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Abstract—End-to-end latency is critical to many distributed
applications and services that are based on computer networks.
There has been a dramatic push to adopt wireless networking
technologies and protocols (such as WiFi, ZigBee, WirelessHART,
Bluetooth, ISA100.11a, etc.) into time-critical applications. Exam-
ples of such applications include industrial automation, telecom-
munications, power utility, and financial services. While per-
formance measurement of wired networks has been extensively
studied, measuring and quantifying the performance of wireless
networks face new challenges and demand different approaches
and techniques. In this paper, we describe the design of a
measurement platform based on the technologies of software-
defined radio (SDR) and IEEE 1588 Precision Time Protocol
(PTP) for evaluating the performance of wireless networks.
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I. INTRODUCTION

End-to-end latency is critical to many distributed appli-
cations and services that are based on computer networks.
Examples of such applications include industrial automation,
telecommunications, power utility, and financial services. In
particular, the capability of precise timing and time synchro-
nization is of paramount importance for industrial control
networks [1]. In addition, for applications such as Voice
over Internet Protocol (VoIP) and stream videos, correct tim-
ing behaviors are extremely important to their (perceived)
performance. As traditional applications can tolerate tens of
milliseconds of end-to-end latency, modern real-time precision
control and algorithmic trading are sensitive to latency of
microseconds or even sub-microsecond. Given the growing
demands for lower latency, higher time resolution, and more
accurate timing, it becomes essential to measure end-to-end
latency with such precision and accuracy.

At the same time, there has been a dramatic push to
adopt wireless networking technologies and protocols (such
as WiFi, ZigBee, WirelessHART, Bluetooth, ISA100.11a, efc.)
into industrial control networks [2], [3]. There are two main
reasons for such a development. One is the cabling (both
material and labor) cost. For instance, a reasonable power
utility management system typically includes thousands of
measured relay nodes, and the use of any wired technology
such as Ethernet will incur high wiring and installation costs
[4]. In addition to the cabling cost, there are applications and

scenarios that render any wired configuration and deployment
infeasible, such as mobile nodes and nodes operating in
hazardous environments. In such cases, wireless technologies
and autonomous deployment are the only feasible options.

While performance measurement of wired networks has
been extensively studied, measuring and quantifying the per-
formance of wireless networks face new challenges and de-
mand different approaches and techniques. For instance, dis-
turbances or noise affecting timing precision incurred during
wireless communications should be mitigated as much as
possible. One major component of the disturbances is incurred
in either the Medium Access Control (MAC) or the Physical
(PHY) layer of the protocol stack. It has been argued that so
long as the performance metrics, such as one-way delay and
jitter, can be precisely measured in the lower protocol layers,
performance evaluation at the higher layers, such as quality of
service and real-time constraints, can be facilitated [5].

In addition, although the activity of performance mea-
surement for both wired networks and wireless networks
shares certain common concerns (e.g., real-time response and
determinism), wireless networks impose additional challenges
(e.g., multi-path fading and Inter-Symbol Interference (ISI)).
Therefore, how to precisely measure the arrival time (or the
departure time) of a packet becomes the fundamental issue of
getting precise time information in wireless networks.

There exist efforts such as [4] that used hybrid networks
to achieve time synchronization between wired and wireless
networks, and [6] that applied Network Time Protocol (NTP)
to measure the time information between nodes in wireless
networks. These efforts are based on the technique of software
time-stampers. In comparison to hardware time-stampers [7],
these solutions result in either imprecise synchronization per-
formance or coarse accuracy on time-related parameters (e.g.,
jitter and latency).

In this paper, we describe the design of a measurement
platform based on the technologies of software-defined ra-
dio (SDR) and IEEE 1588 Precision Time Protocol (PTP)
for measuring and evaluating the performance of wireless
networks (including wireless sensor networks). By evaluating
the performance metrics described in the paper, application
behaviors based on robust time synchronization could be better
quantified and evaluated.

We proceed in the next section to describe the GNU



Radio software-defined radio platform and the accompanying
Universal Software Radio Peripheral (USRP). The SDR-based
measurement platform is described in Section III. Section IV
describes the software timestamping mechanism implemented
in the IEEE 802.11 WiFi protocol and the IEEE 802.15.4
ZigBee protocol, respectively. Section V depicts the hardware
platform used to prototype the timestamping mechanism.
Demonstrations of running the wireless protocols of WiFi
and ZigBee to generate timestamps are also presented. The
proposed implementation of a hardware Time-Stamping Unit
(TSU) within the Field Programmable Gate Array (FPGA) of
USRP is described in Section VI'. Section VII concludes the
paper with future research activities.

