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Abstract. Random numbers are essential for generating cryptographic
information, such as secret keys, nonces, random paddings, salts etc.
Pseudorandom number generators are useful, but they still need truly
random seeds generated by entropy sources in order to produce random
numbers. Researchers have shown examples of deployed systems that did
not have enough randomness in their entropy sources, and as a result,
crypto keys were compromised. So how does one evaluate how much en-
tropy is in a black-box entropy source? One approach to solving this
problem is to use a series of statistical estimators, such as those pre-
sented in [8]. However, there are many assumptions that the statistical
methods make that may not be true in the entropy source. In particular,
the entropy source outputs may be dependent, and the distribution of
random variables may change over time. To address these limitations, we
propose alternative methods for estimating the entropy in each output
from an entropy source based on concepts from machine learning and
time series analysis. These methods, called predictors, estimate entropy
by attempting to predict the next output in the sequence. We also present
experimental results comparing the entropy estimates of predictors with
those defined in the August 2012 draft of NIST SP 800-90B[3].
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1 Introduction

Random numbers are essential for generating cryptographic information, such
as secret keys, nonces, random paddings, salts etc. Pseudo random number gen-
erators (PRNGs) are capable of generating cryptographically strong outputs;
however they still need truly random seeds generated by entropy sources in order
to produce random numbers. Entropy sources include noise sources that extract
randomness from physical elements; for example, many practical entropy sources
are based on the timing variation from an unstable oscillator. To be useful, the
entropy source’s unpredictability must also be quantified – we need to know how
many bits need to be drawn from the entropy source to produce a good seed.
The unpredictability of the outputs of an entropy source is measured in terms
of entropy. There are a number of different measures of entropy, such as Shan-
non entropy, Rényi entropy, and min-entropy. For cryptographic purposes such
as seeding pseudorandom number generators (PRNGs), the relevant measure



is min-entropy, which corresponds to the difficulty of guessing the most-likely
output of the entropy source.

Researchers have shown examples of deployed systems that did not have
enough entropy in their randomness sources, and as a result, cryptographic keys
were compromised (e.g. see [9, 4, 6]). Estimating the amount of entropy that en-
tropy sources provides is necessary to ensure that randomly generated numbers
are sufficiently difficult to guess. However, entropy estimation is a very chal-
lenging problem when the distribution of the outputs is unknown and common
assumptions (e.g. outputs are independent and identically distributed (i.i.d.))
cannot be made.

There are various approaches to entropy estimation. Plug-in estimators, also
called maximum-likelihood estimators, apply the entropy function on empirical
distributions (e.g., see [1, 14]). Methods based on compression algorithms (e.g.,
see [10, 19]) use match length or frequency counting to approximate entropy.
Hagerty and Draper provided a set of entropic statistics and bounds on the
entropy in [8]. Lauradoux et al. [11] provided an entropy estimator for non-
binary sources with an unknown probability distribution that converges towards
Shannon entropy.

Draft SP 800-90B [3] discusses procedures for evaluating how much entropy
per sample can be obtained from an entropy source. It also provides a suite of five
entropy estimators for sequences that do not satisfy the i.i.d. assumption. Each
estimator takes a sequence of minimally processed samples from the underlying
unpredictable process in the entropy source, and uses them to derive an entropy
estimate. The minimum of the estimates obtained from the five estimators is
used as the entropy assessment of a given source. This estimation is used for
entropy sources that undergo validation testing in order to comply with FIPS
140 [13].

In this study, we present an alternative approach to estimating min-entropy
using predictors. A predictor contains a model and a prediction function, and
aims to predict the next sample value, based on previous observations. Entropy
is a measure of unpredictability, so we can use the performance of a predictor to
estimate the entropy of a source. The more accurate the predictor’s predictions,
the lower the entropy estimate. Estimates are calculated using global and local
performance of the predictors, and the final entropy estimate is selected as the
minimum of these two values. Shannon first published the relationship between
the entropy and predictability of a sequence in 1951 [17], using the ability of
humans to predict the next character in the text to estimate the entropy per
character.

Predictors construct models from previous observations, which are then used
to predict the next value in a sequence. A predictor that is a good fit for the
behavior of a source will give a relatively accurate estimate; a predictor that is
a poor fit will give an overestimate. This interacts well with the procedure of
taking the minimum of many entropy estimates to get a final estimate. Applying
a suite of many predictors, each tuned for a different kind of source, will not
substantially degrade the quality of the final entropy estimates.



