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Abstract
Structure quantification is key to successful mining and extraction of core materials knowledge
from both multiscale simulations as well as multiscale experiments. The main challenge stems
from the need to transform the inherently high dimensional representations demanded by the rich
hierarchical material structure into useful, high value, low dimensional representations. In this
paper, we develop and demonstrate the merits of a data-driven approach for addressing this
challenge at the atomic scale. The approach presented here is built on prior successes
demonstrated for mesoscale representations of material internal structure, and involves three
main steps: (i) digital representation of the material structure, (ii) extraction of a comprehensive
set of structure measures using the framework of n-point spatial correlations, and (iii)
identification of data-driven low dimensional measures using principal component analyses.
These novel protocols, applied on an ensemble of structure datasets output from molecular
dynamics (MD) simulations, have successfully classified the datasets based on several model
input parameters such as the interatomic potential and the temperature used in the MD
simulations.
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Introduction

Multiscale modeling [35, 43, 52, 61] has been identified as
the most promising avenue for accelerating the design,
development, and deployment of new/improved materials in
emerging technologies [1, 2, 64, 80, 89]. A number of
recently announced national research strategic initiatives (e.g.,
[1, 2, 89]) are being built on the premise that an increased use
of multiscale materials modeling can dramatically reduce the
need for extensive (and often expensive) experimentation that

dominates the current materials development efforts. How-
ever, the main factors impeding the highly desired increased
utilization of multiscale modeling can be collected into three
groups [45]: (i) model maturity (i.e., the accuracy and relia-
bility of available models), (ii) model interoperability (i.e.,
ability of the models covering multiple scales and physics to
be strung together to work seamlessly), and (iii) model
inversion (i.e., ability to address high value problems of
interest in materials and process design that target improve-
ments in specific performance needs). It should be noted that
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tremendous progress has indeed been made in being able to
numerically simulate a broad range of materials phenomena
using sophisticated physics-based modeling approaches
[13, 23, 35, 43, 46, 49, 51, 52, 61, 78, 81, 97, 99, 102, 105].
However, it is essential to address the main impediments
described above, if we are to realize the full benefits from
these modeling approaches in advanced materials develop-
ment efforts.

Modern data science tools and concepts offer a promising
new avenue for addressing most of the impediments described
above. Data science [10, 22, 25, 38] is mainly focused on
extracting high value information (might be labeled as
knowledge or wisdom) from all available data (generated by
either experiments or computations). This emerging cross-
disciplinary field is being built on the foundations of statis-
tical sciences, computational sciences, systems theory, and
applied mathematics, and is envisioned to have a broad range
of potential applications. Indeed, data science has already
enjoyed many remarkable successes in disparate application
domains, including recommendation systems (e.g., Amazon
[57]), personal informatics (e.g., [56]), drug discovery (e.g.,
[39]), decision systems (e.g., [95]), and healthcare (e.g.,
[101]). At its core, data science is comprised of two primary
components. The first component can be broadly identified as
Data Management and includes robust and reliable storage,
aggregation, archival, retrieval, and sharing protocols for all
kinds of data (potentially generated in the broadest variety of
formats possible). The second component (more pertinent to
the present discussion) centers around data analytics, and is
aimed at mining hidden (embedded) high value knowledge or
understanding from large collections of data.

In the context of advanced materials development efforts,
the central goal of data analytics is the extraction of robust
and reliable process-structure-property (PSP) linkages that
capture quantitatively the roles of different unit manufactur-
ing (or processing) steps on the salient measures of the
material hierarchical structure that in turn control the prop-
erties of interest (or performance characteristics desired in
service). In this regard, it is extremely important to cast the
desired PSP linkages in computationally efficient forms that
allow direct integration into the tools typically employed by
practitioners in the product design and manufacturing fields.
In other words, the PSP linkages of interest are not likely to
be employed in the forms developed in the advanced
numerical tools [35, 43, 52, 61] or the sophisticated homo-
genization theories [5, 19, 30, 68, 87, 106], but more likely in
the reduced-order forms (also called surrogate models or
metamodels) that allow practical solutions to inverse pro-
blems of materials and process design. In recent years, a data-
centered framework has emerged for capturing highly accu-
rate PSP linkages relevant to a broad range of materials
phenomena [6, 7, 20, 28, 29, 44, 47, 48, 54, 55, 92, 108].
Almost all of the applications demonstrated so far have
focused on meso-length scales in the material internal struc-
ture. For example, the relationship of mesoscale porous
structures on effective transport properties has been investi-
gated [20, 21, 58, 103, 104]. In this paper, we extend this
prior framework to atomic-scale molecular dynamics (MD)

datasets and demonstrate its viability as a tool for improved
hierarchical modeling and as a means to characterize and
distinguish between datasets used in atomistic simulations.
Indeed, our goal is to use the same structure quantification
techniques at the atomic scale as those used previously at the
mesoscale. Consequently, the approach presented here paves
the way for the development of an universal approach for the
rigorous quantification of the material structure at multiple
hierarchical length/structure scales.