II. OVERVIEW OF GNU RADIO AND USRP
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Fig. 1. Wireless communications with GNU Radio and USRP

GNU Radio is a collection of open source software which
includes most wireless protocols and necessary modules for
radio engineering and signal processing. The physical wave
signals transmitted and received are defined by software and
implemented on USRPs. Fig. 1 depicts how USRP and GNU
Radio work together. The GNU Radio software library only
executes on the personal computer (PC), and the USRP moth-
erboard consists of some functionality in hardware, such as
signal interpolation/decimation, Analog-to-Digital Converter
(ADC)/Digital-to-Analog Converter (DAC), as well as Digital
Up Converter (DUC)/Digital Down Converter (DDC). Further-
more, for transmission and reception in different frequency
bands, different choices of daughterboards become necessary.
For example, if we are conducting an experiment for 802.11
in the 2.4 GHz band, a specific daughterboard for operating
in 2.3-2.9 GHz is required. Fig. 2 depicts the roles that
both USRPs and GNU Radio play in a Transmission Control
Protocol/Internet Protocol (TCP/IP) stack.

'Implementation of the hardware TSU has not been completed yet. We
present a high level design with specific FPGA modules identified where the
hardware TSU could be implemented.
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Fig. 2. The roles of GNU Radio and USRP in the TCP/IP stack

SDR is the other critical technology used in our proposed
platform. In the following, we introduce the specific SDR
platform, USRP and GNU Radio, we propose to use in our
design. USRP is a platform for developing software radios,
which has been developed in both computer-hosted form and
embedded form. For this project, we choose the computer-
hosted form. USRPs are controlled with open source drivers
USRP Hardware Driver (UHD) and connected to a PC (for

‘é‘::;‘i'ﬁ:f computer-hosted form) with either a Universal Serial Bus

(USB) or a Gigabit Ethernet link so that radio protocols or
algorithms can be designed and executed on a PC while the
data are transmitted and received by the USRPs. USRPs are
usually developed with the GNU Radio software suite to de-
sign complex software-defined radio systems. We selected one
of the X series, USRP X310, as the platform for our testbed,
which provides higher dynamic range and bandwidth, as well
as a Multiple Input Multiple Output (MIMO) expansion port.

III. MEASUREMENT PLATFORM
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Fig. 3. Architecture of measurement platform

In this section, we describe the architecture of the proposed
measurement platform and how we evaluate the results. The
section is divided into (1) system architecture, (2) the design



of an Adapting Gateway (AG) (a wireless component using
USRP and a wired component using syn1588® Peripheral
Component Interconnect Express (PCle) Network Interface
Card (NIC), (3) integration of the wireless and the wired
portions, (4) use of wireless communication protocols, and
(5) performance measurements.

A. System Architecture

To evaluate the performance of wireless networks we focus
on time-related metrics, such as one-way delay and jitter.
To obtain precise measurement of such information, it is
critical to obtain the precise timestamp of packet arrivals and
departures in the appropriate protocol layer(s). Fig. 3 presents
the architecture which also depicts how the measurements are
performed.

The idea depicted in Fig. 3 is to evaluate any two nodes in
a wireless network (the upper network) with a condition that
the two nodes are synchronized by using a synchronization
network (the lower network). In the architecture, there are
two networks and each plays a different role. The upper
network is the target wireless network to be measured, termed
WNUM (Wireless Network Under Measurement). Any pair of
measured nodes (e.g., P1 and P2 in the Fig. 3) in the WNUM
may be selected and the performance such as latency, jitter, and
one-way delay between the nodes may be obtained. The lower
network is a PTP-based synchronization network responsible
for synchronizing the clocks on the selected pair of nodes in
the WNUM to a grand master traceable to, for instance, GPS
(Global Positioning System) time.

In the PTP-based synchronization network, slaves (S1 and
S2) selected to perform synchronization are actually part of
their respective Adapting Gateways, which adapt an Ethernet
network to a specific wireless network. For example, a gateway
for measuring the performance of a ZigBee network is an
Ethernet-ZigBee AG. The reason why measured nodes and
slave nodes need to be integrated into one device is our
proposed use of IEEE 1588 to synchronize S1 and S2. IEEE
1588 can guarantee the synchronization performance within
sub-microsecond or less over Ethernet, so the arrival time and
the departure time of each packet delivered from one end of the
selected pair to the other end can be precisely measured. This
specific AG for measuring wireless networks will be designed
as depicted in Fig. 4. Inside the AG, there is a clock, which
should be with high enough quality such as Oven-Controlled
Crystal Oscillator (OCXO). This clock, located on the syn1588
PCle NIC, will be synchronized to a grand master using IEEE
1588 via the syn1588 PCle NIC, and, in the meantime, be a
time source for drawing precise timestamps through USRP. In
Fig. 4, we only consider one direction, either in a transmission
or a reception. If the measurement requirements demand both
directions, due to the asymmetric propagations of wireless
communications, two antennas with daughterboards on each
USRP become necessary.

B. Adapting Gateway (AG)

The functionality of AG can be divided into two compo-
nents: one module to connect a wireless network (WNUM)
and one to connect an Ethernet network (an PTP-based syn-
chronization network).
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Fig. 4. Adapting gateway (AG)

1) Design of AG at wireless portion by using USRP: A
USRP X310 is connected to a PC and equipped with two
SBX 400-4400 MHz Rx/Tx daughterboards for receiving and
transmitting wireless signal in the 400-4400 MHz band. Pop-
ular wireless technologies such as WiFi and ZigBee operate
in this band. By programming new FPGA hardware modules
for generating hardware timestamps while converting baseband
signals to digital format, the customized USRP X310 also
functions as a precise hardware time-stamper for the events
of the packet arrival and departure in a wireless network.