In this research, we introduce various categorical and numerical predictors,
each of which makes predictions based on a different model, which builds models
on-the-fly by observing the sequence of samples. These predictors use a variety of
modeling and prediction strategies. Markov models and dictionaries are used to
leverage dependencies between adjacent outputs. Another predictor attempts to
discover periodicity by predicting the value that appeared at some fixed distance
(lag) in the past. Changes to the source distribution over time (called concept
drift) are also a problem. One method makes predictions based on the most
common value in a fixed-size window of most recent outputs. Finally, numerical
smoothing techniques are applied to find trends. These include computing a
moving average over a given window size, and make predictions based on a first-
order difference equation. Each predictor focuses on a relatively simple way for
a source to exhibit some predictability. We also describe how predictors can be
thought of as classifiers in machine learning.

Evaluating the quality of entropy estimates is challenging, because actual
entropy per sample values for real-world entropy sources are not known. In order
to evaluate our estimators, we employed three tools:

1. We generated datasets from simulated sources with a variety of distributions.
All these simulated sources were constructed so that we would know their
correct entropy per sample (because we would always know the probability
distribution used to generate each output value).

2. We applied the tests to datasets from real-world hardware and software
entropy sources. For these sources, we did not know the correct entropy per
sample, but we were able to verify the plausibility of our current estimates.

3. We compared the results of our estimators on both these sets of datasets to
results from the non-i.i.d. tests that appear in [3], and are described in detail
in [8] and [7].

The remainder of the paper is organized as follows. Section 2 provides fun-
damental definitions about entropy. Section 3 describes the entropy estimation
using predictors, and gives descriptions of several simple predictors. Section 4
provides experimental results, and the last section concludes the study with some
future directions.

2 Preliminaries

Entropy sources, as defined in [3], are composed of three components; noise
sources that extract randomness from physical phenomena, health tests that aim
to ensure that entropy sources operate as expected, and (optional) conditioning
functions that improve the statistical quality of the noise source outputs. The
conditioning function is deterministic, hence does not increase the entropy of the
outputs of the noise source. In this study, we assume that the samples obtained
from a noise source consist of fixed-length bitstrings.

Let X be a discrete random variable taking values from the finite set A =
{x1, x2, . . . , xk}, with pi = Pr(X = xi),∀x ∈ A. The min-entropy of X is defined
as − log2(max{p1, . . . , pk}).



If X has min-entropy h, then the probability of observing any particular
value is no greater than 2−h. The maximum possible value for min-entropy of
an i.i.d random variable with k distinct values is log2(k), which is attained when
the random variable has a uniform probability distribution, i.e., p1 = p2 = . . . =
pk = 1

k .
A stochastic process {Xn}n∈N that takes values from a finite set A is called

a first-order Markov chain, if

Pr(Xn+1 = in+1|Xn = in, Xn−1 = in−1, . . . , X0 = i0) = Pr(Xn+1 = in+1|Xn = in),

for all n ∈ N and all i0, i1, . . . , in, in+1 ∈ A. The initial probabilities of the chain
are pi = Pr(X0 = i), whereas the transition probabilities pij are Pr(Xn+1 =
j|Xn = i). In a d-th order Markov Model, the transition probabilities satisfy

Pr(Xn+1 = in+1|Xn = in, . . . , X1 = i1) = Pr(Xn+1 = in+1|Xn = in, . . . , X1 = in−d).

The min-entropy of a Markov chain with length L is defined as

H = − log2( max
i1,...,iL

pi1

L∏
j=1

pijij+1).

3 Entropy Estimation Using Predictors

A predictor contains a model that is updated as samples are processed sequen-
tially. For each sample, the model offers a prediction, obtains the sample, and
then updates its internal state, based on the observed sample value in order to
improve its future predictions. The general strategy of the predictors is summa-
rized in Fig. 1. It is important to note that predictors do not follow “traditional”
supervised learning methods of training and evaluation. In particular, traditional
methodologies contain disjoint training and testing sets. The training set is used
to construct the model, possibly performing many passes over the data, and the
testing data is used to evaluate the model but not update it. Predictors, on the
other hand, use all observations to update the model. In other words, all ob-
servations are part of the training set. This allows the predictor to continually
update its model, and remain in the training phase indefinitely. All observations
are also part of the testing set, because a predictor is evaluated based on all
predictions that were made since its initialization.

