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Abstract In this article, we consider the general problem of checking the
correctness of matrix multiplication. Given three n x n matrices A, B, and
C, the goal is to verify that A x B = C without carrying out the computa-
tionally costly operations of matrix multiplication and comparing the product
A x B with C, term by term. This is especially important when some or all of
these matrices are very large, and when the computing environment is prone
to soft errors. Here we extend Freivalds’ algorithm to a Gaussian Variant of
Freivalds’ Algorithm (GVFA) by projecting the product A x B as well as C'
onto a Gaussian random vector and then comparing the resulting vectors. The
computational complexity of GVFA is consistent with that of Freivalds’ algo-
rithm, which is O(n?). However, unlike Freivalds’ algorithm, whose probability
of a false positive is 27%, where k is the number of iterations. Our theoretical
analysis shows that when A x B # C, GVFA produces a false positive on set
of inputs of measure zero with exact arithmetic. When we introduce round-off
error and floating point arithmetic into our analysis, we can show that the
larger this error, the higher the probability that GVFA avoids false positives.
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Moreover, by iterating GVFA k times, the probability of a false positive de-
creases as p¥, where p is a very small value depending on the nature of the
fault on the result matrix and the arithmetic system’s floating-point precision.
Unlike deterministic algorithms, there do not exist any fault patterns that
are completely undetectable with GVFA. Thus GVFA can be used to provide
efficient fault tolerance in numerical linear algebra, and it can be efficiently
implemented on modern computing architectures. In particular, GVFA can be
very efficiently implemented on architectures with hardware support for fused
multiply-add operations.

Keywords Fault-tolerance - Algorithmic Resilience - Gaussian Variant of
Freivalds’ Algorithm - Matrix Multiplication - Gaussian Random Vector -
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1 Introduction

As the demands on modern linear algebra applications created by the latest
development of high-performance computing (HPC) architectures continues
to grow, so does the likelihood that they are vulnerable to faults. Faults in
computer systems are usually characterized as hard or soft, and in this article
we are motivated primarily with the latter. Soft errors, defined by intermittent
events that corrupt the data being processed, are among the most worrying,
particularly when the computation is carried out in a low-voltage comput-
ing environment. For example, the 2,048-node ASC Q supercomputer at Los
Alamos National Laboratory reports an average of 24.0 board-level cache tag
parity errors and 27.7 CPU failures per week [34]; the 131,072-CPU Blue-
Gene/L supercomputer at Lawrence Livermore National Laboratory experi-
ences one soft error in its L1 cache every 4-6 hours [19]; more recently, a field
study on Google’s servers reported an average of 5 single bit errors occur in 8
Gigabytes of RAM per hour using the top-end error rate [37]. The reliability of
computations on HPC systems can suffer from soft errors that occur in mem-
ory, cache, as well as microprocessor logic [38], and thus produce potentially
incorrect results in a wide variety of ways. We are specifically interested in
examining ways to remedy the consequences of soft errors for certain linear
algebra applications.

Matrix-matrix multiplication is one of the most fundamental numerical
operations in linear algebra. Many important linear algebraic algorithms, in-
cluding linear solvers, least squares solvers, matrix decompositions, factoriza-
tions, subspace projections, and eigenvalue/singular values computations, rely
on the casting the algorithm as a series of matrix-matrix multiplications. This
is partly because matrix-matrix multiplication is one of the level-3 Basic Lin-
ear Algebra Subprograms (BLAS) [I0lQ17]. Efficient implementation of the
BLAS remains an important area for research, and often computer vendors
spend significant resources to provide highly optimized versions of the BLAS
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for their machines. Therefore, if a matrix-matrix multiplication can be carried
out free of faults, the linear algebraic algorithms that spend most of their time
in matrix-matrix multiplication can themselves be made substantially fault-
tolerant [21]. Moreover, there is considerable interest in redesigning versions
of the BLAS to be more fault-tolerant, and this work will certainly contribute
to that goal.

