
Real-Time Centralized Spectrum Monitoring:
Feasibility, Architecture, and Latency

Michael Souryal, Mudumbai Ranganathan, John Mink, and Naceur El Ouni
Communications Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, Maryland, USA

Email: {souryal, mranga, john.mink, naceur.elouni}@nist.gov

Abstract—This paper describes the implementation and eval-
uation of a real-time, centralized spectrum monitoring and
alert system. Such a system can be used to support emerging
spectrum sharing solutions that use a centralized controller to
mediate tiered access to spectrum. These controllers rely on real-
time awareness of spectrum activity. In addition to describing
the architecture and prototype implementation of this real-time
monitoring system, we propose a test method to measure the
latency of detecting a spectrum occupancy event. This latency
is measured as the time from when the event (e.g., a signal
transmission) begins to when an alert of that event is delivered
to a subscribed client. We used this test method to measure the
latency of two different sensor implementations in conjunction
with our spectrum occupancy server and found the 95th percentile
of latency to be under 80 ms in both cases, plus the network
transmission delays of any wide area network involved.

I. INTRODUCTION

A critical component of any dynamic spectrum sharing
solution is real-time awareness of spectrum usage. In emerg-
ing centrally-coordinated solutions, a centralized system is
responsible for mediating tiered access to the spectrum such
that higher priority users (e.g., an incumbent system) are
given preference over lower priority users. Such a system,
also referred to as a spectrum access system (SAS) [1] or a
licensed shared access controller [2], may rely on sensors to
detect changes in spectrum occupancy in real time and take
appropriate actions. For example, once an incumbent user is
detected on a channel, actions must be taken to clear lower
priority users from that channel.

This paper describes research on a real-time spectrum mon-
itoring infrastructure that would support dynamic, centrally-
coordinated sharing. The infrastructure consists of spectrum
sensors which measure the power spectrum of a given band
and a spectrum occupancy server which receives measurements
from the sensors in real time over an internet protocol (IP)
network. A client can subscribe to alerts from the spectrum
occupancy server on activity in individual channels within the
band. Whenever activity is detected in those channels, the
server notifies the subscriber of that activity. Activity can be
defined as the arrival of a signal, the departure of a signal, or
both, in the channel(s) of interest.

This work investigates the feasibility and scalability of
such a real-time monitoring infrastructure. A key aspect is
measuring the latency of detecting a spectrum occupancy event
(e.g., the beginning of a signal transmission). The latency in
this context is the time from when the signal transmission

Fig. 1. FCC’s illustrative end-to-end CBRS architecture [3]

begins (or ends) and when notification of this event is received
by a subscribed client. The primary components of this latency
are due to sensor processing, server processing, and network
transmission. Implicit in this transaction is detection of the
event by the sensor/server, therefore detection and false alarm
rates are important measures in addition to latency. The ex-
perimental measurements and analysis reported in this paper,
however, focus on latency.

Knowledge of the latency of spectrum event detection
in centralized spectrum sharing systems has two important
implications. First, it indicates the duration of interference
an arriving incumbent could experience from lower priority
users, because in order for these users to cease causing
harmful interference, they must first be notified to do so.
Second, knowledge of the detection latency informs the level
of temporal granularity that can be achieved by opportunistic
spectrum access. For instance, if a typical white space lasts on
the order of tens of milliseconds but its detection takes on the
order of hundreds of milliseconds, exploitation of these white
spaces is unwarranted.

An example of dynamic spectrum sharing that will use cen-
tralized spectrum monitoring is the recently adopted Citizens
Broadband Radio Service (CBRS) in the U.S. for 3550 MHz to
3700 MHz. In its rules for CBRS [3], the Federal Communica-
tions Commission (FCC) described the illustrative architecture
shown in Fig. 1. Here, the spectrum sensing function is
provided by the environmental sensing capability (ESC). The
SAS uses a combination of databases and ESC measurements
to assign channels to CBRS devices (CBSDs) while also
protecting federal and commercial incumbents. The rules state
that once a federal incumbent signal has been detected by an

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

U.S. Government work not protected by U.S. copyright 111

ESC at certain frequencies, the SAS must clear CBSDs from
those frequencies within 60 s. The clearance time must account
not only for the time to detect the incumbent signal and notify
the CBSD, but also for the SAS to propagate this information
to other SASs that may need to clear their respective CBSDs
operating at those frequencies.