A distinctive feature of the materials data science
approach presented here is its focus on a rigorous, statistical,
quantification of the material structure and its usage in
arriving at PSP linkages. The underlying hypothesis in such
an approach is that only a sufficiently comprehensive
description of the material structure can facilitate the capture
of robust and reliable PSP linkages (e.g., [4, 45, 48, 63, 79]).
The central challenge, therefore, lies in the quantification of
the material internal structure. A complete and rigorous
description of the material internal (hierarchical) structure can
be very complex, demanding very high dimensional repre-
sentations. This challenge is readily appreciated when one
recognizes the need to include not only the details of an
idealized structure in the materials of interest, but also the
inherent defects (including disorder) and their spatial dis-
tribution in the structure. For example, most materials being
explored for structural applications exhibit multiphase poly-
crystalline microstructures at the mesoscale [32, 84, 88, 91].
A rigorous description of such material structures should
include quantification of the spatial distributions of the che-
mical composition, thermodynamic phases, crystal lattice
orientations and various hierarchical defect populations (e.g.,
point defects, dislocations, grain boundaries, phase bound-
aries, pores, microcracks). Fortunately, the field of materials
science and engineering has already taught us that only cer-
tain salient features of the material internal structure dominate
the macroscale performance characteristics of interest for any
selected application. Therefore, the main challenge in the
development of materials with improved/enhanced properties
reduces to identifying and tracking only the salient micro-
structure features that are important to a specific engineering
or technology application. In general, these salient features of
the material structure are not known a priori, and need to be
identified from an extremely large list of potential measures.
This is precisely where a data-driven approach offers many
advantages. In a data-driven approach, the decision on exactly
what constitutes the set of important salient features is not
taken in a static manner—instead it is taken objectively based
on the actual available data. It is continuously refined as more
data becomes available.

A major goal of this work was to test whether the
methods previously developed for mesoscale structure quan-
tification could be applied to atomistic ‘samples’ produced by
MD simulations. In particular, our goal was to explore if these
methods can objectively distinguish between atomic config-
urations in a way that would support multiscale modeling. In
this work, the results using different interatomic potentials
(models of energies and forces between atoms) were con-
sidered a surrogate for different processing methods. It is
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important to distinguish objectively between results generated
by different models and/or under different simulation condi-
tions. Another important factor is that, by making use of
robust global characterization methods, it is possible to
establish greater confidence in the multiscale use of the results
from classical MD simulations.

The structure quantification approach presented in this
paper, and applied rigorously to MD datasets for the first
time, comprises three essential steps. In the first step, the
output from the MD simulations, presented as expected
positions of the atom centers, is transformed into a digital
(uniformly tessellated) structure. In the second step, the
digital representation of the material structure is quantified
using the framework of n-point spatial correlations (or n-
point statistics) [18, 32, 33, 48, 72, 96]. Although a number
of other ad hoc measures of material structure are possible,
only the n-point spatial correlations provide the most com-
plete set of measures that are naturally organized by
increasing amounts of structure information. For example,
the most basic of the n-point statistics are the 1-point sta-
tistics, and they reflect the probability of finding a specific
discrete local state of interest at any randomly selected
single point (or voxel) in the material structure. In other
words, they essentially capture the information on volume
fractions of the various distinct local states present in the
material system. The next higher level of structure infor-
mation is contained in the 2-point statistics, denoted f ,r

hh′

which capture the probability of finding discrete local states
h and h′ at the tail and head, respectively, of a prescribed
vector r randomly placed into the microstructure. This idea
is closely related to the commonly used concept of pair
correlation functions (PCFs) [8] that reflect, for a selected or
representative atom, the probability of finding atoms (gen-
erically or of a given type) as a function of radial distance.
The main difference between the PCFs and the 2-point
correlation functions is that the latter capture the directional
dependence, i.e., the difference between the points examined
is expressed as a vector and not just a simple scalar distance.

The third and final step of structure quantification
involves the objective identification of reduced-order repre-
sentations of the structure using techniques such as the
principal component analysis (PCA) [48, 76]. PCA provides a
linear transformation of high dimensional data in a new
orthogonal frame where the axes are ordered according to the
observed variance among the elements of the dataset. Con-
sequently, a truncated PCA representation provides an
objective (data-driven) reduced-order representation of the
original data. It is emphasized here that although PCA
dimensionality reduction techniques have been explored in
materials problems in prior literature [23, 94], they have only
recently been employed on 2-point spatial correlations of
microstructure in attempts to successfully extract high fidelity
PSP linkages [20, 48, 74, 76]. The main contribution of this
paper is a demonstration of the application of these compu-
tational toolsets on MD datasets, and to compare and contrast
the results with those obtained using the simpler structure
measures used currently. Although further development of the

ideas presented here is needed before they can be broadly
adopted, this work demonstrates the viability and advantages
of employing spatial statistics and PCA protocols on the MD
datasets.