2) Design of AG at wire portion by using synl588 PCle
NIC: Since the clock on an AG directly affects the quality of
the timestamp that USRP generates, synchronization between
the node pair selected for measurement is extremely important.
We use PTP to meet the necessary synchronization between
the clocks on the chosen node pair in the WNUM. One
syn1588 PCle NIC plays the role of synchronizing to a grand
master with PTP. Based on the results of our preliminary
work, synchronization can achieve a precision on the order
of hundred-nanosecond or better.

3) Integration of wireless and wired portions: However,
two issues arise when a wired portion and a wireless portion
are integrated. One issue is how USRP X310 and synl1588
PClIe NIC can share the same clock in an AG, and the other
is how to coordinate these two components in a consistent
manner. We propose to develop a software-based solution
using Inter-Process Communication (IPC). There will be four
processes running in Linux on the host computer to access
both USRP X310 and syn1588 PCle NIC, respectively. The
first process, written with GNU Radio in Python, implements
certain targeted protocols, e.g., 802.11, ZigBee, etc. The
second process accesses syn1588 PCle NIC so that the internal
OCXO can be precisely synchronized to a grandmaster. The
third process draws timestamp information from the USRP
X310. The last process will be an application program for
accessing timestamp information on the two nodes of the
selected pair in WNUM, so as to generate the performance



indices of latency, jitter, and one-way delay to evaluate the
WNUM.

IV. SOFTWARE TIMESTAMPING IN GNU RADIO WIRELESS
PROTOCOLS

In this section, we identify the specific blocks in the signal
flow graphs where the software timestamping mechanism is
implemented for WiFi and ZigBee, respectively. All these flow
graphs were created with the GNU Radio Companion (GRC),
a graphical user interface to GNU Radio.

A. IEEE 802.11 WiFi
Figs. 5 and 6 are the signal flow graphs
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B. IEEE 802.15.4 ZigBee
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V. TIMESTAMPING TESTBED AND DEMONSTRATION

Fig. 9 and Fig. 10 depict the execution traces of timestamp
generation while communicating via the IEEE 802.11 WiFi
protocol and the IEEE 802.15.4 ZigBee protocol, respectively.
For WiFi Tx, timestamps are generated in the block of “OFDM
Parse MAC” of both Tx and Rx nodes. For ZigBee, timestamps
are generated in the block titled “IEEE802.15.4 MAC” in both
the Tx and Rx nodes.

VI. HARDWARE TSU IN THE USRP’s FPGA

Conceptually, hardware TSUs should be implemented, along
the signal path, as close to the physical network interface (to
the connection wire for wired networks or to the antenna for
wireless networks) as possible to mitigate timing uncertainty.
In the context of USRP, this is depicted by the two red
arrows in Fig. 11, one before the digital upconversion (DUC)
step in the transmitter chain and the other after the digital
downconversion (DDC) step in the receiver chain.
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Fig. 11. Conceptual location of hardware TSU in USRP [8]

Since both DUC and DDC are implemented in the FPGA
on the USRP, the two red arrows in Fig. 12 correspond to the
two in Fig. 11 and depict the locations of the hardware TSUs
inside the FPGA of the USRP X310. Specifically, we propose
to develop (1) the Tx TSU module in-between the two existing
FPGA modules new_tx_control and duc_chain, and
(2) the Rx TSU module in-between the two existing FPGA
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modules new_rx_framer and ddc_chain_x300 to gen-
erate the Tx and Rx timestamps, respectively.
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To know the exact time at which to generate timestamps,
we need a “triggering” mechanism that causes the Tx TSU
module to generate a timestamp when a packet is about to be
transmitted. Similarly, by recognizing the triggering condition
for an incoming packet, the Rx TSU module generates the
arrival timestamp. In our implementation, a Sample preamble
is added, by the Sample Preamble Generator block in Fig.
5, before the Orthogonal Frequency-Division Multiplexing
(OFDM) preamble of each outgoing packet, as depicted in
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Fig. 13. By recognizing the Sample preamble of an incoming
packet, an Rx timestamp is generated.
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VII. CONCLUSION

In this paper, we describe a measurement platform based
on the technologies of software-defined radio (SDR) and
IEEE 1588 Precision Time Protocol (PTP) for measuring and
evaluating the performance of wireless networks (including
wireless sensor networks). By evaluating the performance
metrics described in the paper, application behaviors based
on robust time synchronization could be better quantified and
evaluated. Work is in progress to complete the implementaion
of the hardware timestmper inside the FPGA of USRP X310.
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Fig. 10. Timestamping demonstration over IEEE 802.15.4 (ZigBee)
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