This work on real-time spectrum monitoring is part of
a larger effort pursued jointly by the National Institute of
Standards and Technology (NIST) and the National Telecom-
munications and Information Administration (NTIA) in the
U.S. for spectrum monitoring [4]. This broader effort includes
establishing a spectrum occupancy repository in support of
spectrum management, policy making, and enforcement. It also
includes an evaluation of sensors in terms of their fundamental
radio frequency (RF) performance as well as their detection
capability [5]. This paper addresses the real-time monitoring
component of that overall program and its application to
spectrum sharing.

In other related work, Schmid et al. [6] studied the transmit
and receive latencies of a specific software-defined radio
(SDR), focusing on the host-radio interface. While we use an
SDR for timed signal generation in this work, the sensor under
test need not be SDR-based. Nika et al. [7] investigated real-
time spectrum monitoring with very low cost SDRs that would
enable large-scale, crowdsourced spectrum measurements, but
their work did not address the infrastructure of the monitoring
agency to which the measurements are reported.

The remainder of this paper is organized as follows.
Sections II and III describe the design and implementation of
the spectrum sensor and occupancy server, respectively. Sec-
tion IV describes the method for measuring detection latency
and presents an analysis of experimental results. Section V
concludes with recommendations for future work.

II. SENSOR IMPLEMENTATION

A. Detection Scheme

The real-time detection scheme currently employed is
based on frequency-domain energy detection. At the sensor,
time-domain complex baseband samples are converted into
the frequency domain with a discrete Fourier transform. The
amplitude-square of the frequency-domain samples are chan-
nelized in frequency and aggregated in time to a desired
resolution bandwidth and resolution time and are transmitted
to the occupancy server which applies a threshold decision to
each channel.

The signal processing at the sensor is performed in a
pipeline. Down-converted baseband complex samples are con-
tinuously received at the input of the pipeline, and power
vectors are continuously transmitted to the server at the output
of the pipeline. The monitored bandwidth is limited by the
sampling rate of the analog-to-digital (A/D) converter as well
as by the computational resources of the signal processor. After
initial decimation to the desired observation bandwidth, the
time-domain samples are not further sub-sampled, decimated,
or time-gapped in the computation of the power spectra.

The stages of the pipelined signal processing are shown in
Fig. 2. Complex baseband samples arrive at the sampling rate,
fs, in floating-point format and are arranged into fixed-length

vectors of length N , where N is the size of the fast Fourier
transform (FFT). Successive vectors are non-overlapping and
are processed by the FFT block at the rate fs/N . The FFT
block includes windowing of the time-domain samples using a
four-term Blackman-Harris window. The magnitude square of
the complex outputs of the FFT are then aggregated (summed)
into channels of the desired channel bandwidth.

After channelization, a temporal statistic is computed over
a specified time interval, Tm. This statistic can be average or
peak. If it is average, then the channelized power vectors are
averaged to produce a single output vector each Tm seconds. If
it is peak, then a vector of the maximum power measurement
in each channel over the Tm interval is output. Finally,
the resulting average or peak power vectors are serialized,
converted to decibels, scaled, and transmitted as signed 8-bit
integers in binary format over a secure transmission control
protocol (TCP) socket connection to the occupancy server.

The rate of transmission to the server over the socket
depends on the choice of number of channels, C, and mea-
surement interval, Tm, and is equal to 8C/Tm b/s. Specific
values for these and other parameters are given below in an
illustrative example.