In this article, we consider the general problem of checking the correctness
of matrix-matrix multiplication, i.e., given three n x n matrices A, B, and C,
we want to verify whether A x B = C'. In contrast to the best known matrix-
matrix multiplication algorithm running in O(n?-3727) time [839], Freivalds’
algorithm [16] takes advantage of randomness to reduce the time to check a
matrix multiplication to O(n?). The tradeoff of Freivalds’ algorithm is that the
probability of failure detection, a false positive, is 27%, where k is the number
of iterations taken. We extend Freivalds’ algorithm from using binary random
vectors to floating-point vectors by projecting the A x B result as well as C
using Gaussian random vectors. We will refer to this algorithm as the Gaussian
Variant of Freivalds’ Algorithm (GVFA). By taking advantage of a nice prop-
erty of the multivariate normal distribution, we show that GVFA produces
a false positive on a set of random Gaussian vectors and input matrices of
measure zero. Taking floating point round-off error into account, by iterating
GVFA Ek times, the probability of false positive decreases exponentially as p*,
where p is usually a very small value related to the magnitude of the fault
in the result matrix and floating-point precision of the computer architecture.
We also present an efficient implementation of GVFA on computing hardware
supporting fused multiplication-add operations.

The plan of the paper is the following. We first discuss two relevant algo-
rithms from the literature for error detection in matrix-matrix multiplication.
These are the Huang-Abraham scheme, discussed in section Bl and Freivalds’
algorithm, the subject of section Bl The former is a deterministic algorithm
based on carrying row and column sums along in a clever format to verify
correct matrix-matrix multiplication. Freivalds’ algorithm is a random projec-
tion of the computed matrix-matrix product to the same random projection
of the matrix-matrix product recomputed from the original matrices using
only matrix-vector multiplication. The random vector used in Freivalds’ al-
gorithm is composed of 0’s and 1’s. In section @] we present the GVFA, a
variation on Freivalds’ algorithm, where we instead use random Gaussian vec-
tors as the basis of our projections. We analyze the GVFA and prove that with
Gaussian vectors, a false positive occurs only on a set of Gaussian vectors of
measure zero. Further analysis of false positive probabilities in the GVFA in
the presence of floating-point arithmetic with round-off errors is then taken.
Finally, in section [l we provide a discussion of the results and implications for
fault-tolerant linear algebraic computations and a method of enhancing the
resilience of linear algebraic computations. In addition, in this final section we
provide conclusions and suggest directions for future work.
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2 The Huang-Abraham Scheme and its Limit in Error Detection/
Correction

The Huang-Abraham scheme [24] is an algorithm-based fault tolerance method
that simplifies detecting and correcting errors when carrying out matrix-matrix
multiplication operations. This is slightly different from the matrix product
verification problem. The fundamental idea of the Huang-Abraham scheme is
to address the fault detection and correction problem at the algorithmic level
by calculating matrix checksums, encoding them as redundant data, and then
redesigning the algorithm to operate on these data to produce encoded out-
put that can be checked. Compared to traditional fault tolerant techniques,
such as checkpointing [5], the overhead of storing additional checksum data
in the Huang-Abraham scheme is small, particularly when the matrices are
large. Moreover, no global communication is necessary in the Huang-Abraham
scheme [I4]. The Huang and Abraham scheme formed the basis of many sub-
sequent detection schemes, and has been extended for use in various HPC

architectures [2/[31[32/14].

A X B =

| |

% v
(a) Generation of a column checksum for A and a row checksum for B, and multiplication
of the extended matrices to produce the checksum matrix for C

O
N

_ %
i

] Matrix Element % Checksum . Mizmatch Y Fault

(b) Mismatches in the row and column checksums indicate
an element fault in the matrix product

Fig. 1: The Huang-Abraham scheme for detecting faults in matrix-matrix mul-
tiplication
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Fig. [ illustrates the Huang-Abraham scheme [24] for detecting faults in
matrix-matrix multiplication. First of all, column sums for A and row sums
for B are generated and are added to an augmented representation of A and
B. These are treated as particular checksums in the subsequent multiplication.
Then, multiplication of the extended matrices produces the augmented matrix
for C' (Fig. where the checksums can be readily compared. Mismatches
in the row and column checksums indicate an element fault in the matrix
product, C' (Fig. .