Background: MD datasets

MD has been used for a wide range of applications where
atomistic mechanisms and large system sizes (relative to
quantum mechanical methods) are both important. In general,
modern MD simulations performed on compute clusters are
capable of producing very large amounts of data for a variety
of simulation conditions and configurations. As a specific
example, in one of the more comprehensive studies of grain
boundary (GB) motion, 15 unique trends were observed
among 388 GBs simulated in nickel [77] using the synthetic
driving force method [41]. These observations resulted from
only exploring the effect of the five geometric degrees of
freedom and temperature. The volume of data would sky-
rocket if one were to undertake a systematic investigation of
the effect of: (i) different pure (elemental) materials, (ii) dif-
ferent interatomic potential for a given element [14], (iii)
different driving forces, and (iv) different methods of quan-
tifying GB properties. More generally, it is noted that the
availability of high performance computing has allowed the
generation of massive amounts of simulation data, but the
data analysis methods have not kept pace.

Various methods have been employed in prior literature
to distinguish and describe the salient features observed in the
data sets produced by the MD simulations. Particularly
common are the PCFs [8], as well as local order parameters.
These include centrosymmetry descriptors [50] and common
neighbor analysis [27, 40, 100]. Besides these order para-
meters, one can also use quantities such as the energy per
atom or atomic volume to identify or quantify salient local
features of interest (e.g., grain boundaries or distinct phases).
It should be noted that all of the order parameters described
above capture very local descriptions of the material structure,
and can be suitably re-interpreted as selected mappings of the
short-range n-point spatial correlations mentioned earlier.
While these various metrics can yield very valuable infor-
mation (particularly in identification of defects and defect
regions), they are generally inadequate for providing a sys-
tematic hierarchical description of the material structure
observed in the MD datasets.

In this paper, we demonstrate the tremendous potential of
the framework of n-point statistics for a rigorous, statistically
meaningful, comprehensive quantification of the material
structure. This step is then followed by a clear demonstration
of the potential of PCA in arriving at objective low-dimen-
sional representations of the material structure. Towards these
goals, we have selected a simple case study that involves a
quantitative comparison of material structure simulated by a
selected set of interatomic potentials to model the inter-atom
energies and forces. Although this case study represents a
fairly simple set of MD datasets (i.e., involving only homo-
geneous phases), it provides a clear test case for the methods
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and it is hoped that it demonstrates the tremendous potential
the new data-driven protocols described here hold for a sys-
tematic application to a broader set of MD datasets.

Background: spatial correlations

As noted earlier, structure quantification is central to the
extraction of transferrable materials knowledge needed in
multiscale materials modeling efforts. A digital signal repre-
sentation of the material structure serves as a natural starting
point for the ensuing discussion. In particular, it has been
proposed to represent the discretized material internal struc-
ture as ms

h [3], which denotes the probability that a specified
spatial bin (or voxel) indexed by s is physically occupied by a
potential local state indexed by h. Since the values of m are
bounded between zero and one (in many cases it can be just
binary [3]), it produces a generalized representation for a
broad range of materials systems at different length/structure
scales. The information on the different length scales is
encoded into the properties associated with the spatial bins,
while the information on the local state of the material (e.g.,
chemical composition, phase identifiers, order parameters,
tensorial representations of different defect configurations of
interest) is encoded into the properties associated with the
bins in the local state space. The digital signal representation
of structure offers many computational advantages in a broad
range of materials data transformations and knowledge
extractions [17, 28, 29, 31–33, 44, 48, 55, 72–75, 84,
85, 103].

The material structure representation described above is
particularly well suited for the computations of spatial cor-
relations (i.e., information on the relative placement of local
states in the material structure) [18, 32, 33, 48, 72, 96]. Based
on the earlier definitions, the 2-point spatial correlations (or
2-point statistics) can be mathematically expressed as [33, 72]

f
S

m m
1

, (1)r
hh

r s

S

s
h

s r
h

1

r

∑=′

=
+
′

where r indexes the bins in the space of vectors (generally the
same binning scheme as that used for the spatial domain). In
equation (1), Sr denotes the number of spatial bins for which
the bins indexed s and s r+ both lie within the spatial
domain of the material structure instantiation being studied. If
assumptions of periodicity of the material structure are
invoked (as routinely done in MD simulations), then
S S,r = where S is the total number of spatial bins in the
microstructure instantiation. It is also pointed out that
computationally efficient schemes for computing the spatial
correlations using discrete Fourier transforms (DFTs) have
been developed and utilized successfully [33, 72].

