
 8. Future Directions 
 

Combinatorial testing has evolved into an accepted practice in software engineering. As it has entered 
mainstream use, research interest has become more specialized and application-oriented. Progress 
continues to be made in covering array generation algorithms, often with the aim of applying 
combinatorial methods to a broader range of testing problems, particularly those with larger inputs and 
complicated constraints. Concurrently, researchers are improving combinatorial test design methods by 
focusing on input model analysis and tools to assist in this phase of test design. Combinatorial testing 
continues to expand into domains such as Software Product Lines and mobile applications. Here we 
review current and upcoming developments in these areas, and suggest potential impacts for practical 
testing. Finally, we briefly discuss harder problems in the field for which broadly effective solutions are 
not fully perfected.   

 
8.1 Algorithms 
 
While conventional algorithms produce very compact arrays for many inputs, improvements are being 
achieved.  One recent trend in covering array algorithms is the use of reduction strategies on existing 
arrays.  That is, a t-way covering array with N tests is systematically reduced to fewer than N tests using a 
variety of mathematical transformations.  The near-term impacts of algorithm improvements in array 
construction include extending the applicability of combinatorial methods. For applications such as 
modeling and simulation, where a single test may run for hours, reducing covering array size by even a 
few tests is of great value. 
 
These methods have recently improved upon the best-known sizes of some covering array configurations 
[1, 2] and active research continues in this area. Similar transformations can also be done where there are 
constraints, and if the existing test suite was not designed as a covering array [3], using reductions that 
preserve the combinatorial coverage of the original test suite.  An extension of this strategy [4] includes 
the option of allowing a subset of parameters to have values freely assigned, i.e., new tests can be 
generated rather than requiring them to be selected from the original test set.  Other work shows that 
heuristic search can in some cases compete with greedy methods in speed and practicality for covering 
array construction [6].  Additionally, greedy algorithms can be improved using graph-coloring methods 
[7], to improve on a covering array generation phase that is optimal for t=2 but does not retain optimal 
properties at t>2.     
 
A somewhat different aspect of applying combinatorial methods in test suite reduction is the use of 
interaction coverage as a criterion for reducing a test suite [8].   This may be particularly valuable for 
regression testing. Various test reduction strategies have been applied in the past, but sometimes result in 
deteriorating fault-detection effectiveness.  Since combination coverage is effective in fault detection, 
retaining high combinatorial coverage in a reduced test set can preserve effectiveness using fewer tests. 
Yet another practical consideration is the setup time between tests.  Many testing problems, especially for 
system integration or other large system tests, require changes to the SUT configuration with each test.  
Minimizing this time, while retaining high combination coverage can thus be an effective strategy [5]. 
 
8.2 Input Modeling 
 
A second major research trend involves the integration of combinatorial methods in the development 
environment, and addressing practical problems particular to various domains.  The first step in any 
testing effort is to understand and define the input model, that is, the set of parameters and values that will 
be included in tests, along with any constraints on values or sequencing.  This phase is an issue for any 
testing approach, not just combinatorial, but the unique aspects of CT have led researchers to tailor 
conventional methods.  Test environments tailored to CT are being developed [9, 10] to work with 



popular frameworks such as Eclipse.  These environments will allow for validating the consistency and 
other meta-properties of constraint sets [11].    
   
Software product lines are increasingly used and their enormous range of possible configurations provides 
a natural domain for combinatorial testing. An extensive survey [16] shows the variety of ways in which 
t-way testing is now being applied in SPL testing and evaluation.  Because of the large number of 
parameters in many SPLs, methods are being devised to extend the range of practical application for 
covering array generators.  Software product lines often have hundreds, or even thousands, of variables.  
Conventional covering array algorithms are resource-limited in both time and storage to a few hundred.  
One approach is flattening of the input models, as described in Sect.7.5 [13].  Such methods are an active 
area of research.   
 
Two current lines of research for improving definition of the input model are classification trees and 
UML models. UML sequence diagrams can be used as inputs to rule-based tools that extract an input 
model that can be used with a covering array generator [12].  Input variables and values are extracted 
from UML message specifications and guard conditions, providing partial automation of the process to 
reduce effort for test designers. Classification trees fit well with t-way testing, because they allow easy 
analysis and definition of test parameters in a tree structure [14].  Leaf nodes of the tree can be treated as 
category partitions and used directly in generating covering arrays.  Robust tools based on classification 
trees, UML diagrams, and related concepts can help make combinatorial methods easier to use for test 
developers.  
 
8.3 Harder problems   
 
Combinatorial testing will continue to find new domains of application, but some research problems 
remain to be solved. Two broad areas in particular are likely to receive attention from researchers, 
because of their practical significance in industrial applications.    
 
Very large systems:  As with many areas of software engineering, scalability is essential. Fortunately, 
current combinatorial methods and covering array generators can address the vast majority of testing 
requirements.  As noted earlier in the chapter, however, development approaches such as software 
product lines may involve thousands of parameters, with large numbers of constraints.  Current covering 
array algorithms do not scale to such large problems, and existing constraint solvers are also insufficient 
for an extremely large number of constraints and variables.   
 
Test development time:  Case studies and experience reports show that combinatorial methods can provide 
better testing at lower cost, but these methods can require significant expertise and do not necessarily 
speed up the testing process.  As such, if time-to-market is the primary concern, conventional test 
methods are likely to be preferred by developers.  Application domains where CT has seen the most rapid 
acceptance so far are those with very high assurance requirements, such as aerospace/defense, finance, 
and manufacturing.  Reducing the time required for using combinatorial methods is a significant 
challenge. 
 
Research and practice have shown that combinatorial testing is highly effective across a range of testing 
problems, and this range of applicability continues to expand for new domains and technologies. The 
current high level of research interest in the field suggests that it may continue to advance, providing 
stronger testing at reduced cost for developers.  
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