However, there are certain patterns of faults undetectable by the Huang-
Abraham scheme. Here is a simple 2 x 2 example to illustrate such an unde-
tectable pattern.

Consider the matrices

23 1-6 56
a= 3= ] mac=20).

Clearly A x B = C holds in this example. Then we use the Huang-Abraham
scheme to calculate the column checksum for A and row checksum for B and
we can get

23

AF: 34 and BF: |:16675:|
57
Then
5 6 11
AFXBF: 7 6 13 :CF.
1212 24

However, if there is a fault during the computation of C' which causes an
exchange of the first and second columns,; an erroneous result matrix C’ =

[2 ﬂ is generated by exchanging the columns of C'. Column or row exchange,

usually caused by address decoding faults [20], is a commonly observed memory

fault pattern [6]. The problem is that the checksum matrix of C’ becomes
6 5 11

C'r =6 7 13|, where both the row and column checksums match those
1212 24

of the true product of A x B. Consequently, the Huang-Abraham scheme fails

to detect this fault.

The Huang-Abraham scheme can be viewed as a linear constraint satis-
faction problem (CSP), where the variables are the n? entries in the product
matrix, C, the constraints are the 2n row and column checksums. Also, the
2n x n? coefficient matrix in the under-determined linear CSP system equation
specifies the selection of row or column elements, as shown in Fig. 2l Clearly,
a product matrix, C', that does not satisfy the CSP equations indicates errors
in C' detectable by the Huang-Abraham scheme. The unique, correct product
matrix, C, satisfies the CSP equations. Nevertheless, other possible product
matrices satisfying the CSP equations are the fault patterns undetectable by
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the Huang-Abraham scheme. Only when at least n? constraints with different
element selection are incorporated so that the rank of the coefficient matrix
in the CSP equation is n?, can the undetectable fault patterns be eliminated.
However, this situation is equivalent to simply checking every element in C.

nZ [C11
A Ciz
- D [(Cr)in+1]
11 100 = 0 = 00 - 0Cy, €y
o0 - 01 1 = 1 - 0 0 - 0 Csq F/2n+1
H c H
an<d [0 0 0 00 0 11 1|2 _|€CPnnsa
1 0 01 0 0 1 0 0 C. (Crlus11
2Zn
0 1 0 0 1 0 01 0 E (Cilnsrz
C :
0 0 1 00 1 00 14| 5na
Cn,Z -(CF)n+1,n-
[Cpo

Fig. 2: Under-determined CSP system in the Huang-Abraham Scheme

It is important to notice that there are an infinite number of existing fault
patterns that satisfy the checksum constraints and thus are undetectable by
the Huang-Abraham scheme, even in the above simple 2 X 2 example (the
rank of the CSP coefficient matrix is 3). Moreover, as dimension, n, increases,
the number of checksum constraints increases only linearly but the number
of elements in a matrix has quadratic growth. Therefore, the undetectable
patterns in the Huang-Abraham scheme increase quadratically with n. As a
result, for multiplications in large matrices, fault detection methods based
on the Huang-Abraham scheme can generate false positive results for a large
number of circumstances.

3 Freivalds’ Algorithm

The fault detection methods based on the Huang-Abraham scheme are deter-
ministic algorithms. As many randomized fault tolerance algorithms [28129],
with the tradeoff of random uncertainty, Freivalds [I6] showed that a prob-
abilistic machine can verify the correctness of a matrix product faster than
direct recalculation. The procedure of the corresponding method, later named
Freivalds’ algorithm, is described in Algorithm 1.

Obviously, if A x B = C, Cw = ABw always holds. Freivalds proved that
when A x B # C, the probability of Cw = ABw is less than or equal to %
The running time of the above procedure is O(n?) with an implied multiplier
of 3, as it is comprised of three matrix-vector multiplications. This is an upper
bound as one can perhaps optimize the evaluation of Bw and Cw. By iterating
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Algorithm 1: Freivalds’ Algorithm

1. Randomly sample a vector w € {0,1}"™ with p = % of 0 or 1.

2. Calculate the projection of C onto w: Cw = C' X w.

3. Calculate the projection of the product A X B onto w: ABw = A x (B X w).

the Freivalds’ algorithm k times, the running time becomes O(kn?) and the
probability of a false positive becomes less than or equal to 2%, according to
the one-sided error. More generalized forms of Freivalds’ algorithm have also
been developed, mainly based on using different sampling spaces [7[1LB6L31].
Given at most p erroneous entries in the resulted matrix product, Gasieniec,
Levcopoulos, and Lingas extended Freivalds’ algorithm to one with correcting

capability running in O(,/pn?log(n)log(p)) time [1§].

