 biomimetic	 sensors	 [71].	 Instead,	
more	 complex	 filtering	 or	machine	 learning	 algorithms	 such	 as	 artificial	 neural	 networks	
(ANN)	 need	 to	 be	 applied	 to	 the	 datasets	 to	 obtain	 proper	 calibration.	 Moreover,	 the	
particular	internal	parameters	in	these	algorithms	may	need	to	be	properly	tuned	to	yield	
high-fidelity	mapping	performance.	Depending	on	 the	sensor	and	particular	mathematical	
model,	a	different	function	map	may	also	need	to	be	created	for	different	data.	For	instance,	
data	 collected	 during	 interaction	 with	 objects	 of	 various	 hardness	 and	 curvatures.	 This	
process	would	also	need	to	be	repeated	for	each	sensor	on	the	robotic	hand.	

Calibrating	Robots	to	CAD	Models	for	Offline	Programming	

Fitting	sensor	data	 to	CAD	models	 for	 the	 identification	and	 localization	of	parts	has	been	
demonstrated	 as	 an	 effective	 tool	 for	 industrial	 robot	 applications.	 	While	 this	 is	 still	 an	
active	 field	 of	 research,	 the	 application	 of	 CAD	 models	 to	 workpiece	 identification	 and	

	
Figure	7:	Shows	the	attachment	of	a	biomimetic	fingertip	as	a	contact	sensor	against	a	reference	load	
cell	for	the	data	collection	process	for	force	calibration.	
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localization	is	so	effective	that	some	consider	their	use	to	be	a	basic	starting	point	for	many	
offline	programming	industrial	robots	[72].	
	
CAD	models	of	the	robots,	themselves,	have	also	gained	popularity,	and	are	often	used	as	a	
basis	 for	 evaluating	 robot	 workcell	 design	 (e.g.,	 [73]),	 process	 flow	 representation	 (e.g.,	
[74]),	and	offline	programming	(e.g.,	[21]).		Models	of	the	robots	are	loaded	into	a	3D	virtual	
representation	 of	 the	 actual	 or	 planned	 workcells.	 	 The	 kinematics	 of	 these	 models	 are	
linked	to	a	simulated	robot	controller,	allowing	for	the	visualization	of	the	robots’	motions	
as	they	would	be	executed	by	their	real-world	counterparts	[75].		Such	simulations	of	robot	
controllers	 (and	 the	 3D	 rendered	 environments)	 are	 typically	 provided	 by	 the	 robot	
vendors,	but	third-party	solutions	are	gaining	in	popularity	for	their	ability	to	model	robots	
and	control	algorithms	from	multiple	sources.	
	
Another	 use	 of	 CAD	 models	 is	 for	 the	 evaluation	 of	 robot	 operational	 environments	 for	
safety	 and	 performance	 optimization.	 	 For	 instance,	 in	 1992,	 Yao	 and	 Yusoff	 [76]	
demonstrated	 a	 system	 in	 which	 a	 material	 handling	 workcell	 for	 a	 4-axis	 robot	 was	
registered	to	a	commercial	CAD	representation	of	the	operational	space.	 	This	registration	
forms	 the	 basis	 of	 an	 error	 map	 that	 is	 used	 for	 task-oriented,	 collision-free	 trajectory	
planning	for	the	robot	whenever	the	environment	is	changed.		Using	the	known	kinematics	
of	the	robot,	positional	errors	are	projected	throughout	the	modeled	working	environment.		
These	error	models	provide	the	basis	for	offline	planning,	programming,	and	error-reduced	
performance	optimization.		Similar	techniques	are	used	today	in	open-sourced	libraries	for	
the	offline,	automatic	generation	of	collision-free	motion	planning	(e.g.,	[77]).	 	Rather	than	
representing	 environments	 in	 commercial	 software,	 robots	 and	 their	 operational	
environments	are	captured	in	the	unified	robot	description	format	(URDF)[78]	so	as	to	be	
usable	by	ROS	tools	and	libraries.		
	
In	all	of	these	examples,	the	calibration	and	registration	of	virtual	robots,	workpieces,	and	
environments	 to	 the	 real	 world	 have	 been	 accomplished	 manually	 through	 meticulous	
measurement	and	verification	processes.	 	 In	 the	virtual-real	 transition,	physical	workcells	
are	constructed	from	the	original	CAD	models	within	some	degree	of	construction	tolerance,	
whereas	 the	 real-virtual	 transition	 is	 largely	 based	 on	 rough	 measurements	 of	 physical	
spaces	integrated	with	vendor-provided	3D	models	of	the	robots.		
	