3.1 Predictor Performance and Entropy Bounds

There are two ways to broadly measure the performance of a predictor. The first
one, which we call global predictability, considers the number of accurate predic-
tions over a long period, whereas the second measure, called local predictability,
considers the length of the longest run of correct predictions.

A predictive model that can predict each sample value with probability
greater than a random guess, on average, will give the attacker a better than



Initialize the predictor model

Predict the next output

Observe the next output

Compare the prediction
to the observed value

Update the predictor model

Fig. 1: General strategy of predictors

expected chance to guess a PRNG seed each time one is generated. A predictive
model that usually gives a much lower probability of success, but which occa-
sionally gives a lengthy run of correct predictions in a row, gives the attacker a
chance at guessing a specific PRNG seed very cheaply.

It is important to understand that a predictor’s performance provides an
upper-bound on the min-entropy of the sequence. If a predictor successfully pre-
dicts 7

8 of the values in a sequence, this provides solid evidence that this sequence
can, in fact, be correctly predicted 7

8 of the time. Other predictors might pro-
vide an even higher probability of success, but at the very least, we now have
a lower-bound on the success probability that can be attained in predicting the
values in this sequence. That lower-bound on the maximum probability gives us
an upper-bound on the min-entropy of the sequence.

Global Predictability A predictor’s global accuracy pacc is the probability
that the predictor will correctly predict a given sample from a noise source over
a long sequence of samples. Accuracy is simply the percentage of predictions
that were correct. Let c denote the count of correct predictions, and n be the
number of predictions made. For a given predictor, a straightforward estimate
of its accuracy is

p̂acc =
c

n
. (1)

We can also compute a confidence interval on p̂acc, making the assumption that
the success probability of each prediction is independent of the correctness of
other predictions. The upper bound of the (1−α)% confidence interval on p̂acc,
denoted as p̃acc is calculated as;.



p̃acc =


1−

(
α
2

) 1
n , if p̂acc = 0,

1, if p̂acc = 1,

p̂acc + tα

√
p̂acc(1−p̂acc)

n−1 , otherwise,

(2)

where tα refers to the upper α/2 tail of Student’s t-distribution with n-1 degrees
of freedom1. Note that if p̂acc is 1 or 0, computing a confidence interval using
the Student’s t-distribution is not valid. In these cases, confidence intervals are
calculated using the binomial distribution.

The global min-entropy estimate for this predictor, Ĥacc, is derived from p̃acc
using

Ĥglobal = − log2(p̃acc). (3)

Local Predictability A second method to measure the performance of a pre-
dictor uses the length of the longest run of correct predictions. This estimate is
valuable mainly when the source falls into a state of very predictable outputs
for a short time. Should this happen, the estimated min-entropy per sample will
be lower.

This entropy estimate can be obtained using recurrent events. Let r be one
greater than the longest run of correct predictions (e.g., if the longest run has
length 3, then r = 4). Then the probability that there is no run of length r, is
calculated as

α =
1− px

(r + 1− rx)q
· 1

xn+1
, (4)

where q = 1 − p, n is the number of predictions and x is the real positive
root of the polynomial 1 − x + qprxr+1 = 0 [5]. The root x can be efficiently
approximated using the recurrence relation xi+1 = 1 + qprxr+1

i , as it converges
on the root. In practice, ten iterations appears sufficient. Note that there may
be two real positive roots, one of which is 1

p . This root is generally considered
extraneous, and the recurrence relation will converge on it if and only if it is the
only positive root. To find the min-entropy estimate, denoted as Ĥlocal, using
local predictability, first perform a binary search to solve for p, then the apply
following equation.

Ĥlocal = − log2 p (5)

Deriving a Final Estimate The final entropy estimate for a predictor is the
minimum of the global and the local entropy estimates, i.e.,

Ĥ = min(Ĥglobal, Ĥlocal) (6)

1 tα can be approximated by the 1− 1
2
α percentile of a standard normal distribution,

when n ≥ 30.



Entropy Estimation Using Multiple Predictors In order to estimate the
entropy of a given entropy source, we first select a set of predictors where each
predictor is designed to catch a particular type of behavior. Then, we generate a
long output sequence and evaluate the accuracy of each predictor, which provides
an entropy estimate. After obtaining the estimates from the predictors, the final
entropy estimate of the source is taken as the minimum of all the estimates.
If there is an undesirable behavior in an entropy source, but no predictor is
applied that can detect that behavior, then the entropy estimate will be overly
generous. Because of this, it is important that a set of predictors that use different
approaches be applied, and the lowest entropy estimate is taken as the final
entropy estimate.