4 A Gaussian Variant of Freivalds’ Algorithm (GVFA)
4.1 Extending Freivalds’ Algorithm using Gaussian Vectors

Freivalds’ original algorithm, and most of its extensions are based on integer
matrices or matrices over a ring and sampling from discrete spaces. Clearly,
we can also apply Freivalds’ algorithm to matrices with real or complex entries
with the random vector remaining zeros and ones. A simple extension is to
project A x B and C onto a vector wp of form wp = (1,772, ....,r" )T where
r is a random real number. A false positive occurs only when r is the root of
the corresponding polynomial. However, in practice, 7" ~! can easily grow too
large or small exceeding floating point representation [25].

Here we also extend Freivalds’ algorithm by using Gaussian random vectors
for the projection. We use the fact that the multivariate normal distribution
has several nice properties [35], which have been used for detecting statistical
errors in distributed Monte Carlo computations [29]. The extended algorithm
is described in Algorithm 2.

Algorithm 2: Gaussian Variant of Freivalds’ Algorithm

1. Generate a Gaussian random vector, wg, made up of n independent (but
not necessarily identically) distributed normal random variables with finite
mean and variance.

2. Calculate the projection of C on wg: Cwg = C X wg.

3. Calculate the projection of product A x B on wg: ABwg = A X (B X wg).

This algorithm, which we call a Gaussian variant of Freivalds algorithm
(GVFA), requires three matrix-vector multiplications and only one vector com-
parison for fault detection.
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4.2 Theoretical Justification

Similar to Freivalds’ algorithm, in GVFA if A x B = C, Cwg = ABw¢ always
holds within a certain floating point round-off threshold. When Ax B # C, the
chance that Cwg = ABwg is a false positive event occurs with measure zero in
exact arithmetic, as shown in Theorem [Il We first state a result of Lukacs and
King [33], shown as Proposition [I] which will be used in the proof of Theorem
[l The main assumption of Proposition [lis the existence of the nth moment
of each random variable, which many distributions, particularly the normal
distribution, have. One important exception of the normal is that it is the
limiting distribution for properly normalized sums of random variables with
two finite moments. This is Lindeberg’s version of the Central Limit Theorem

[30].

Proposition 1 Let X1, Xs,---, X,, be n independent (but not necessarily iden-
tically) distributed random variables with variances o2, and assume that the
nth moment of each X; (i = 1,2,---,n) exists and is finite. The necessary and
sufficient conditions for the existence of two statistically independent linear
forms Y1 =31 a;X; and Yo =31 b; X, are

(1) Each random wvariable which has a nonzero coefficient in both forms is
normally distributed.

(2) Z?:l aibiof = 0

Theorem 1 If A x B # C, the set of Gaussian vectors where Cwg = ABwg
holds in Algorithm 2 has measure zero.

Proof Let the matrix A € R"*™ denote AB—C. Since Ax B # C, rank(4) =
r > 0, and dim(null(A)) = n — rank(A) = n — r < n. Here dim(-) denotes
dimension and null(-) denotes the null space, i.e., null(A) = {x € R" : Axa =

0}.
We can now find n — r of orthonormal vectors, vy, v, -+, vy, to form a
basis for null(A), such that
null(A) = span{vy,va, -+, Up_r},
and r more orthonormal vectors, vy,— 41, Un—ry2,- -, Uy, such that

n __
R" = Span{vlaUQ; oy Un—ry Un—r+1,Un—r42, " ,’Un}.

