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ABSTRACT: COSMO-SAC model was reparameterized with use of the
critically evaluated data generated by the NIST ThermoData Engine for
vapor−liquid equilibria, excess enthalpies for binary mixtures, and activity
coefficients of binary mixture components. The calculated σ-profile library
contained 897 individual compounds. The temperature-dependent σ profiles
included contributions of up to 40 conformers of a molecule. Splitting of the
H-bonding σ profiles into OH and non-OH parts decreased the root-mean
square deviation from the experimental data points by about 10% compared to
the model using one H-bonding parameter. The original UNIFAC model
demonstrated comparable performance with the more advanced COSMO-
SAC variation. The challenges of uncertainty evaluation for parameters of the
model and the predicted values are discussed.

1. INTRODUCTION

Quantum-chemistry-based statistical thermodynamic calcula-
tions are routinely used for reliable prediction of thermodynamic
properties of ideal gases. Prediction of thermodynamic proper-
ties of pure liquids and liquid solutions is a more complicated
problem due to multiple interactions between molecules and
nonperiodic structure of these phases. Thermodynamic proper-
ties of liquids and solutions are normally predicted with empirical
models such as UNIFAC.1 A bridge between empirical models
and quantum chemistry was created when Klamt et al. proposed
COSMO-RS (COnductor-like Screening Model for Real
Solvents).2,3

The quantum chemical component of the model is based on
the dielectric continuum model COSMO,4 in which the solute
molecule is placed in a molecule-shaped cavity, whereas the
solvent is considered as continuum. The principal difference
between COSMO and other dielectric continuum models is that
the former uses a scaled-conductor dielectric boundary
condition. For evaluation of thermodynamic properties,
calculations are performed for the so-called “ideal” conductor
with an infinite dielectric constant. This model is coupled with
equations of statistical thermodynamics of fluids, providing a tool
that enables one to evaluate thermodynamic properties of
multicomponent systems and pure fluids.
In addition to the original COSMO-RS, alternative approaches

are being developed. They include COSMO-RS(Ol),5 COSMO-
RS(ADF),6 COSMO-SAC,7 COSMO-3D,8 and so forth. De-
tailed comparison of COSMO-RS, COSMO-RS(Ol), and
COSMO-SAC9,10 reported similar levels of performance
among the considered methods.
Molecular parameters required for thermodynamic calcula-

tions include σ profile and molecular geometry. σ profile is the

probability density function of polarization charge density on the
molecular surface, as obtained from the results of quantum
chemical computations. The final equations used to predict
properties contain a number of empirical parameters. However,
many fewer parameters are needed in comparison to the
traditional empirical models. Approaches combining COSMO-
RS(Ol) and COSMO-SAC with group-contribution
schemes11,12 and with UNIFAC13 have also been proposed.
The quality of any model containing empirical parameters

strongly depends on the reliability of the experimental data set
used for parametrization. In this work, the experimental data
used for reparameterization of COSMO-SAC were critically
evaluated by the NIST ThermoData Engine (TDE),14 an expert
system for thermophysical and thermochemical property
evaluation.15 An expert system consists of an inference engine
(algorithmic encoding of the thought process of a data expert)
that interrogates a knowledge base (a trusted and comprehensive
data archive of relevant facts) in order to develop new
knowledge.16,17 TDE’s knowledge base includes the NIST/
TRC SOURCE Data Archival System,18,19 a database that
contains the necessary data for pure compounds, binarymixtures,
ternary mixtures, and chemical reactions, as derived from
experimental measurements described in literature.
In this work, a σ-profile database was generated for 897

compounds, each containing up to eight non-hydrogen atoms, as
well as the parameters for estimating thermodynamic properties
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of binary liquid mixtures were determined with two COSMO-
SAC type models. The parameters were fitted to critically
evaluated data on equilibrium vapor pressure, activity
coefficients, and excess enthalpies for binary liquid mixtures.
Two different approaches (covariance matrix and Monte Carlo
sampling) to uncertainty evaluation for the parameters and the
predicted values were deployed.