Many entropy estimators (such as the ones in [8]) work by using the observed
data to fit the parameters to some probability model, and then using the result-
ing probability model to produce an entropy estimate. There is one obvious way
this can fail: if the source’s actual behavior is a very bad fit for the probability
model, those estimated parameters are meaningless. This can lead to large un-
derestimates or overestimates of the actual entropy coming from the source. On
some simulated data, such as normally-distributed data with relatively high en-
tropy per sample, the tests from [3] give extreme underestimates for this reason
(See Fig. 3).

Predictors work in an entirely different way. A predictor sitll fits parameters
to a model, but then uses that model to make predictions. The entropy estimate
is thus directly linked to the practical security question: how difficult will it be
for an attacker to predict these outputs? The existence of a predictor that can
consistently predict half the outputs from the source is proof that the source
cannot provide more than one bit of entropy per sample. A predictor must pro-
duce a prediction for every sample in the sequence2. The entropy assessment
obtained from a predictor is entirely determined by the predictor’s performance
on a sequence of noise source outputs. Further, we can make assumptions about
the distribution of the prediction results. In particular, the distribution is bi-
nomial (since predictions are either correct or incorrect), and the variables are
i.i.d.

A predictor that employs an apparently inappropriate model, but that gen-
erates accurate predictions, is not really inappropriate – it’s just another case
where a messy real-world system is usefully modeled by a simple mathematical
construct, and it is a tool that an attacker could use to predict source outputs
in practice.

Predictors can give underestimates only by getting unusually lucky in their
predictions–a kind of error that both decreases as we examine more samples,
and that can be analyzed and bounded using probability theory.

This means that applying a large set of very different predictors to a sequence
of noise source outputs, and then taking the minimum estimate, is a workable
strategy. Inappropriate models will not substantially lower the final entropy esti-

2 Some predictors produce a null prediction (represented as None in our Python code)
very early in the sequence; this is just a prediction that is guaranteed to be incorrect.



mate. The entropy estimate will be lowered somewhat by many equally accurate
predictors (for example, if there are ten predictors, then there are ten opportu-
nities for one of the predictors to get lucky and give an unusually low estimate).
Each predictor’s performance on a given sequence from a noise source can be
seen as a random variate whose mean is the correct entropy per sample for this
noise source), but the probability of this happening can be bounded.

3.2 Categorical and Numerical Predictors

In this section, we present a set of predictors for categorical and numerical data
that are designed to characterize the behaviors of the noise sources. Entropy
sources, defined in SP 800-90B[3], only contain discrete values. Therefore, we
consider predictors as a solution to a classification problem, rather than a regres-
sion problem. However, this does not preclude one from constructing a predictor
from numerical data.

Some of these predictors are constructed using windowing or ensemble meth-
ods to accommodate concept drift. Ensemble methods use multiple classifiers
that run simultaneously and obtain the final prediction by a weighted vote.

Predictors can be constructed using existing methods from online and stream
classification, but do not need to be complex. Classifiers are often designed to be
domain specific. For noise sources where few assumptions about the underlying
probability distribution can be made, it may be difficult to construct sophisti-
cated learners.

Categorical Data Predictors This part describes several predictors that as-
sume that the samples represent categorical data, i.e., all samples have no nu-
merical meaning or ordering, and serve as labels only.

Most Common in Window (MCW) is a predictor that maintains a sliding win-
dow of the most recently observed w samples, where w is a parameter which
can be varied in different instances of the predictor. Its prediction is the most
common value that has occurred in that window. If there are multiple values
that have occurred the highest number of times in the window, the value that
has occurred most recently is used as the prediction. This predictor is expected
to perform well in cases where there is a clear most-common value, but that
value varies over time. For example, a source whose most common value slowly
changes due to environmental changes, such as operating temperature, might be
approximated well by this predictor. In our experiments, this predictor is used
inside the ensemble predictor MultiMCW.

Single Lag Predictor is a predictor that remembers the most recent N values
seen, and predicts the one that appeared N samples back in the sequence. N is a
parameter to the predictor. The single lag predictor is expected to perform well
when applied to data that has strong periodic behavior. In our experiments, this
predictor is used inside the Lag ensemble predictor.



Markov Model with Counting (MMC) is a predictor that remembers every N -
sample that has been seen so far, and keeps counts for each value that followed
each N -sample sequence. N is a parameter for this predictor. The MMC pre-
dictor is expected to perform well on data from a Markov source with order N ,
and on any real-world process that can be accurately modeled by an Nth-order
Markov model. In our experiments, this predictor is used inside the MultiMMC
ensemble predictor.