Any vector, and in particular the Gaussian vector, wg can be written in

this basis as
n
wag = Z 5ivia
i=1
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where 9; are the weights in this particular orthonormal coordinate system. If
we denote V = [v1,v2,*, Upn—py Un—pi1s Un—pt2, -, Up] , We have

VWG = [51; 527 Ty, 57’7,7"”) 5nfr+1; 5nfr+2; Ty, 5n] .

Cwg = ABwg holds in Algorithm 2 only if A(Bwg) — Cwg = (AB — C)wg =
Awe = 0. This means that wg € null(A),ie., dp—ri1 =0,0p—r42=0,--+,0, =
0. Due to the fact that wg is a Gaussian random vector and V' is an orthogo-
nal matrix, Proposition [ tells us that the elements, d;, in the resulting vector
Vwg are normally distributed and statistically independent. With a continu-
ous probability distribution, the discrete event where §; = 0 for all ¢ > n —r
occurs on a set of measure zero and we will say here that it has probability
zero. Hence, GVFA using a Gaussian random projection will have unmatched
Cwg and ABwg when A x B # C on all but a set of measure zero of Gaussian
vectors, which we will say is probability one. O

This argument in Theorem [ is rather direct, but we must point out that
the arguments are true when the computations are exact. In next subsection,
we will analyze GVFA when float-point errors are present.

4.3 Practical Use in Floating-Point Matrix Product Verification

In computer implementations of arithmetic with real numbers, one commonly
uses floating-point numbers and floating-point arithmetic. Floating-point num-
bers are represented as finite numbers in the sense that they have a fixed
mantissa and exponent size in number of bits. Therefore, there will be a small
probability, p, that Cwg = ABwg still holds due to unfortunate floating-point
operations in a system with a known machine epsilon, ¢, when A x B # C.
The value of p depends on the magnitude of the error between A x B and C
as well as €, whose upper bound is justified in Theorem 2]

Theorem 2 Assume that wg is a standard Gaussian random vector, whose
elements are i.i.d. normal variables with mean O and variance 1, i.e., the stan-
dard normal. Let A = A x B — C, then the probability, p, that Cwg = ABwg
holds in Algorithm 2 using a standard Gaussian random vector wg under
floating-point uncertainty of size € is

pem(E)
g

where D(-) is the cumulative density function of the standard normal, and &
is a constant only related to A.

Proof Since Ax B# C, A=A x B—C # 0. Consider the ith element, g;, of

the product vector ¢ = A X wg, we have

n

9= (Axwae)i =Y Ay(wa);

j=1
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Given €, only if |g;| < eforalli=1,---,n, can Cwg = ABwg hold. Since wg
is a standard normal random vector, the g; for all i = 1,--- n, are normally
distributed as well. This is because they are linear combinations of normals
themselves. The key is to compute what the mean and variance is of the g;.
The components of the wg are i.i.d. standard normals. Thus we have that
E(wg);] = 0 and E [(wg)f] =1, for all j = 1,---,n. Also, we have that
E(wg)i(wa)j] = 0 when ¢ # j. This allows us to compute the mean:

E(gi) =E Z Ajj(wa)j| = Z A E [(we);] =0,

and the second moment about the mean, i.e., the variance:

E g} - E(9:)’| =E[g}] =E |>_ Aij(wa);

j=1
n n
TR o
j=1 j=1

So we have that the g;’s are normally distributed with mean zero and variance
52 =Y A2 e, gi~ N (0,52).

Then, the probability that |g;] < e can be computed as follows. Since
gi~ N (0, 51-2), we know that % ~ N(0,1), and so we define the new variables

gi = % and € = =5, and so we have
i (3

p(lgil <€) =p(—e<gi <e)
=p(—€<g; <%

e_%tzdt

Since the probability density function of a standard normal is an even function,
we have that @(€) + &(—¢) = 1, and so we can use —P(—¢) = P(€) — 1 to get:

)-1

Now let us consider computing an upper bound on p(|g;| < €,i=1,---,n).
We have proven that the g;’s are normal random variables, but they are not
necessarily independent. And so for this we use some simple ideas from con-
ditional probability. By example, consider

€

P(—€§9i§6)=2¢(a—1:2¢(

g;

p(lg1| < e and |g2| <€) = p(lg2| < € given |g1] < €)p(|g1] <€) < p(lg1] < e).