2. CALCULATIONS
The quantum-chemical calculations were conducted in Gaussian
09 Revision C.01 software.20 The calculations used the
generalized York and Karplus conductor-like screening
model,21 which is based on the original COSMO model.4 The
solvent was a hypothetical water-like one with a static dielectric
constant of 1000. The default atomic radii from Gaussian were
used. Most of them were taken from ref 22. The radii for Si and
Ar were 0.2457 nm and 0.2223 nm, respectively.
In COSMO calculations, B3LYP and BP functionals are

normally coupled with various basis sets including 6-31G(2d,p),
6-311G(d,p), 6-31+G(d,p), TZP, TZVP, TZVP-DGA1, DNP,
and so forth. Many functional/basis set combinations have been
analyzed,9 and none of them were found to have a clear
advantage in the calculation of the activity coefficients. For the
present data set, the total number of structures for which σ
profiles were required exceeded 8000 and geometry optimization
was the limiting step. Calculations at the B3LYP/6-311G(d,p)
level of theory chosen in this work represented a compromise
between the computational cost and the quality of predicted
charge distributions. Geometry optimization was followed by a
single-point calculation of point charges on molecular surfaces in
an “ideal solvent” defined in ref 4. A similar procedure is normally
used in COSMO-SAC,7 whereas the original COSMO-RS uses
the COSMO-optimized geometries.
For most molecules, σ ranges from about −3 e·nm−2 to 3 e·

nm−2. The considered range was divided into sections of 0.10 e·
nm−2 width to create a σ profile. The probability density for each
section was found as the area of all segments whose charge
density was within (σ ± 0.05) e·nm−2 divided by the total
molecular surface area.
If a compound formed different conformers, the following

procedure was applied. The initial structures of conformers were
generated using various 3D structure generators and then
optimized with MMFF94 force field23 in the TINKERmolecular
mechanics package24 using previously described25 in-house
procedures. The duplicate structures were removed. For each
molecule, up to 20 conformers were retained for quantum-
chemical calculations, then candidates were again filtered for
duplicates. If a species had a chiral counterpart, it was also
considered in the subsequent σ-profile generation. Thus, up to 40
conformers could be considered for one molecule.
The nonlinear optimization of model parameters was

performed with use of the COBYLA nongradient method26

from the NLOPT library.27

The standard errors of the parameters were estimated as
square root of the corresponding diagonal element of the
asymptotic covariance matrix28

= −sV A A( )T2 1 (1)

Here, s2 is the squared standard deviation
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−
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where Fmin is the minimal value of an objective function, n is the
number of points, and p is the number of optimized parameters.
An Aij element of matrix A is a partial derivative of the property in
the ith point with respect to the jth parameter.
The uncertainty for a prediction of property y was found with

the equation28
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where a is a column matrix of partial derivatives of the calculated
property value with respect to parameters. For the data set
containing only one property, sy = s. Because the data set under
consideration included various properties, the standard deviation
for property y was computed as
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Calculation of matrix V through partial derivatives of properties
is based on a linear approximation, and the resulting uncertainties
do not include the nonlinear effects. To assess this limitation, the
Monte Carlo bootstrap method29 was also applied to evaluate the
uncertainties. In this method, a trial data set is generated by
randomly substituting e−1 of points with other points from this
data set. Thus, those other points would be represented twice.
Optimal parameters are then determined for the trial data set.
The required number of simulations is performed (more than
800 in this work), and the statistical characteristics are evaluated
directly.
The bootstrap method allows one to avoid using the linear

approximation altogether. However, in this case, the calculations
become very time-consuming (a few minutes per one data point
on a single CPU core). Therefore, the use of this method was
limited by direct calculation of matrix V. The uncertainties of
prediction were calculated according to eqs 3 and 4.