For most structural material systems of interest in
advanced technologies, the set of n-point statistics is an
extremely large unwieldy set even for n = 2. Rigorous analysis
of these datasets is only possible with the application of data
science tools. For example, it was recently demonstrated that
techniques such as PCA [37, 42, 86], can be used to obtain

objective low dimensional representations of the 2-point sta-
tistics [48, 76]. PCA provides a linear transformation of high
dimensional data in a new orthogonal frame where the axes
are ordered according to the observed variance among the
elements of the dataset. Consequently, a truncated PCA
representation provides an objective (data-driven) reduced-
order representation of the original data. It is emphasized here
that although PCA dimensionality reduction techniques have
been explored in materials [23, 94] and biology [9, 16, 24,
34, 62] problems in prior literature, they have only recently
been employed on 2-point spatial correlations of micro-
structure in attempts to successfully extract high fidelity
structure-property linkages [20, 48, 74, 76].

As an example, let { }f r R1, 2, ,r = … denote the

truncated set of independent 2-point statistics [72] of interest
in a specific application. Let i I1, 2, ,= … enumerate the
elements of an ensemble of material structures being studied.
It is generally expected that I R.⩽ In such situations, PCA
identifies a maximum of I( 1)− orthogonal directions in the
R-dimensional space that are arranged by decreasing levels of
variance in the given ensemble of structures. Mathematically,
the PCA representation of any member of the selected
ensemble (of structures), labeled by superscript k( ), can be
expressed as

f f̄ , (2)r
k

i

I R

i
k

ir r
( )

1

min (( 1), )
( )∑ α φ= +

=

−

where f̄r is simply the averaged 2-point statistics for the entire

ensemble, and i
k( )α (referred as PC weights) provide an

objective representation of the k( )th structure in the new
orthogonal reference frame identified by irφ (from PCA).
Another important output from the PCA is the significance of
each principal component, b ,i obtained in the eigenvalue
decomposition performed as a part of the PCA [37, 42, 86].
The values of bi provide important measures of the inherent
variance among the members of the ensemble of structures
[76]. More importantly, by retaining only the components
associated with the most significant eigenvalues, it is often
possible to obtain an objective reduced-order representation
of the structure with only a handful of parameters.
Mathematically, this reduced-order representation can be
expressed as

f f̄ , (3)r
k

i

R

i
k

ir r
( )

1

*
( )∑α φ≈ +

=

where R I R* min(( 1), ).≪ − Selection of R* will depend on
the specific properties that need to be correlated to the
structure metrics. Note also that the concepts described above
can be easily extended to include higher-order statistics of the
structure (e.g., 3-point spatial correlations). The PCA
representations of the n-point statistics have been successfully
used in automated and efficient classification of various
ensembles of structures [48, 74].

In most prior examples presented to date in literature, the
local state was defined at the continuum scale and identified
as a specific thermodynamic phase found in the micrograph.
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However, the same methodology can be applied to material
structures at other length scales. In a recent paper, this
approach was successfully applied to quantify the semi-
crystalline polymer structure datasets produced by MD
simulations [26].

Extension of spatial correlations to MD datasets

One challenge of applying 2-point statistics to atomistic
configuration datasets is the subjective choice of how to
transform the discrete set of atomic points into a regular three-
dimensional (3D) grid of voxels. This choice is likely to be
driven by the nature of the application. For example, in
simulations encompassing a relatively large number of atoms,
it may be preferable for a single voxel to encompass multiple
atoms and the local state in each voxel is defined by measures
such as the density or the mean orientation of the enclosed
atoms (e.g., [26]). Alternatively, it may be preferable to
quantify structural variations at the atomic scale, in which
case the voxel size should be selected to be smaller than the
atomic radius; we will focus our discussion here to these
cases.