Advances	in	sensing,	processing,	and	display	capabilities	have	given	rise	to	new	applications	
with	augmented	reality.		In	such	systems	(e.g.,	[79]),	calibrated	markers	are	used	to	register	
the	 perspective	 of	 a	 vision	 system	 to	 the	 physical	 configuration,	 and	 a	 3D	 rendered	
representation	of	the	robot	is	projected	into	the	operator’s	visual	display	for	programming	
and	process	feedback.	

Calibrating Virtual Models to Sensor Data 
Vision	sensor-based	robot	applications	require	some	model	of	the	parts	on	which	the	robots	
are	operating.	 	Such	applications	are	historically	 limited	to	routine	material	handling	(e.g.,	
part	 acquisition	 and	 inspection),	 but	 advances	 in	 sensing	 and	 robot	 technologies	 are	
enabling	 expanded	 applications	 in	 the	 domains	 of	 robotic	 assembly,	 part	 manipulation,	
welding,	and	surface	finishing.	
	
There	are	trade-offs	between	multiple	factors,	including	flexibility,	reliability,	performance,	
cost,	 and	 ease-of-use	 depending	 on	 which	 sensors	 and	 models	 are	 used,	 however.	 	 For	
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example,	 limited-view	 model	 perspectives	 of	 the	 parts	 for	 monocular	 camera	 capture	
systems	 (e.g.,	parts	being	presented	 in	matrix	kit	 trays)	 compromise	 flexibility	 in	 favor	of	
easier	programming	and	 increased	 reliability.	 	 In	 contrast,	 CAD-based	model	 fitting	of	3D	
point	 cloud	data	 reduces	 the	 restriction	on	part	presentation	and	grasping,	 and	enables	a	
broader	range	of	intelligent	applications	due	to	the	ability	to	directly	map	offline	CAD	data	
to	online	processes.			
	
Registering	sensor	information	to	virtual	models	(e.g.,	CAD	data,	as	described	previously)	is	
a	 broad	 topic	 that	 is	 still	 actively	 being	 investigated.	 	 A	 full	 survey	 of	 such	 techniques	 is	
beyond	 the	 scope	 of	 this	 report,	 but	 it	 is	 worth	 mentioning	 some	 approaches	 from	 the	
literature	landscape	here.	 	In	particular,	we	will	discuss	techniques	for	template	matching,	
feature	matching,	and	cross-modal	fitting.	

Template	Matching	

Template	matching	 is	 the	most	direct	method	for	comparing	virtual	models	to	raw	sensor	
inputs.		Here,	the	virtual	model	consists	of	an	a	priori	defined	template	(or	specific	instance	
or	sub-samples	of	sensor	data),	which	is	provided	to	the	observer	system.		The	system	then	
searches	the	sensor	input	for	an	exact	match	of	that	template	to	identify	if	and	where	that	
template	 occurs	 in	 the	 data	 stream.	 	 In	 image-based	 matching,	 for	 instance,	 an	 example	
image	 of	 an	 object	 or	 element	 is	 provided	 as	 a	 template.	 	 That	 template	 is	 then	 shifted	
across	 a	 query	 image	 to	 determine	 if	 and	 where	 that	 template	 image	 can	 be	 found.	 	 A	
common	implementation	of	this	matching	process	is	by	means	of	correlation	coefficients	(or	
measures	 of	 similarity)	 between	 the	 archetype	 template	 and	 the	 raw	 sensor	 input.	 	 A	
limitation	of	 the	 template	matching	approach,	however,	 is	 that	 templates	must	be	defined	
for	 every	 possible	 instance	 and	 orientation	 of	 the	 components	 to	 be	 identified.	 	 Certain	
transforms	may	be	applied	to	the	templates	(e.g.,	 in	image-based	matching,	templates	may	
be	scaled,	skewed,	or	rotated)	to	identify	the	approximate	offsets	from	the	base	template.		
	
Template	matching	 is	 best	 applied	when	 the	 presentation	 and	 tolerances	 of	 parts	 can	 be	
tightly	 controlled.	 Such	 matching	 processes	 are	 generally	 not	 robust	 against	 large	
deviations	from	the	archetype	templates	(e.g.,	part	variations	or	shifts	in	lighting	in	image-
based	matching).	Moreover,	increasing	the	search	space,	number	of	comparison	templates,	
or	 transforms	 applied	 to	 the	 templates	 increases	 the	 computational	 cost	 of	 identification	
and	 localization.	 	 Certain	 performance	 optimization	 tricks	 such	 as	 subsampling	 [80]	 or	
signal	scaling	can	be	used	to	mitigate	high	computational	costs.	