3. THEORY
Two variations of the model were considered in this work. In the
first case, the σ profile of a molecule is divided into the H-
bonding and non-H-bonding parts. The H-bonding σ profile is
formed by segments belonging to F, O, or N atoms, as well as H
atoms attached to F, O, or N.30 Following the COSMO-SAC
formalism, the probability density was taken as proportional to
the area of the corresponding segments and probability to form
an H-bond, pHB(σ). The latter is described by the equation31

σ σ
σ

= − −
⎛
⎝⎜

⎞
⎠⎟p ( ) 1 exp

2
HB

2

0
2

(5)

where σ0 = 0.7 e·nm−2 is an empirical parameter.
This methodological variation is addressed as Model I for

further discussion in this text.
In a more complex variation (Model II), the H-bonding σ

profile is additionally divided into the OH H-bonding σ profile
and the non-OHH-bonding σ profile.32 As demonstrated below,
the data on alcohol-containing systems constitute a significant
portion of the available thermodynamic data for binary mixtures.
Additional splitting of the H-bonding σ profile would therefore
improve description of properties for such systems. The
segments of atoms of all OH groups (including those in
COOH, NOH, etc.) were included into the H-bonding σ
profiles.
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The surface charge densities were converted into σ profiles
using the procedure similar to that by Lin33 as described in ref 34.
In calculation of the σ profile for a mixture, the contribution of
each component was taken as proportional to its molecular
surface.
If a compound formed several conformers, the average σ

profile for the molecule was calculated for each temperature. The
contribution of the ith conformer was assumed proportional to
its mole fraction xi. The ratio of the mole fractions of the ith and
jth conformers was calculated as follows:

= −
−⎛

⎝⎜
⎞
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x
x
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j

j

i
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where Etot,i and Etot,j are the total energies of ith and jth
conformers in the gas phase, si and sj are the corresponding
symmetry numbers, k is the Boltzmann constant.
The activity coefficient of the ith component in the solution

(mix) is determined from the equation

γ
μ μ
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where μres is the residual part of pseudochemical potential, γi/mix
SG

is the combinatorial contribution to the activity coefficient
calculated using Staverman−Guggenheim approximation35 in
the form
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Here
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Vi and Ai are the volume and the surface area of the ith molecule,
Anorm is the normalized (standard) segment surface area, xi is the
mole fraction of the ith component, and z is the coordination
number assumed to be equal to 10. Following the procedure
described in ref 7, Anorm was set to be 0.7953 nm2.
The activity coefficients Γ for the segment with the charge

density σm is
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where j can be either pure liquid (i) or the solution (mix); s and t
can correspond to the H-bonding (HB) and non-H-bonding
contributions forModel I, or the OHH-bonding (OH), non-OH
H-bonding (OT), and non-H-bonding contributions for Model
II. The segment exchange energy ΔWst is defined as30

σ σ σ σ σ σ σ σΔ = + − −W C C( , ) ( ) ( , )( )st m n m n st m n m nes
2
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2
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where Ces and CHB,st are empirical parameters.
For Model I
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Practical application of these equations includes an iterative
solution of system of eqs 11 for all segments and types of σ
profiles. In order to ensure the optimization process for the
segment-wise activity coefficient was well conditioned, the
following equation was used for iteration:

Γ = Γ + Γ*
−

1
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( )j k
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j k
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j k
t

, ,
,

, 1 (15)

where Γj,i
t,* is calculated with eq 11, k is the iteration number.

The residual pseudochemical potential is calculated as
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where the effective contact area aeff is an empirical parameter.
The excess enthalpies were found numerically, with use of the

equations
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4. RESULTS AND DISCUSSION
Training Set. For this study, the necessary experimental data

were extracted from the NIST/TRC SOURCE Data Archival

Figure 1. Total σ profile of acetone for rav equal to (a) 0.040 nm (red),
(b) 0.058 nm (blue), and (c) 0.079 nm (green).
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System. As of May 2015, the archive contains about 380 000 data
points on activity coefficients, excess enthalpy, and saturated
vapor pressure for binary mixtures. The total number of
compounds containing at least one data point of that type was
near 1600. Given the substantial computational cost of
thermodynamic COSMO calculations relative to empirical
models like UNIFAC, efficient parameter evaluation required