As a proxy for more complex atomic structures, we here
consider MD simulations of atomic volumes with a single
chemical species as a function of temperature. These simu-
lations represent relatively simple MD calculations that are
being used as part of the NIST Interatomic Potentials Repo-
sitory project to help establish a set of reference calculations
to help researchers select interatomic potentials (models of
how the atoms interact, also called force fields) that are most
appropriate for a given application [15]. Except for choice of
interatomic potential, the methodology is kept fixed for every
simulation, which is: (i) determine the 0 K equilibrium fcc
lattice constant via a molecular statics simulation, (ii) create a
10 × 10 × 10 face centered cubic (fcc) unit cell (4000 atoms)
using the equilibrium lattice constant, (iii) create a uniform
distribution of atomic velocities at the desired simulation
temperature, and (iv) perform an isothermal–isobaric (NPT)
simulation at the desired temperature for 2 000 000 time steps
using a 1 fs time step. Data analysis described here takes place
within the final 1 000 000 time steps. Instantaneous coordi-
nates were recorded every 50 000 fs, and these were used in
the analysis presented here. Average reported pressures,
volumes, temperatures, energies, etc, reach steady state well
within that equilibration time for all simulations. The long
simulations were done (instead of shorter ones that may have
been adequate), primarily for two reasons. The first was to
minimize the chance of a particular trajectory not being in
equilibrium while running the same duration for all simula-
tions (to make comparisons more robust). The second was to
allow more time for first-order phase transitions to occur to
thermodynamically favorable states. While this is not an issue
for low homologous temperatures (T/TM), it is more sig-
nificant near the melting temperature of the interatomic
potential where phase transitions (melting) were observed for
several of the interatomic potentials. Melting is identified by
local structural disorder and a significant increase in atomic

volume. The python scripts used to generate the simulations
and the data itself are available on the NIST Interatomic
Potentials Repository site (http://ctcms.nist.gov/potentials).
While calculations have been performed for a number of
different interatomic potentials defining elemental interactions
for Al, Ni, Cu, Ag, and Au, here we are focusing on just
the Al results. The interatomic potentials included in this
study are summarized in table 1, along with the appropriate
references [8, 11, 12, 53, 59, 60, 65–67, 69–71, 82, 83, 90,
93, 107, 109, 110].

It is important to note that these calculations include
some simulations well outside the intended usage of the
interatomic potentials (e.g., using the pure elements of a
potential only fit for use with compounds and thus they may
not give the most accurate values for single-element atomic
volumes). However, users often use interatomic potentials
well outside the range of where they were fit, and it is
important to understand how that choice affects the answers
obtained. This is discussed in much more detail in
[14, 15, 98]. In this work, several interatomic potentials have
melting temperatures for pure aluminum that are significantly
lower than the experimental value of 933 K, which will be
discussed in more detail later.

Figure 1(a) shows a MD simulation dataset typical of
those included in this study. In this dataset, the center posi-
tions of the atoms were taken directly from the results of the
MD simulations (as instantaneous coordinates) and a sphere
of radius a = 1.18 Å was constructed around the center to
denote the atom. The entire volumetric domain used in the
simulation was then discretized into a uniform grid and the
material structure was converted to a simple digital signal,
denoted as ms

h (as introduced earlier). In this notation, the
local state descriptor, h, was allowed only two values: h 1=
was used to refer to the atomic species and h 0= was used to
refer to the empty space between the atomic species. As
mentioned earlier, s serves as an index for the spatial bin. For
3D space, it is convenient to think of s as an integer array, i.e.
s s s s{ , , },1 2 3= with each si taking only integer values. The
level of discretization employed is typically a variable para-
meter in the data-driven explorations. In the present study,
based on a few trials we established a spatial bin size of
approximately 0.252 Å= 0.214a since further refinement did
not influence the computed spatial correlations in any sig-
nificant manner. The value assigned to ms

h denotes the
volume fraction of local state h found in the spatial bin s.
Although, in principle, the value of ms

h can range between
zero and one, we have only allowed this variable to take either
the value zero or one in this study; such structures have been
referred as eigen structures in prior literature [3]. More spe-
cifically, if the distance between the center of a given voxel
and the center of the voxel containing the coordinates of the
atom center is less than or equal to the radius, that voxel is
assigned a value of one (i.e., the voxel is included in the
atom). For eigen microstructures, f0

11 would actually be the
volume fraction occupied by the atomic species in the total
volume being studied. Furthermore, since there are only two
local states in the datasets considered here, only one
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autocorrelation is enough to capture all of the non-redundant
2-point spatial correlations [4, 31, 36, 72, 96]. In this paper,
we will therefore only focus on f ,r

11 and simply refer to these
as fr.

Next, we discuss the computation of fr from m .s
1 A

specific challenge encountered arises from the fact that the
overall simulation volume in the MD results is not kept
constant. In other words, results from different potentials or
even different snapshots from a single potential are expected
to result in different simulation volumes. Since we have fixed
the spatial bin size (described above), this would lead to
fractional voxels at the edges of the volume. Furthermore,
since the MD simulations conducted for this study have
employed periodic boundary conditions, we wish to rigor-
ously account for these boundary conditions in computing the
spatial correlations. The strategy devised and employed in this
study, to address the considerations described above, con-
sisted of the following steps: (i) the microstructure signal, m ,s