B. Implementations

We implemented the sensor detection scheme described
above in GNU Radio using existing and custom-developed
blocks.1 The custom blocks are the channelization, time statis-
tic, and SSL socket sink blocks in Fig. 2. The GNU Radio
implementation of this sensor was tested with two SDR plat-
forms, the Ettus Universal Software Radio Peripheral (USRP)
N210 and the HackRF One, each of which performs down-
conversion, A/D conversion, and streams complex baseband
(I/Q) samples to a general purpose processor running the GNU
Radio application.

Before a sensor starts streaming power spectral measure-
ments to the server, it transmits headers containing the sensor’s
location, specifics about its RF capabilities and antenna, and
a description of the ensuing data (monitored frequency range,
number of channels, time resolution, and detection scheme).

The frequency range a sensor can monitor at any given
time is limited by its maximum sampling rate and possibly any
RF or intermediate frequency filters. We have used the USRP
N210-based sensor, for example, to monitor up to 40 MHz at
a time. Monitoring wider bandwidths, such as the 150 MHz of
CBRS, would necessitate either the use of multiple sensors in
parallel or, alternatively, sequential monitoring of sub-bands
by a single sensor. Sequential monitoring, however, would
increase the latency of spectrum event detection.

C. Sample Measurements

Fig. 3 shows a spectrogram of over-the-air measurements
made by an indoor sensor that was tuned to the commercial

1Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such
identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply
that the materials or equipment identified are necessarily the best available
for the purpose.

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

112

Fig. 2. Sensor processing pipeline

Fig. 3. Measurements of a commercial LTE FDD 10 MHz uplink (band 17) obtained by a real-time sensor

TABLE I. SENSOR SETTINGS FOR MEASUREMENTS IN FIG. 3

Parameter Description Value

fs Sampling rate 12.5 MHz

N FFT size 625

Tm Measurement interval 1 ms

C Number of channels 56

Bc Channel bandwidth 180 kHz

long term evolution (LTE) frequency division duplex (FDD)
uplink of band 17. This band is nominally 10 MHz wide (9
MHz occupied). The sensor’s settings for these measurements
are summarized in Table I. The measurement interval, Tm, and
channel bandwidth, Bc, were chosen to match LTE’s resource
block size (1 ms by 180 kHz). The sampling rate and FFT
size were chosen to yield an integer number of FFT vectors
per measurement interval (20 FFTs per ms) and an integer
number of FFT points per channel (9 FFT points per 180 kHz
channel).2 The number of resource blocks in a 10 MHz LTE
band is 50; we chose a slightly larger number of channels (56)
to include the guard bands. The total measured bandwidth is
56 × 180 kHz, or 10.08 MHz, centered at 709 MHz. In this
configuration, the sensor streams data to the server at a rate of
8× 56/0.001 b/s = 448 kb/s.

The emissions on this band come from LTE mobile devices,
or user equipment (UE), transmitting to the base station
(eNodeB). One can clearly distinguish certain features of the
LTE uplink in the spectrogram of Fig. 3. For example, the
wideband sounding reference signal (SRS) from a single UE
is repeated every 20 ms. (LTE standards permit SRS periodicity
to range from 2 ms to 320 ms [8].) Transmissions on the
physical uplink control channel (PUCCH) are seen at the upper

2The LTE sampling rate of 15.36 MHz was not readily available on the
SDR. The selected 12.5 MHz sampling rate is easily derived from the SDR’s
100 MHz clock.

Fig. 4. Architecture of the spectrum occupancy server

and lower edges of the band. Data transmissions occur in
between the edges, with one large transmission in this case
seen between 709 MHz and 712 MHz.

III. SPECTRUM OCCUPANCY SERVER

Fig. 4 depicts the architecture of the spectrum occupancy
server. A streaming server runs as a separate process and
handles inbound connections from sensors. When a connection
from a sensor is received, the streaming server forks a new
Python interpreter in a separate process to handle the inbound
connection and sensor data stream. The streaming server keeps
track of an occupancy vector. An occupancy vector is a binary

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

113

vector which is computed by comparing each power value in
the received power vector to a user-defined threshold.