culling of the target data set. Guidelines on designing a reduction
approach included the following considerations: some of the
compounds have many more data points (water, benzene,
ethanol, etc.) than the others, and COSMOmodels are primarily
used for molecular systems, although the extension for
electrolytes has been proposed36 and an application to ionic
liquids has been reported. The training set was limited to the
compounds selected according to the following criteria: (i) the
number of any binary experimental data points in the archive is
≥60; (ii) the compounds include only those atoms whose
COSMO atomic radii could be calculated from literature data;
(iii) the compounds are of molecular (and not ionic) nature; (iv)
the number of non-hydrogen atoms in a molecule is ≤8. As a
result, 897 compounds were selected, and a database of their
temperature-dependent σ profiles was generated.
The quality of available data is not consistent across the

database. Therefore, the following criteria were used to obtain
the most reliable set of the experimental data:

(i) The experimental data on saturated vapor pressure over
liquid solutions, excess enthalpy and activity coefficients in
binary mixtures were limited to 897 compounds described
above.

(ii) Data quality assessment procedures37,38 were applied.
(iii) In vapor−liquid equilibria (VLE), only compounds with at

least 25 pure-compound psat data points were considered.
(iv) The experimental VLE data were limited to psat ≤ 150 kPa

for both the mixtures and the pure components, and the
estimated gas-phase fugacity coefficients were limited to
1.00 ± 0.05.

(v) The VLE data were considered only for 0.01 ≤ x1 ≤ 0.99.
(vi) The excess enthalpy and activity coefficient data were

limited to atmospheric pressure (101.3 kPa).
(vii) The experimental data were sorted according to Chemical

Abstract Service Registry Number (CASRN) of the
components. One of every 500 data points of liquid
properties and one in every 150 data points on saturated
vapor pressure were included into the set for parameter
optimization.

Criterion (iii) is required to ensure that the vapor pressures of
pure compounds evaluated with TDE14 are based on at least two
sources with temperature-dependent psat values. Criterion (iv) is
necessary to consider the gas-phase as ideal. Criterion (v)
addresses conditions where a mole fraction of a component is

Figure 2. Dependence of the minimum values of the objective function
on the averaging radius rav for (a) Model I and (b) Model II.

Table 1. Parameters of COSMO-SAC-Type Modelsa,b

parameter Model I Model II

NL MC NL MC

z 107 107

Anorm/nm
2 0.79537 0.79537

σ0/e·nm
−2 0.731 0.731

Optimized Parameters
rav/nm 0.058 0.061
Ces/kJ·mol

−1·nm2·e−2 329.5 ± 8.7 328.9 ± 11.0 344.7 ± 8.5 333.5 ± 11.4
CHB/J·mol

−1·nm4·e−2 955 ± 46 962 ± 71
COH−OH/J·mol

−1·nm4·e−2 1309 ± 56 1343 ± 85
COH‑OT/J·mol

−1·nm4·e−2 1057 ± 45 1102 ± 68
COT‑OT/J·mol

−1·nm4·e−2 395 ± 73 498 ± 58
102aeff/nm

2 7.80 ± 0.11 7.78 ± 0.19 8.09 ± 0.11 8.05 ± 0.20

aNL, nonlinear optimization + linear approximation in uncertainty estimation; MC, Monte Carlo. bThe reported standard uncertainties were
calculated as the standard errors for the corresponding coefficients.
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very low, and the resulting pressure over the mixture will not
significantly change compared to the pure-component limit.
Criterion (vi) precludes the need to include pressure adjust-
ments when a pure-component psat exceeds 1 bar. An empirical
balance between VLE and liquid phase data defined by criterion
(vii) corresponds to the relative importance of the corresponding
data accepted in this work. The relative abundance of different
compounds in the generated data set corresponds to the actual
distribution of the experimental data.
The data set obtained as described above is presented in

Supporting Information. It contains 1032 data points for the
pressure over a solution, 262 data points for the excess enthalpy,
and 12 data points for the activity coefficients. The total number
of compounds covered by this set is 326. The temperature range
considered is (15 to 457) K and the VLE pressure range
considered is (0.3 to 132) kPa. The number of data points
involving various compounds reflects the actual distribution of
experimental efforts. The most abundant compound is water
(152 points). Alcohols and hydroxy derivatives appear 647 times

in the data set. Therefore, it is very important that the model
provides adequate description of O−H hydrogen bonding.