1

is expanded by employing the same periodic boundary
assumptions that were utilized in the MD simulations. As an
example, this expansion is shown in figure 1(b) for a repre-
sentative 2D section through the simulation volume in
figure 1(a). For this example, the domain volume size is
increased from L    40.5 Ao = ̊ to L    73.08 Ae = ̊ (in each of the
three-dimensions). Note that this expansion serves two pur-
poses: (a) while the initial volume size (output from the MD

simulation) is unlikely to be an exact integer multiplier of the
selected spatial bin size, the size of expanded region is
selected to ensure that it is indeed an exact multiplier of the
spatial bin size (this feature is essential to allow the use of
DFT algorithms). (b) The increase in size is needed to allow
the placement of all vectors of interest in computing the
spatial correlations (the tails of the vectors of interest will lie
within the original volume, but the heads of these vectors may
lie in the expanded volume). For all the MD volumes inclu-
ded in the study, the expansion size was selected to include all
vectors up to a size of 59 spatial bins (this number was
selected after a few trials and noting that vectors larger than
this do not carry any additional salient information in the
computed 2-point statistics for the volumes studies here); the
corresponding number of statistics will be 1193 (59 positive,
59 negative, and the zero vector components in each of the
three-dimensions). Discretization using finer grids was seen to
have a negligible effect on the clustering (i.e., classification)
of interest for the present study (visualized later as dendro-
grams; cf figure 4). It is important to note that the dis-
cretization level is an important parameter of the protocols
described here, and has to be adjusted suitably for different
studies. (ii) A second microstructure signal m̃s

1 of the same
extent as ms

1 is created by copying the values of ms
1 for all of

the spatial bins corresponding to atoms whose centers fit
inside the original volume (of size L )o and assigning zeros for

Table 1. List of Al force fields used and their corresponding notation and references.
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the rest of the spatial bins (also shown in figure 1(b)). The
number of spatial bins copied from the original volume is
denoted as S .r (iii) The 2-point spatial correlations of interest
are computed as the convolution of the two microstructure
signals, ms

1 and m̃s
1 (i.e., using these instead of ms

h and ms
h′ in

equation (1)), truncated to include only vectors whose 3D
components are smaller than R.

Figures 2(a)–(c) present selected 2D sections of the 3D
contour plots of 2-point spatial correlations (these are visua-
lized as the contours of the values of fr in the 3D vector space
of r, with r (0, 0, 0)= at the center of the plot). The sections
shown in this figure depict, as expected, a roughly periodic
pattern consistent with the crystalline structure reflected in the
spatial positioning of the atoms in the actual volumetric

domain analyzed by the MD simulations (shown in
figure 1(a)). It is important to recognize that the fr values
plotted in figures 2(a)–(c) are actually statistics denoting the
probability of finding two voxels separated by the vector r
and occupied by the atomic species. As a reference, the reader
might take note that in a perfectly disordered (i.e., random)
spatial distribution of local states (not shown), the 2-point
spatial correlations show a single spike at the center (for
r (0, 0, 0))= and then immediately asymptote to a uniform
value as one moves away from the center. The reader should
also note that the value of f(0,0,0) at the center of these plots
corresponds to the atomic volume fraction.

Figure 2(d) presents the more familiar PCF used exten-
sively in literature for quantifying the material structure in the

Figure 1. (a) Coordinates of a 4000 atom Al equilibrium simulation at 300 K at 10 ps using the force field ‘Al–Pb_LandaA_2000’. Dots
represent atomic centers as generated by the simulation. For the purpose of 2-point statistics each atom was assigned a radius of 1.18 A, as
depicted by the green circles. Though not clear in this figure, the structure is crystalline (face centered cubic) as expected. (b) Cross section
corresponding to Z= 20.24 Å of the corresponding discretized microstructure signals constructed in the novel protocols described in this
paper. The full 3D discretized images are used to calculate the 2-point statistics.
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MD simulation results. As one might infer, the peaks in the
PCF plot correspond to suitably integrated (and normalized)
values of the 3D 2-point spatial correlations over the orien-
tation variables defining the vector r. In other words, PCF is
expressed only as a function of the magnitude of r, while the
2-point spatial correlations retain explicitly the dependence on
both magnitude and direction of r .