Occupancy alerts are delivered using a publish/subscribe
interface. Each time the occupancy vector changes, the stream-
ing server publishes a new occupancy vector to an occupancy
alert server, which, in turn, notifies subscribed external clients
of occupancy changes. A client may subscribe to alerts by
connecting to the alert server and providing a sensor ID. It
then reads the socket through which it is connected. Each time
the occupancy changes, the occupancy alert server writes out
a new occupancy vector.

In addition to generating alerts to subscribed users of
changes in spectrum occupancy, the spectrum occupancy server
also supports the display of a running spectrogram in a client’s
web browser. To support this graphical user interface (GUI),
the streaming server does the following processing with the
inbound data for presentation to a web browser:

1) Gathers the data into an aggregated vector with a
user-defined aggregation window size (which can
be longer than the time interval, Tm, of incoming
vectors).

2) Applies an aggregation filter in time on the aggre-
gated data, either mean or maximum (peak-hold).

3) Writes the aggregated vector into a memory cache.

The moving spectrogram in the web browser is entirely
driven by server push. This is implemented as follows: The
web browser keeps a persistent connection to the web server
via a web socket. The web server services this connection
by writing the aggregated spectrum out to the web socket at
periodic intervals. In order to do so, the web server looks in
the memory cache that it shares with the streaming server for
updates. Only a single aggregated spectrum is maintained in
the cache for a given sensor.

In our current implementation, the sensor continuously
transmits power spectral measurements to the server, where
the thresholding to detect occupancy changes is performed.
An alternative approach would be to apply the thresholding at
the sensor, and have the sensor notify the server only when
changes in occupancy are detected. The latter approach would
certainly reduce the load on the network and on the server.
However, the availability of power spectral measurements at
the server permits it to fuse measurements from multiple
sensors as well as to store the measurements in a database for
later retrieval and analysis. For example, the stored data can
be used to tune detection thresholds and prediction algorithms.

IV. SPECTRUM MONITORING LATENCY

A. Measurement Procedure

We describe a simple, black-box method to measure the
latency of a centralized spectrum monitoring system. Specif-
ically, this procedure measures the time between the occur-
rence of a spectrum occupancy event (e.g., start of a signal
transmission) and the delivery of the notification of this event
to a subscribing client.

The procedure uses a test signal generator, the sensor and
server under test, a client process receiving alerts from the

Fig. 5. Latency test arrangement

Fig. 6. Measurement timeline

server, and a clock that is common to test signal generation and
alert reception, arranged as shown in Fig. 5. In our tests, the
test signal generator consists of an SDR (Ettus USRP N210)
connected to a general purpose host. A process on this host
generates a pulsed continuous-wave (CW) signal through the
SDR at regular intervals. The signal generator’s RF output port
is directly connected via coaxial cable and an attenuator to the
RF input port of the sensor. The sensor streams power spectral
measurements to the spectrum occupancy server over a local
area network. A client process subscribed to receive occupancy
alerts from the server runs on the same machine that hosts the
test signal generator. The host clock is used to measure the
time between transmission of a pulse and the reception of the
rising-edge occupancy alert by the client process.

In order to measure latency, we wish to have the transmit-
ter send the pulse at a known, deterministic time. Because
of random delays on the interface between the host and
transmitting SDR, we cannot rely on the host clock alone
to time the transmission of the pulse. Instead, we use the
universal hardware driver’s (UHD’s) scheduled transmission
feature based on the SDR’s internal clock. While this feature
allows us to schedule pulse transmissions deterministically
with respect to the SDR clock, there is still some uncertainty
in knowledge of the SDR’s time since we use the host-SDR
interface to set and read the SDR’s time register. Furthermore,
relative drift between the host and SDR clocks is another
source of uncertainty. These sources of uncertainty and the
latencies themselves are measured as follows.

