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Abstract 
Fundamental limitations of resistance thermometry, as well as the desire to reduce sensor 
ownership cost has led to considerable interest in the development of photonic temperature 
sensors as an alternative to resistance thermometers. These innovative temperature sensors have 
the potential to leverage advances in frequency metrology to provide cost effective measurement 
solutions. Here we present the results of our efforst in developing novel photonic temperature 
sensors. Our preliminary results indicate that using photonic devices such as the ring resonators, 
photonic crystal cavities and Bragg reflectors we can achieve measurement capabilities that are 
on-par or better than the state of the art in resistance thermometry. 
 

 1. Introduction 
Resistance thermometry plays a crucial role in various aspects of industry and every-day 
technology ranging from medicine, manufacturing process control, to environmental process 
control and oil-and-gas industry [1–3]. Although industrial resistance thermometer can measure 
temperature with uncertainties as small as 10 mK, they have several unfavorable properties such 
as hysteresis, sensitivity to humidity and  chemical residues, susceptibility to mechanical shock 
and thermal stress requiring frequent costly recalibration of the sensors [3]. These fundamental 
limitations have fostered efforts in developing alternative technologies such as photonics to 
replace legacy devices. A variety of novel photonic thermometers has been proposed recently 
including photosensitive dyes [4], hydrogels [5], fiber Bragg grating (FBG) [6–8], and on-chip 
integrated silicon photonic nanostructures [1,9–12]. 

2. Photonic Thermometry Research at NIST 

Given the drawbacks and limitations of legacy-based resistance thermometry we have started 
photonic thermometry research project at NIST with the aim to develop novel photonic-based 
sensors and standards that would outperform resistance-based standards. Our goal is to develop a 
low-cost, readily deployable, novel temperature sensor that can be easily manufactured with the 
existing technology. In this work we give an overview of three of our on-going thermometry 
projects: the whispering gallery mode resonator (WGMR), fiber Bragg gratings (FBG) and 
silicon photonic-based nanosensors. The order in which we describe the thermometry projects 
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monitoring (HighFinesse WS/7) while the rest, after passing through the photonic device, was 
detected by a large sensing-area power meter (Newport, model 1936-R). Light was coupled into 
and out of the waveguide using grating couplers [20]. 

 

5.1. Nano-Waveguide Bragg Grating Thermometer 
Figure 4 shows an SEM image of silicon nano-waveguide Bragg grating (Si WBG) thermometer. 
The device consists of silicon nano-waveguide with a cross section of 510 × 220 nm which sits 
on top of 2 μm-thick buried oxide (BOX) of SOI substrate. The width of the nano-waveguide is 
periodically modulated in the square-wave form with 60 nm amplitude and 330 nm pitch. The 
total length of the sensor is 330 μm. 

 
FIG. 4. Nano-waveguide Bragg grating thermometer. (a) SEM image of the part of Si WBG sensor. 
Waveguide cross section is 220 nm × 510 nm, side wall modulation is 60 nm, pitch – 330 nm. 
(b) Transmission spectra at different temperatures of SiO2-cladded Si WBG thermometer. 
(c) Temperature dependence of the center of the stop band. 

The periodic modulation of refractive index of the nano-waveguide of Si WBG creates a stop 
band in its transmission spectra. Figure 4(b) shows transmission spectra of SiO2-cladded 
Si WBG thermometer. The stop band width is ≈ 5.2 nm. With increasing temperature the center 
of the stopband shifts linearly at a rate of δλ/δT ≈ 81 pm/°C.  Our results indicated this Si WBG 
sensor is capable to measure temperature with resolution of ≈ 0.6 °C. 

5.2. Ring Resonator Thermometer 

A silicon ring resonator is another type of photonic nanostructure that can be used for 
temperature sensing applications. It also features microscale footprint and on-chip integration. In 
recent years, ring resonator [21,22] based devices have been exploited for bio-chemical sensing 
applications [9,23]. In these sensors, a noticeable temperature dependence of a resonance 
frequency adversely impacts sensor sensitivity and specificity.  
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Figure 5. Temperature dependence of ring resonator thermometer cladded with SiO2. Inset shows SEM 
 image of the device. Ring radius is 11 μm, a gap between the bus waveguide and the ring is 130 nm. 

We recently demonstrated that silicon-based optical ring resonator can be used for ulra-
sensitive thermal measurements. In particular we showed that a device with a ring diameter or 
11 μm and gap (between waveguide and ring) of 130 nm can be a used as a photonic 
thermometer (Fig. 5) with temperature resolution of 1 mK and noise floor of 80 μK.  