Application of spatial correlations to MD datasets

Figure 3 presents a classification of the MD simulation
datasets in the PCA space (following the protocols described
earlier) for the MD simulated atomic structures at 300 and
900 K, respectively, using the 19 potentials selected for this
study. For each potential, the study included twenty atomic
structures (taken at different times in the simulation after
reaching an equilibrium state). Therefore, a total of 380
atomic structures were included in this analysis at each
simulation temperature. Each data point in figures 3(a) and (b)
represents the first three PC scores (or weights) for each MD
simulated atomic structure included in the analyses. The
computation of course provides many more dimensions (or

PC scores), but it also indicated that these three PC scores
account for 99.8% of the important differences in the entire
ensemble of atomic structures included in the study. This
massive degree of dimensionality reduction is fully consistent
with the prior experience involving mesoscale systems. In this
regard, it is also satisfying to note that the range of the PC
scores is systematically decreasing for the higher-ranked PC
scores (for example, the range for PC1 was about −90 to
about 20, whereas the range for PC2 was about −15 to about
15), further confirming that the higher-ranked PC scores are
indeed less important in capturing the salient features of the
structures included in the ensemble.

Keeping in mind that the PCA representation in figure 3
denotes a dimensionality reduction from 1193 = 1 685 159 to
just three, it is indeed remarkable that this representation
effectively captures both the intra-class and the inter-class
variations within the entire ensemble. This result is even more
remarkable when one notes that this classification was per-
formed in a completely unsupervised manner. In other words,
the PCA computation was not informed in any way about the
different potentials used in the MD simulations in producing
the atomic structures included in the study. This is a clear
testament to the power of the 2-point spatial correlations and

Figure 2. (a)–(c) The cross sections corresponding to r1 = 0, r2 = 0, and r3 = 0, respectively, of the 2-point statistics of the dataset presented in
figure 1. (d) The pair correlation function of the same structure dataset, only considering atom centers.
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principal component analyses in capturing the salient features
of the material structure in a rigorous stochastic framework. It
is also very satisfying to note that the intra-class variance
(reflected in the size of the cluster associated with each
potential) in the simulated structures is significantly smaller
than the inter-class variance. Moreover, the intra-class var-
iance seems to be of roughly the same order of magnitude for
all the different potentials included in this study, and is
slightly higher for the datasets produced at the higher simu-
lation temperature. All of these observations are consistent
with expectations, and provide strong support to our claim
that the protocols used in this study produce high value, low
dimensional, measures of the material structure.

An effective tool for visualizing distances in high-
dimensional spaces is a dendrogram, which depicts the hier-
archy of the distances between the data points. Figures 4(a)
and (b) depict the inter-class distances (between the cluster-
means) as dendrograms for the same dataset that was depicted
in figure 3. Broadly, the PCA has identified the following
clustering of potentials based on the differences in the
structures produced by the MD simulations: the first group
corresponds to the force fields referenced in [53, 59, 60,
67, 107], the second group corresponds to the force fields
referenced in [8, 65, 66, 69, 70, 82, 83, 93, 110], including
both force fields referenced in each of [83] and [110]. The
four force fields referenced in [71, 90, 109] and [11, 12] are
distinctly far away from the two groups identified above. The
groupings of these results will be discussed in more detail in a
later section. Here we reiterate that interatomic potentials are
fit with different types of reference data and optimized for
particular applications. Potentials fit for particular com-
pounds, e.g., the B2 phase in Ni–Al, may not be the best
option for treating the full Ni–Al phase diagram, though they
may be the best available for the intended application.

Additional insights from the analysis presented here can
be obtained from the plots of the PCs obtained in the analysis
described above. Plots of f̄r and irφ (for different values of i;

Figure 3. The 2-point statistics every 50 ps from 1.05 to 2.0 ns of Al
simulations using the force fields in table 1 projected onto the first
three principal components at 300 K (a) and and 900 K (b).

Figure 4. The dendrograms of centroid distances of the data depicted in figure 3 at 300 K (a) and 900 K (b).
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see equation (3) are presented in figures 5(a)–(d). As with the
plots shown in figures 2(a)–(c), r indexes the discretization of
the vector space used in defining the 2-point spatial correla-
tions. The plots of f̄r (figure 5(a)) simply reflect the averaged
auto-correlations for the entire ensemble of atomic structures

included in the study. As expected, the averaged auto-corre-
lation reflects an arrangement of the atoms on a highly peri-
odic lattice. One can judge the degree of periodicity by
comparing intensities of the different peaks in these plots with
the intensity of the center peak. For a perfectly periodic

Figure 5. Contour plots of the ensemble averaged spatial correlations and the PCA basis (eigen vectors) for the datasets shown in figure 3(a),
each shown as three orthogonal cross-sections.
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arrangement, the peak intensity will be the same for all peaks
in the entire plot. As the arrangement becomes less periodic,
the peak intensities drop systematically as one moves away
from the center peak. As mentioned earlier, for a random
arrangement, this drop in the peak intensity will be rather
abrupt. In the present study, we will see a more significant
drop in the peak intensities for the atomic structures simulated
at higher temperatures (described later) compared to the ones
simulated at lower temperature.