The signal generator transmits a train of pulses with a
uniform pulse repetition interval, Tr. Prior to sending the
first pulse, the time register on the SDR is initialized to zero
(denoted as time t0 in Fig. 6). The host clock is timestamped
just before issuing this initialization command to the SDR.
This timestamp is denoted as t−0 in the figure. The host
then issues a command to read the SDR’s time register. The
response is received by the host at time t+0 and contains the
SDR time tg . The uncertainty of t0 in host time is now lower-

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

114

bounded by t−0 and upper-bounded by t+0 − tg .3

The host schedules pulses for transmission by the SDR
at multiples of Tr from t0, that is, at times tn = t0 + nTr,
n ≥ 1. The host timestamps each rising-edge occupancy alert
it receives. Let these timestamps be denoted by t+n . The latency
of the nth pulse is calculated as t+n −

(
t−0 + nTr

)
, the alert

reception time minus the pulse’s scheduled transmission time.

At the end of the pulse train, the host issues another
command to read the SDR’s time register. The response is
received by the host at time t+end and contains the SDR
time tend. Clock drift over the duration of the pulse train is
calculated as D =

(
t+end − t

−
0

)
− (tend − t0).

Accounting for the uncertainty of the SDR’s initialization
time, t0, these latency measurements overestimate the true
latency by up to ∆l = t+0 − tg− t

−
0 . Accounting for the uncer-

tainty due to host-SDR clock drift, the latency measurements
can either over- or underestimate latency, depending on the
direction of the relative drift. If the drift, D, as defined above,
is positive—that is, elapsed host time

(
t+end − t

−
0

)
is larger than

elapsed SDR time (tend − t0)—that implies the SDR clock is
slower, actual pulse transmissions are slightly delayed, and the
measured latencies are overestimates. If, on the other hand,
the drift is negative, then the SDR clock is faster, pulses are
sent slightly ahead of schedule, and the measured latencies
are underestimates. Thus, the latency, L, can be bounded as
follows:

L̃−max{∆l, D} < L < L̃ ; D > 0

L̃−∆l < L < L̃+ |D| ; D < 0
(1)

where L̃ is the measured latency.

B. Latency Measurements

We conducted measurements of latency with two different
sensors: (Sensor 1) an Ettus USRP N210 with an Ethernet
interface to a host on the local area network (LAN) in Fig. 5,
and (Sensor 2) a HackRF One with a universal serial bus
(USB) interface to the host. Each sensor monitored the 10 MHz
band from 719 MHz to 729 MHz. The test signal generator
transmitted a pulsed CW signal at 724.09 MHz with a pulse
duration of 10 ms and a pulse repetition period of Tr = 10 s.
Both sensors were connected and tested simultaneously using
a conducted RF connection between the test signal generator
and each sensor.

Host timestamps were recorded in terms of CPU clock cy-
cle counts, and latencies were measured in terms of the number
of elapsed clock cycles and converted to seconds using the
measured clock frequency (approximately 2.5×109 cycles per
second). Clock cycle counts were obtained using the RDTSCP4

assembly instruction described in [9]. Furthermore, CPU SET
was used by sched setaffinity to restrict the RDTSCP to a
single core of a single processor.

We collected latency measurements over a period of
29 hours. Initial experiments revealed a relative clock drift
between the host and transmitting SDR clocks reaching several
milliseconds over this length of time. To mitigate this drift, we

3We regard as negligible the relative clock drift over the short interval, tg .
4Read Time-Stamp Counter and Processor ID

TABLE II. SUMMARY STATISTICS OF LATENCY MEASUREMENTS

Statistic Sensor 1 Sensor 2
Minimum 7.3 ms 24.3 ms

Maximum 1960.9 ms 1960.6 ms

Mean 17.3 ms 35.5 ms

Median 12.1 ms 29.9 ms

Standard Deviation 33.0 ms 33.4 ms

95th percentile 43.4 ms 70.8 ms

Fig. 7. Measured cumulative distribution of total latency

reinitialized the SDR on an hourly basis, obtaining new values
of t−0 , tg , t+0 , and tend each time.