GVFA for Efficient and Reliable Matrix Product Verification 11

The inequality holds due to the fact that the probabilities are numbers less
than one. Now consider our goal of bounding
)]

by iterating the conditional probability argument n times. By reordering we
could have chosen the bound utilizing any of the g;’s. However, let us define

. €
plgil < eri=1,m) < pllgr| <€) = [2@( .

0 = max; /Z?Zl A?j, i.e., the maximal standard deviation over all the g;’s,

which is only related to the matrix A. We can use that value instead to get

=p(lgil <ei=1,---,n) < [245(%)71}.

As an interesting corollary, we can get a better bound in the case the at
the g;’s are independent. In that case
) - 1] -

n n
plgd < ci=1,--n) =[] plloil < o =H[ (
Let 0 = max; m , i.e., the maximal standard deviation over all the

a

i=1 i=1
g;’s, which is only related to the matrix A. Hence for all i = 1,---,n, we have

that
2@<é>1§2¢>(‘§‘)1.
g

4

And so, finally we get that

IN

N

S
~—

The last inequality is true since the number raised to the nth power is less
than one.

Note, that independence gives probability of a false positive that is n times
smaller than in the general, dependent case. The conclusion of this seems to
be that the bound in the dependent case is overly pessimistic, and we suspect
that in cases where the matrix A is very sparse, due to a very small number of
errors, that we are in the independent g;’s case or have very little dependence,
and these more optimistic bounds reflect what happens, computationally.

Theorem [2] reveals two interesting facts about GVFA in term of practical
floating-point matrix product verification:



12 Hao Ji et al.

(1) The bigger the error caused by the fault, the higher the probability that it
can be captured. p is usually very small because the floating point bound,
€, is very small.

(2) Similar to the original Freivalds’ algorithm, higher confidence can be ob-
tained by iterating the algorithm multiple times. In fact, if we iterate k
times using independent Gaussian random vectors, the probability of false
positive decreases exponentially as p*. Actually, due to the fact that p is
usually very small, one or a very small number of iterations will produce
verification with sufficiently high confidence.

One comment that should be made is that if we consider f;.\/%e_%tz dt
when € is small, we can easily approximate this. Since the integrand is at
its maximum at zero, and is a very smooth function, analytic actually, this
integral is approximately the value of the integrand at zero times the length of
the integration interval, i.e., ffg\/%e_%tz dt < 2?\/% = E\/g. This is justified
as ¢ is a number on the order of the machine epsilon, which is 2723 in single
precision or 2752 in double precision floating point, divided by 77 = 2?21 A?j.

Compared to deterministic methods, such as the Huang-Abraham scheme,
GVFA has the following advantages:

(1) Certain fault patterns, as shown in Section[2 are undetectable in determin-
istic methods such as the Huang-Abraham scheme. Deterministic methods
absolutely cannot detect faults with certain patterns, i.e., certain patterns
are detected with probability zero. In contrast, there are no fault patterns
that are undetectable by GVFA with 100% probability. Moreover, iterating
the algorithm multiple times can increase the probability of detecting any
fault pattern any value less than one by iteration.

(2) From the computational point-of-view, normal random vectors are gener-
ated independently of A, B, and C', which avoids the costly computation
of checksums.

4.4 Huang-Abraham-like GVFA

GVFA can also be implemented in a way similar to that of the Huang-Abraham
scheme by providing row and column verification, as shown in Algorithm 3.

Algorithm 3: Huang-Abraham-like GVFA

1. Generate two n-dimensional Gaussian random vectors, wpr, a column vector,
and wc, a row vector, where they independent (but not necessarily identically)
distributed normal random variables with finite mean and variance.