The plots of irφ in figures 5(b)–(d) reflect a prioritized set
of orthogonal deviations from the averaged autocorrelation. In
other words, r1φ reflects the most dominant deviation, r2φ is
the next most dominant deviation, and so on. Note the dif-
ference in signs between the red and black peaks in these
plots. Consequently, a combination of closely placed pair of
red and black spots on these plots reflects shift of the peak
from its position in the ensemble average. The overall plot of

r1φ therefore captures systematic shifts in the interatomic
distances between any selected atom and its neighbors, with
the shifts being higher for far away neighbors compared to
those that are nearby. Therefore, r1φ appears to capture well
the overall volume differences among the snapshots of the
atomic structure. In the most general case, each of the irφ
captures a certain scaled deviation in the intensities of all of
the statistics included in the PCA analyses. Because of the
large number of the statistics included in the PCA (each
structure is characterized by 1 685 159 2-point statistics), it is
often very difficult to assign a simple interpretation for what
detail of the structure is captured by each individual .irφ It
should also be noted from figure 5 that the structure detail
captured by the different irφ exhibit different levels and types
of directional dependence.

As implied in equation (3), one can construct the auto-
correlation of any specific atomic structure included in the
study by starting with the averaged autocorrelation and add-
ing weighted contributions from each of the principal com-
ponents. These weights are precisely the weights depicted in
the low dimensional PCA representations of figures 3(a) and
(b). It should be noted that such a reconstruction typically

involves a truncation error when the higher-order principal
components are ignored. However, since PCA provides
a prioritized list of principal components, one can make the
decision on an appropriate truncation level for a specific study
in a very objective manner.

Figures 6(a) and (b) compare the 2-point statistics for the
atomic structures predicted by one force field at two tem-
peratures, respectively: 300 and 900 K. As mentioned earlier,
one of the salient differences in these plots is in the rate of
decay of the peak intensities as one moves from the center
peak, indicating the existence of a higher level of disorder
(thermal noise) in the atomic structure at the higher tem-
perature. It should be noted that this is a statistically rigorous
evaluation of the difference in the atomic structures at the two
temperatures. There is also a difference in the lattice para-
meter at the two temperatures, which can be easily inferred by
looking closely at the positions of the peaks (with respect to
the center) in the plots presented in figure 6.

It is also instructive to examine the variation of the PC
scores as a function of temperature for the different force
fields. This is shown in figures 7(a) and (b) after performing a
PCA on all of the averaged 2-point statistics for each force
field at each simulation temperature. Of particular interest are
the four force fields corresponding to [71, 90, 109] and
[11, 12], which show significantly different behavior com-
pared to the rest of the data sets. Indeed, as shown in figure 8,
this difference in the predicted results from these four force
fields is also evident in the plots of the averaged atomic
volume. The force field used in [71] was strongly weighted to
reproduce the properties of B2-NiAl, which may explain its
poor behavior for pure aluminum. The other three interatomic
potentials ([90, 109] and [11, 12]) were found to melt in the
course of the simulations. Further investigation is needed to
determine the cause of the low temperature melting phe-
nomenon predicted by these force fields. If one looks at the
volumes in figure 8 at 300 K, there are several bands of
volumes. Close examination of figures 3(a) and 8 reveals that
the groupings of average atomic volumes, determined from
overall simulation size fluctuations, map directly to the

Figure 6. r3 = 0 cross sections of the 2-point statistics of the force field ‘Al_SturgeonJB_2000(Al)’ at (a) 300 K and (b) 900 K.
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groupings determined from the n-point statistics and PCA
analysis. Similar clustering is evident at 900 K, where there is
a greater spread in average volumes for the simulations
conducted with the different interatomic potentials. The fact
that the PC scores automatically capture this effect, without

a priori information about the phases, bodes well for their
utility in capturing high values structure-property linkages.
While a simple measure such as the atomic volume would
also capture a similar effect, there is no guarantee that it
captures all of the significant differences seen in the predicted
MD structures. The protocols presented here ensure that all of
the salient differences in the ensemble of predicted structures
are indeed captured to a high degree of completeness (note
that the two PCs referenced in figure 7 capture 96.3% of the
differences in the elements of the ensemble).

Conclusions

This initial study demonstrates the utility and the viability of
utilizing rigorous structure quantification protocols to results
predicted by MD. Of particular significance is the fact that
similar protocols were previously applied successfully to
material structure datasets at the mesoscale. This study rein-
forces the possibility that a consistent set of structure quan-
tification tools can be designed and applied to a broad range
of materials systems at vastly different length/structure scales,
and paves the way forward for the formulation and validation
of such a universal framework. Furthermore, since the fra-
mework employs data-driven approaches, it leads to rigorous,
practically useful, low dimensional, representations and
visualizations. These are central to our goals for creating high
value materials knowledge systems.
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