Feature	Matching	

In	contrast	with	template	matching,	which	requires	a	representative	sample	for	comparison,	
feature	matching	provides	identification	and	localization	based	on	collections	of	numerical	
rules	(or	classifiers).	 	Here,	these	classifiers	act	as	virtual	models,	and	provide	the	basis	of	
assessing	sensor	 inputs.	 	Specific	sub-elements	of	 the	 inputs	are	uniquely	 identified	based	
on	mathematically	identifiable	aspects	of	the	sensor	space.		Such	aspects	include	identified	
edges	 or	 circles	 in	 camera	 images	 [81],	 force	 and	 torque	 profiles	 in	 force-based	 control	
measurements	 [82],	 and	 specific	 frequency	 and	 magnitude	 profiles	 in	 sound-based	
applications	 [83].	 	 Multiple	 classifiers	 may	 be	 used	 to	 improve	 identification	 and	
localization	by	means	of	inter-classifier	relationships.	
	
The	matching	process	consists	 largely	of	a	goodness	of	 fit	metric,	where	the	mathematical	
features,	once	 identified	and	 located	within	the	 inputs	data	stream,	are	assessed	based	on	
the	 defined	 inter-classifier	 relationships.	 	 Such	 assessments	may	 be	 based	 on	 root	mean	
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errors	 (differences)	 between	 the	 measured	 values,	 or	 in	 terms	 of	 transformation	
magnitudes	necessary	to	fit	the	classifiers	to	the	data	stream	(e.g.,	comparing	relationships	
based	 on	 attributes,	 such	 as	 using	 pattern	 recognition	 algorithms	 like	 the	 K-nearest	
neighbors	techniques[84]).	
	
Earlier	we	 introduced	 a	 related	 field	 of	 study,	 simultaneous	 localization	 and	mapping,	 or	
SLAM.	 	As	the	name	implies,	SLAM	attempts	to	 identify	where	within	a	parameter	space	a	
given	 system	 is	 located,	 while	 simultaneously	 characterizing	 that	 space.	 	 This	 is	 most	
commonly	 applied	 toward	 the	 mobile	 robot	 domain,	 with	 specific	 applications	 in	 robot	
navigation	and	planning	 ([53,	54]).	 	Both	SLAM	and	SLAM-based	navigation	are	extensive	
fields	 of	 research,	 but	 the	 underlying	 principle	 is	 as	 follows.	 	 A	 robot-mounted	 sensor	
system	 measures	 the	 distance	 between	 the	 robot	 and	 some	 identified	 features	 (or	
landmarks)	 in	 the	surrounding	area.	 	These	 features	must	be	both	easily	 identifiable	 (e.g.,	
flat	 surfaces	 or	 corners)	 and	 static.	 	 Based	 on	 these	 distance	 measurements,	 the	 robot	
estimates	its	position	relative	to	these	features	based	on	prior	estimates	of	previously	seen	
(and	recorded)	 features.	 	These	position	estimates	may	be	combined	with	dead	reckoning	
state	 estimates	 based	 on	wheel	 encoders	 or	 open-loop	 control	 predictions.	 	 As	 the	 robot	
moves	throughout	the	space,	both	its	position	and	the	map	of	identified	features	are	refined.		
If	the	robot	traverses	through	that	space	again,	the	generated	maps	may	be	used	to	provide	
localization	cues	(e.g.,	through	Monte	Carlo	processes	[85]).	In	general,	the	SLAM	process	is	
largely	open	loop,	as	the	true	locations	of	the	robot	and	identified	features	are	never	known	
or	measured.		
	
In	general,	feature-based	matching	algorithms	are	both	fast	and	robust.		However,	accuracy	
may	be	impacted	if	bounds	are	not	properly	placed	on	the	quality	of	feature	matches,	or	if	
the	initial	set	of	features	is	poorly	defined.		Specifically,	in	contrast	with	template	matching,	
the	 process	 of	mathematically	 defining	 features	 and	 their	weights	 is	 not	 always	 intuitive.		
What	appear	to	be	key	features	for	a	human	to	identify	parts	may	not	work	as	well	 for	an	
automated	system.		As	such,	a	considerable	amount	of	initial	trial	and	error	may	be	required.		
Similarly,	if	the	system	is	required	to	go	open-loop	as	in	SLAM,	even	minor	matching	errors	
may	 accumulate	 to	 produce	 larger,	 irrecoverable	 errors	 downstream	 unless	 concerted	
efforts	are	made	to	“close	the	loop”	using	established	reference	points.			

Cross-Modal	Fitting	

In	both	template	and	feature	matching,	virtual	models	are	defined	within	the	context	of	the	
constituent	 data	 streams.	 	 There	 is,	 however,	 a	 significant	 challenge	 presented	when	 the	
virtual	model	is	defined	in	a	configuration	space	that	is	not	identical	to	the	raw	sensor	input.		
In	such	instances,	one	representation	must	be	transformed	into	the	format	of	the	other,	or	
both	must	be	transformed	into	a	third	space	for	direct	comparison.	
	