5.3. Photonic Crystal Thermometer 
Typical photonic crystal (PhC) thermometer is shown on Fig. 6(a). Similar to Si WBG device it 
consists of silicon waveguide, which features a periodic modulation of its effective refractive 
index. In PhC thermometer this is done with the help of periodic array of holes. The width of the 
waveguide (2.5 μm), the diameter of holes (150 nm) and the pitch (276 nm) are chosen such that 
a photonic band gap has a width ≈ 7.9 nm and is centered around 1540 nm (Fig. 6(b)). The 
devices shown on Fig. 6(a) was cladded with 800 nm of SiO2. This band gap shows a 
temperature-dependent linear shift of δλ/δT ≈ 82 pm/°C with temperature resolution of ≈ 1.6 °C. 
Our preliminary results indicates that temperature sensitivity and resolution of PhC device is 
very comparable to parameters of Si WBG thermometer. 

 
Figure 6. Photonic crystal thermometer. (a) SEM image of the part of PhC sensor. Waveguide cross 
section is 220 nm × 2.5 μm, hole diameter is 150 nm, pitch – 276 nm. (b) Transmission spectra at 
different temperatures of SiO2-cladded PhC thermometer. (c) Temperature dependence of the center of 
the photonic band gap. 
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Silicon nanowaveguide Bragg grating cavity (Si WBG-C) thermometer is a photonic 
nanostructure made of SOI nanowavegude. It features a nanoscale Fabry-Perot (F-P) cavity and 
two waveguide Bragg mirrors placed on two opposite sides of the F-P cavity. Figure 7 shows the 
SEM image of the center part of Si WBG-C thermometer. The F-P cavity dimensions are 510 nm 
(width), 220 nm (thickness) and 327 nm (length). Bragg grating mirrors have the same structure 
as Si WBG described above – the nanowaveguide’s width is periodically modulated in the form 
of a square wave with modulation amplitude of 60 nm and a pitch of 330 nm. The total length of 
Si WBG-C including two Bragg mirrors is ≈ 66 nm. 

Figure 7(b) shows transmission spectra PMMA-cladded Si WBG-C thermometer measured at 
various temperatures between 20 °C and 40 °C. We designed the stop band of the sensor to be 
≈ 13.3 nm. At 20 °C the edges of the stop band are located at 1553.6 nm and 1567.0 nm. At the 
center of stop band there is a resonance peak of quality factor of Q ≈ 3,100 (FWHM ≈ 500 pm). 
The temperature dependence of resonance wavelength plotted on Fig. 7(c)shows a linear 
temperature dependence of δλ/δT ≈ 70 pm/°C. Given the peak width of ≈ 500 pm, we can 
reliably resolve temperature differences of 0.7 °C. Temperature resolution can be further 
improved in the future by fabricating higher Q devices.  

5.5. Photonic Crystal Nanobeam Cavity Thermometer 
Silicon photonic crystal nanobeam cavity (PhC-C) thermometer is another type of F-P 
nanostructure. A silicon nanowaveguide of width of 800 nm is pattern with a one dimensional 
array of nanoholes of diameters ranging from 170 nm to 230 nm. Nanoholes form two Bragg 
mirrors enclose a F-P cavity. In designing the PhC-C sensors we followed a deterministic 
approach described in Refs. [24,25]. In this approach the F-P cavity is of zero-length, while the 
Bragg mirrors have a Gaussian field attenuation, which, in turn, maximize the Q of the cavity.  

Figure 7(d) shows the center part of Si PhC-C sensor. The zero-length F-P cavity is located at 
the very center of the SEM image.  Figure 7(e) shows the transmission spectra of PMMA-
cladded Si PhC-C device measured at different temperatures and Fig. 7(f) represents a 
temperature dependence of resonance peak corresponding to the fundamental mode. The 
sensitivity of PhC-C is δλ/δT ≈ 70 pm/°C, with temperature resolution of 0.07 °C.  

5.4. Nanowaveguide Bragg Grating Cavity Thermometer 
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FIG. 7. Fabry-Perot cavity-based silicon photonic termometers. (a) SEM image of the center cavity part of 
uncladded Si WBG-C thermometer. F-P cavity is marked by a yellow circle. (b) Transmission spectra of 
PMMA-cladded Si WBG-C at different temperatures. (c) Temperature dependence of the resonance 
wavelength of PMMA-cladded Si WBG-C. (d) SEM image of uncladded Si PhC-C thermometer. (e) 
Transmission spectra of the fundamental mode of PMMA-cladded Si PhC-C. (f) Temperature dependence 
of the resonance wavelength of PMMA-cladded Si PhC-C. 

6. Summary 
The fundamental limitations of resistance-based thermometers ignited substantial interest in 

developing alternative temperature sensors. In the paper we present on overview of ongoing 
photonic thermometry research at NIST. We cover various types of photonic thermometers from 
WGMR, operating at microwave frequencies, to FBG and silicon photonic nanosensors, working 
at telecom frequency range. It has been shown that photonic-based thermometers can provide 
low-cost temperature measurement capability that is on par, if not better that legacy-based 
sensors.  
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