Table II summarizes the measurement statistics for both
sensor configurations. Over 10 thousand measurements were
collected for each. The cumulative distributions of these mea-
surements are shown in Fig. 7. We observe that, for Sensor 1,
the median latency is 12.1 ms and the 95th percentile latency
is 43.4 ms. While the large majority of latencies are under
15 ms (83 %), larger values are likely due to server and or
LAN busy periods. Sensor 2, a less expensive device with a
USB interface, has somewhat higher latencies. Its alerts were
received with a median latency of 29.9 ms and a 95th percentile
of 70.8 ms.

Over the hourly initializations of the test signal generator,
measurements of ∆l averaged 190 µs with a standard deviation
of 20 µs and a maximum of 229 µs. The relative host-SDR
clock drift, D, was observed to be positive at the end of each
hour, with an average value of 801 µs, a standard deviation
of 78 µs, and a maximum of 962 µs. Given these numbers,
and using the bounds in (1), we can conclude that the latency
measurements reported above overestimate the true latency by
no more than 1 ms.

While these measurements were conducted for systems on
a local area network, the extension to a wide area network
(WAN) is straightforward. In fact, simply adding the estimated
network transmission delays of the WAN to these measure-
ments would provide a good first-order approximation.

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

115

Fig. 8. Server latency as a function of load from concurrent sensor streams

C. Latency vs. Server Load

The results reported above are for a lightly loaded server
handling only two concurrent sensor streams. We also tested
the performance of the server as a function of increasing
streaming load. This test generates a number of background
streams from load generators that concurrently stream captured
data from a file to the server. Each stream mimics a sensor
by streaming a power vector every millisecond from the load
generator. We then start a test stream that contains a periodic
narrowband pulse at one second intervals, and we measure the
time for an alert to be delivered for each pulse. Timings of
the pulse transmissions and receptions of the alerts are done
on the same machine using the processor’s clock.

Fig. 8 plots the average latency as a function of the
number of background streams. The averages are over 200
measurements, and the error bars are plus/minus the standard
deviation. We start seeing degradation beyond five background
streams running in addition to the test stream.

Given that we have implemented our system in Python,
the streaming service (and each of its forked children) and
the web services containers each run in their own process
in order to better utilize server resources. This separates the
web server load from sensor load and allows the system to
scale with the number of cores on the server. The test server
is a four-core 64-bit Linux server with 8 GB of physical
memory and 2.5 GHz processors. When streaming with 1-ms
power spectrum resolution, each stream utilizes 60 % of one
core. Lowering the temporal resolution to 50 ms per power
spectrum reduces core utilization to 5 %, at the expense of
higher detection latency. While Python was used for quick
prototyping, we plan to re-write this component using Java or
C++ in order to further reduce resource utilization and improve
scalability.

V. CONCLUSION

In this paper, we described a prototype implementation
of real-time centralized spectrum monitoring. In our imple-
mentation, the sensors continuously stream power spectral

measurements to a central server which analyzes them for
changes in spectrum occupancy. The server issues spectrum
occupancy alerts to subscribed users whenever it detects
changes in the occupancy of individual channels within the
band. The server also supports a web browser GUI to display a
running spectrogram of the monitored band. We have used this
implementation for live monitoring of commercial LTE and
other bands, demonstrating the feasibility of real-time spectrum
monitoring.

To assess how “real-time” the monitoring is, we proposed
a test method for measuring the latency of the system, specif-
ically the time from when a spectrum event begins to when a
corresponding alert is received. The proposed method uses a
test signal generator made from an SDR and a general purpose
computer. As a black-box test, any sensor-server implementa-
tion can be tested without modification to the remaining test
apparatus. The only requirement is a common procedure and
format for sending the occupancy alert.