Objective Function for Optimization of COSMO-SAC
Parameters. Various forms of an objective function were
considered. The use of relative deviations [(psat,i,calc/psat,i,exp)− 1]
or the similar in effect RTln(psat,k,calc/psat,k,exp) term allows one to
avoid overestimation of importance for higher pressure data.
Similar terms were used for the activity coefficients. The absolute
deviation term (Hm,i,calc

E − Hm,i,exp
E ) for the excess enthalpy was

selected because the excess enthalpy can be close to zero; in this
scenario, the relative deviation term will tend to overestimate the
significance of the corresponding point. The uncertainty-based
statistical weights for the solution were not applied since large
sensitivity to assigned uncertainties appeared to lead to
unphysical parameter sets. The objective function used for
optimization had the form

∑ ∑
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where R = 8.314462 J·K−1·mol−1.
Radius for σ Profile Averaging. The charge densities for

each segment obtained from quantum-chemical calculations
were averaged as described in ref 3 to give the apparent charge
densities

Figure 3. σ profiles (rav = 0.058 nm) for (a) acetonitrile, (b) most stable conformer of ethanol, (c) benzene, and (d) trichloromethane: red, non-OHH-
bonding σ profile; green, OH H-bonding σ profile; blue, non-H-bonding σ profile.

Table 2. Standard Uncertainties of Vapor Pressure over
Liquid Binaries p, Excess Enthalpies HE, and Activity
Coefficients γ Obtained with Different Models

uncertainty Model I Model II

ur(p)
a 0.14 0.13

u(HE)/kJ·mol−1 0.62 0.57
u(lnγ) 0.71 0.66

aRelative standard uncertainty.
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where σ* and σ are charge densities before and after the
averaging procedure, respectively; rn is the radius for segment n;
rav is the averaging radius; dmn is the distance between segmentsm
and n. The optimal rav values will be specific for different software
packages and different levels of theory. The increase of rav makes
the σ profiles narrower (Figure 1). For low rav, smoothing of
charges is not as strong as for high rav values. As a result, charge
densities exceeding the limits of (−3 to 3) e·nm−2 applied for σ
profiles in this work may remain on some segments.
The original COSMO-RS3 uses rav = 0.05 nm and (in addition

to σm) a descriptor based on rav = 0.10 nm. rav is even lower in the
COSMO-RS(ADF) version,6 which uses similar equations for
the residual pseudochemical potential. Historically in COSMO-
SAC, a value of rav close to 0.15 nm was applied and the
exponential terms in eq 20 contained a decay factor equal to 3.57.
Under normal circumstances rn ≪ 0.15 nm, and so the apparent
rav was close to 0.15 nm/(3.57)

1/2 ≈ 0.08 nm. Recent COSMO-

SAC versions use eq 20 for averaging and rav = 0.085 nm or 0.051
nm depending on the σ profiles used.39 Because rn is small
compared to rav, eq 20 can be simplified as follows:

σ
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The optimal F values obtained with σ profiles generated using eqs
20 and 21 did not differ significantly. In further calculations, eq
20 was used to keep consistency with previous implementations
though eq 21 could be used as well.
The dependence of the objective functions on rav was

determined for the considered models (Figure 2). In both
cases, the optimal rav values were close to 0.06 nm (Table 1),
which are in turn in agreement with the values used in the most
recent implementations of both COSMO-SAC and COSMO-
RS. It should also be noted that the minimum values of the
objective functions only slightly changed for rav differing from the
optimal value by± 0.005 nm. σ profiles for some compounds are
presented in Figure 3.