2. Calculate the projection of C' on wgr and we: wrC = wr X C and Cweo =
C x wc'-

3. Calculate the projection of the product A X B on wr and wc: wrAB =
(wgr X A) x B and ABwc = A X (B X wg).
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Similar to the Huang-Abraham scheme, a mismatched element of the row
vectors of wrC and wrAB as well as that of the column vectors of Cwg
and ABwc uniquely identify a faulty element in C. By considering floating-
point errors, the false positive probability of identifying this fault becomes
p?, according to the analysis in Section E3l However, the computational cost
doubles with six matrix-vector multiplications and two vector comparisons.
This is essentially the same work as doing two independent iterations of the
GVFA, and obtains the same bound.

4.5 Implementation using Fused Multiply-Add Hardware

The Fused Multiply-Add (FMA) machine instruction performs one multiply
operation and one add operation with a single rounding step [23]. This was im-
plemented to enable potentially faster performance in calculating the floating-
point accumulation of products, a := a + b x ¢. Recall that the GVFA employs
three matrix-vector multiplications to project A x B and C onto a normal
random vector, which requires a sequence of product accumulations that cost
3n(2n —1) floating-point operations. Therefore, the performance of the GVFA
can be potentially boosted on modern computing architectures that support
the FMA. More importantly, due to a single rounding step used in the FMA
instruction instead of two roundings within separate instructions, less loss of
accuracy occurs when using the FMA instruction in calculating the accumu-
lation of products [4]. This should further reduce the floating-point rounding
errors that cause false positives.

5 Discussion and Conclusions

In this paper, we extend Freivalds’ algorithm, which we call the Gaussian
variant of Freivalds’ algorithm (GVFA), to the real domain by random pro-
jection using vectors whose coefficients are i.i.d. normal random variables. If
Ax B # C, the probability that the resulting vectors match is zero using exact
arithmetic. Considering the round-off errors in floating-point operations, the
probability of fault detection depends on the magnitude of the error caused by
the fault as well as the floating point precision. The new GVFA can be iterated
k times with the probability of false positives decreasing exponentially in k.
In addition to matrix-matrix multiplication, the new algorithm can be applied
to verify a wide variety of computations relevant to numerical linear algebra
as it provides fault tolerance to the computation that defines level 3 of the
BLAS. GVFA can also be used to enforce the trustworthiness of outsourcing
matrix computations on untrusted distributed computing infrastructures such
as clouds or volunteer peer-to-peer platforms [27126].

The GVFA can be easily extended to a more general matrix multiplication
operation where A is m X p, B is p x n, and C' is m x n. The overall computa-
tional time then becomes O(mp + np). The algorithm can be further extended
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to verify the product of N matrices, which requires overall N + 1 matrix-vector
multiplications. The GVFA can also be applied to verifying a wide variety of
matrix decomposition operations such as LU, QR, Cholesky, as well as eigen-
value computations, and singular value decompositions. In this case, faults are
not in the product matrix but occur in the decomposed ones instead. Anyway,
the GVFA can be directly applied with no modifications necessary.

The GVFA is a new tool to detect faults in numerical linear algebra, and
since it is based on random Gaussian projection, it is related to the many new
randomized algorithms being used directly in numerical linear algebra [22l11]
[T2|T315]. The fundamental idea of these randomized algorithms is to apply
efficient sampling on the potentially very large matrices to extract their impor-
tant characteristics so as to fast approximate numerical linear algebra opera-
tions. We believe that the GVFA will be a very useful tool in the development
of fault-tolerant and otherwise resilient algorithms for solving large numerical
linear algebra problems. In fact, it seems that the GVFA’s similarity to other,
new, stochastic techniques in numerical linear algebra affords the possibility
of creating stochastic linear solvers that are by their very nature resilient and
fault-tolerant. This is highly relevant for new machines being developed in
HPC to have maximal floating-point operations per second (FLOPS) while
existing within restrictive energy budgets. These HPC systems will be oper-
ating at voltages lower than most current systems, and so they are expected
to be particularly susceptible to soft errors. However, even if one is not an-
ticipating the use of these high-end machines, the trend in processor design
is to lower power, and is being driven by the explosion of mobile computing.
Thus, the ability to reliably perform complicated numerical linear algebraic
computations on systems more apt to experience soft faults is a very general
concern. The GVFA will make it much easier to perform such computations
with high fidelity in HPC, cloud computing, mobile applications, as well in
big-data settings.
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