Spectrum detection latency has important implications for
dynamic spectrum sharing systems. It lower bounds the time
it takes to clear a channel in which an incumbent user
arrives. It also indicates the level of temporal granularity of
opportunistic spectrum access that can be achieved in centrally-
coordinated spectrum sharing systems. We used the proposed
test method to measure detection latencies through our server
with two different sensors and found that in both cases the
95th percentile was under 80 ms.

To complement the latency test, future work should address
methods to evaluate the detection and false alarm rates of
monitoring systems across a variety of RF channel condi-
tions, including a range of signal-to-noise ratio and channel
impairments. We also plan to implement and deploy more
sophisticated sensing algorithms in the monitoring system
that are more resilient to noise and interference and are
able to discriminate between heterogeneous signals, such as
incumbent and secondary signals. An example of this would be
the ability to detect an incumbent radar signal in a background
of LTE and other signals for the 3550 MHz to 3700 MHz
CBRS. One could then examine the tradeoff between detection
performance and detection latency.

ACKNOWLEDGMENT

The authors thank Michael Cotton and his colleagues at the
National Telecommunications and Information Administration,
Institute for Telecommunications Sciences, Boulder, Colorado,
for a fruitful collaboration on spectrum monitoring, out of
which this work came about.

REFERENCES

[1] President’s Council of Advisors on Science and Tech-
nology, “Realizing the full potential of government-held
spectrum to spur economic growth,” Jul. 2012. [Online].
Available: http://www.whitehouse.gov/sites/default/files/microsites/ostp/
pcast spectrum report final july 20 2012.pdf

[2] M. Matinmikko, H. Okkonen, M. Palola, S. Yrjola, P. Ahokangas,
and M. Mustonen, “Spectrum sharing using licensed shared access: the
concept and its workflow for LTE-advanced networks,” IEEE Wireless
Communications, vol. 21, no. 2, pp. 72–79, April 2014.

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

116

[3] “Amendment of the commissions rules with regard to commercial
operations in the 3550–3650 MHz band,” FCC Report and
Order and Second Further Notice of Proposed Rulemaking,
GN Docket No. 12-354, Apr. 2015. [Online]. Available:
https://apps.fcc.gov/edocs public/attachmatch/FCC-15-47A1.pdf

[4] M. Cotton, M. Souryal, and M. Ranganathan, “An overview of the
NTIA/NIST spectrum monitoring pilot program,” in Proc. International
Workshop on Smart Spectrum, Mar. 2015.

[5] J. Wepman, B. Bedford, H. Ottke, and M. Cotton, “RF sensors for
spectrum monitoring applications: Fundamentals and RF performance
test plan,” National Telecommunications and Information Administration,
Technical Report TR-15-519, Aug. 2015. [Online]. Available:
http://www.its.bldrdoc.gov/publications/2808.aspx

[6] T. Schmid, O. Sekkat, and M. B. Srivastava, “An experimental
study of network performance impact of increased latency in
software defined radios,” in Proceedings of the Second ACM
International Workshop on Wireless Network Testbeds, Experimental
Evaluation and Characterization, ser. WinTECH ’07. New
York, NY, USA: ACM, 2007, pp. 59–66. [Online]. Available:
http://doi.acm.org/10.1145/1287767.1287779

[7] A. Nika, Z. Zhang, X. Zhou, B. Y. Zhao, and H. Zheng, “Towards
commoditized real-time spectrum monitoring,” in Proceedings of the
1st ACM Workshop on Hot Topics in Wireless, ser. HotWireless ’14.
New York, NY, USA: ACM, 2014, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/2643614.2643615

[8] “Evolved universal terrestrial radio access (E-UTRA); physical layer
procedures,” 3GPP Technical Specification TS 36.213, V12.5.0, Mar.
2015.

[9] G. Paoloni, “How to benchmark code execution times on
Intel IA-32 and IA-64 instruction set architectures,” Intel
Corporation, white paper, Sep. 2010. [Online]. Available:
http://www.intel.com/content/www/us/en/intelligent-systems/embedded-
systems-training/ia-32-ia-64-benchmark-code-execution-paper.html

2015 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)

117