Parameter Optimization. The optimized parameters for
Model I andModel II along with the corresponding uncertainties
are presented in Table 1. With one exception, the uncertainties
from Monte Carlo are higher relative to those calculated using a
linear approximation by a factor of 1.2 to 1.9. At the same time,
the mathematical background of the Monte Carlo method is less
constrained by various approximations. The parameters obtained
with two different approaches agree within their uncertainties.
This fact confirms that the direct nonlinear optimization of the
objective function (19) can be used in this case. This is important
because the nonlinear optimization is more computationally
intensive than the Monte Carlo approach.

Evaluation of Uncertainties. To evaluate the uncertainties
in the predicted values, one needs to know sy in eq 3 for each
corresponding property. These values were estimated based
upon the target training set. The second term in eq 3 caused by
the parameter uncertainty was typically 2 orders of magnitude
smaller than sy

2. Thus, the resulting uncertainties were virtually
independent of the applied mathematical method (Table 2) and
were close for all points within the same property for the
considered T and P ranges. The uncertainties are defined by sy,
which characterizes scatter of the calculated data relative to the
experimental values. Because the typical experimental uncertain-
ties for the considered properties are significantly lower than the
values in Table 2, one can conclude that these uncertainties are
due to the nature of the models. Further increase in the size of
training set should not improve the quality of the model.
As follows from the results in Table 2, Model II outperforms

Model I for all of the considered properties. The calculations
were also compared with those from the original UNIFAC
model40 in terms of the weight-averaged root-mean-square error
(r.m.s.) as described in ref 41; at the same time, performance of
the latter is somewhat less accurate than that of NIST-KT-
UNIFAC42 by 15% and that of NIST-Modified UNIFAC41 by
44%.Model II demonstrated comparable results with the original
UNIFAC model, and Model I had about 10% larger r.m.s.
Some representative examples comparing the results from

various methods are presented in Figure 4. Supporting
Information for this article provides comparison of original
experimental data from 1067 sources for 1089 binary mixtures
and predicted values by deployment of Model I and Model II

Figure 4. Comparison of experimental binary mixture properties with
those predicted by different models. (a) Vapor pressure over 1,1,2,2-
tetrachloroethane + tetrahydrofuran at T = 323.15 K and (b) excess
enthalpies of aniline + N,N-dimethylformamide at T = 298.15 K: red,
original UNIFAC;40 blue, NIST-KT-UNIFAC;42 black, NIST-modified
UNIFAC;41 brown, Model I; green, Model II. Experimental data on P
are taken from ref 43 and on HE from ref 44.
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described here for vapor pressure (Table S1), excess enthalpy
(Table S2), and activity coefficients (Table S3).

5. CONCLUSION
Two sets of parameters for COSMO-SAC implementation were
derived with the use of critically evaluated experimental data
points on saturated vapor pressure, excess enthalpy, and activity
coefficients for 1089 binary mixtures available in the NIST/TRC
SOURCE Data Archival System. The uncertainty of the
implemented COSMO-SAC version was evaluated using this
data set. It was demonstrated that the uncertainty of prediction is
limited by the nature of the model.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jced.5b00483.

Tables of deviations of the calculated vapor pressures,
excess enthalpies, and activity coefficients from the
experimental values. (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: yauheni.paulechka@nist.gov.
Notes
The authors declare no competing financial interest.
This is a contribution of the U.S. National Institute of Standards
and Technology and not subject to copyright in the United
States. Trade names are provided only to specify procedures
adequately and do not imply endorsement by the National
Institute of Standards and Technology. Similar products by other
manufacturers may be found to work as well or better.

■ REFERENCES
(1) Hansen, H. K.; Rasmussen, P.; Fredenslund, A.; Schiller, M.;
Gmehling, J. Vapor-liquid equilibria by UNIFAC group contribution. 5.
Revision and extension. Ind. Eng. Chem. Res. 1991, 30, 2352−2355.
(2) Klamt, A. Conductor-like screening model for real solvents: a new
approach to the quantitative calculation of solvation phenomena. J. Phys.
Chem. 1995, 99, 2224−2235.
(3) Klamt, A.; Jonas, V.; Burger, T.; Lohrenz, J. C. W. Refinement and
Parametrization of COSMO-RS. J. Phys. Chem. A 1998, 102, 5074−
5085.
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