An	 illustrative	example	of	such	cross-modal	 fitting	 is	attempting	to	match	a	CAD	model	 to	
raw	red-green-blue-depth	(RGBD)	data.	 	 In	such	cases,	both	the	CAD	model	and	the	RGBD	
data	must	be	projected	 into	 the	Cartesian	coordinate	 space.	 	The	RGBD	data	will	 take	 the	
form	 of	 a	 point	 cloud,	 while	 the	 CAD	 model	 will	 be	 a	 geometric	 solid.	 	 The	 brute-force	
approach	exhaustively	 rotates	 and	 shifts	both	 the	point	 cloud	and	 the	 solid	until	 the	best	
possible	fit	is	found.		If	allowed,	such	an	approach	could	take	an	eternity	to	complete	if	the	
accuracy	requirements	are	too	stringent.		An	alternative	approach	is	to	project	both	the	CAD	
model	and	the	RGBD	point	cloud	into	yet	another	form	(e.g.,	shape	proxies	[86])	that	enable	
faster	 and	more	 direct	 comparisons.	 	 Other	 examples	 of	 this	 include	 converting	 the	 CAD	
model	 into	a	point	cloud	for	K-nearest	neighbor	evaluation,	or	the	inverse	in	which	a	CAD	
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model	 is	 generated	 from	 point	 cloud	 data	 (i.e.,	 “reverse	 engineering”	 [87]).	 	 This	
transformative	 process	 involves	 some	 level	 of	 initial	 computational	 overhead,	 but	
significantly	 reduces	 the	 problem	 complexity.	 	 Essentially,	 the	 cross-modal	 problem	
becomes	reduced	to	either	a	template	or	a	feature	matching	problem.	

Discussion	

In	this	report,	we	introduced	challenges	to	integrating	robots	into	manufacturing	processes	
faced	 by	 SMEs	 as	 well	 as	 large	manufacturers.	 	We	 drew	 specific	 attention	 to	 the	 issues	
concerning	 robot	 system	 calibration	 and	 registration,	 and	 presented	 a	 number	 of	
approaches	 from	 the	 literature	 to	 address	 many	 of	 the	 calibration	 and	 registration	
challenges.	
	
Clearly,	calibration	and	registration	issues	are	but	a	small	fraction	of	the	barriers	to	small-	
and	 medium-sized	 enterprises	 accepting	 robot	 technologies.	 	 However,	 these	 issues	 are	
central	 to	 the	 performance	 of	 any	 robot	 integrated	 into	 a	manufacturing	 process.	 	 Being	
aware	of	both	 the	nature	of	 the	challenges	and	 the	existence	of	approaches	 to	addressing	
those	 challenges	 is	 critical	 to	 acceptance.	 	 The	 processes	 of	 calibrating	 and	 registering	
robots	 to	 other	 systems	 are	 difficult	 and	 time	 consuming.	 	 As	 the	 needs	 and	 concerns	 of	
SMEs	 become	well	 documented	 and	 understood,	 new,	 user-friendly	 tools	 are	 expected	 to	
become	available	to	utilize	calibration	and	registration	techniques	with	minimal	effort.	
	
This	 endeavor,	 however,	 cannot	 be	 completed	 in	 a	 vacuum,	 or	 without	 the	 active	
participation	 of	 SMEs.	 	 New	 standards	 may	 be	 written	 to	 address	 the	 requirements	 for	
providing	 assurance	 of	 system	 performance.	 	 But	 without	 the	 inputs	 of	 SMEs,	 these	
standards	are	unlikely	to	address	the	broad	spectrum	of	stakeholder	preferences.		Similarly,	
new	technologies	and	tools	may	be	developed	to	ease	the	intellectual	burden	of	calibration	
and	registration.		Yet,	if	SMEs	are	either	unaware	of	their	existence	or	unwilling	to	provide	
feedback	on	 experimental	 systems,	 these	 technologies	 are	unlikely	 to	 find	 their	way	onto	
the	 manufacturers’	 shop	 floors.	 	 Therefore,	 a	 convening	 of	 all	 the	 interested	 parties	 is	
needed	to	achieve	progress	in	the	adoption	of	robotics	by	SMEs.			This	report	is	intended	to	
serve	as	a	starting	point	for	the	discussions	and	formulation	of	action	plans	leading	towards	
the	 development	 of	 accurate	 and	 easy	 to	 implement	 toolkits	 for	 reducing	 the	 burden	 of	
calibration	and	registering	of	robotic	workcells.	
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