LZ78Y is a predictor that is based loosely on the LZ78 family of compression al-
gorithms [16]. The predictor keeps track of all observed strings of samples up to a
maximum length of 32 until its dictionary reaches maximum size. For each such
string, the predictor keeps track of the counts of what values followed the string.
(Note that even after the dictionary reaches maximum size, the counts continue
to be updated.) The LZ78Y predictor is expected to perform well on data from
Markov sources and on the sort of data that would be efficiently compressed by
LZ78-like compression algorithms. The LZ78Y predictor is used directly in our
experiments.

Ensemble Predictors for Categorical Data
We make use of three ensemble predictors based on categorical data. Each of the
three predictors contains many very similar subpredictors, keeps track of which
subpredictor has performed the best on the sequence so far, and uses that as the
source of its predictions. This minimizes the error in estimates introduced by
having many distinct predictors with very similar performance – the ensemble
predictor’s performance is measured on its predictions, not on the performance
of the predictions of any one of its subpredictors.

Multi Most Common in Window Predictor (MultiMCW) comprises several MCW
subpredictors, each of which maintains a window of the most recently observed
w samples, and predicts the value that has appeared most often in that w-sample
window. If a subpredictor encounters a tie, the most common sample value that
has appeared most recently is used as the prediction. The MCW subpredictor
with the highest score is used for predicting the next sample. This ensemble pre-
dictor is parameterized by the window size w, where w ∈ {63, 255, 1023, 4095}.
This predictor was designed for cases where the source transitions over time be-
tween different most-common values, but still remains relatively stationary over
reasonable lengths of the sequence.

Lag Predictor is an ensemble predictor that contains d subpredictors, one for
each lag i ∈ {1, . . . , d}, for a maximum depth d. Each of these subpredictors
predicts the value at time t as xt = xt−i. The lag subpredictor with the highest
score is used for predicting the next sample.

Multi Markov Model with Counting Predictor (MultiMMC) is another form of
ensemble classifier, comprising multiple MMC predictors. In particular, the pa-
rameter D specifies the number of MMC subpredictors, where each MMC sub



predictor is parameterized by N ∈ {1, . . . , D}. This predictor is expected to be
most successful when the source has a limited amount of memory, so that the
next output produced by the source is related to its most recent k outputs, but
not strongly related to more distant outputs.

Numerical Predictors We now describe predictors that assume that the sam-
ples are numerical, thus that numerical relationships between them can be in-
ferred. Numerical models generally represent continuous data, whereas outputs
of the entropy sources are discrete. An issue that occurs in this class of pre-
dictors that did not exist for categorical predictors is that the outputs from a
numerical model may not exist in the output alphabet of the source. Because
of this discrepancy in data types, the numerical predictors are constructed from
two parts:

1. A numerical model and numerical prediction function, and
2. A grid that remembers all values seen so far and rounds all predictions to

the nearest value that has been seen so far.

Moving Average (MA) Predictors are a family of predictors, parameterized by
w, that compute the average of the last w values seen. An MA predictor uses
the output value observed so far that is closest to that average as the prediction.
This predictor is expected to be most successful when the source has a symmetric
distribution that moves relatively slowly over time. The MA predictor is used in
our experiments inside the MultiMA ensemble predictor.

First Difference (D1) Equation Predictor constructs a difference equation on a
few recent sample values, and uses it to predict the next value. For example, if
the difference between the previous value xt−1 and the one before that xt−2 was
δ, then the predictor computes xt−1 + δ, and then uses the output value seen so
far that is closest to that value as the prediction. This predictor is expected to
be most successful when the rate of change of the values output by the source
is relatively stable.

MultiMA Predictor is an ensemble predictor that keeps track of multiple MA
predictors, and uses the MA predictor that has been most successful so far to
generate its predictions.

4 Experimental Results

To determine whether simple predictive models were effective for the purpose
of min-entropy estimation, we have applied the predictors presented above to
simulated and real-world3 data. We have also compared our results to the entropy
estimators presented in SP 800-90B[3].

3 Any mention of commercial products within NIST web pages is for information only;
it does not imply recommendation or endorsement by NIST.



4.1 NIST Entropy Estimation Suite

Draft NIST SP 800-90B [3] includes five estimators, which were originally spec-
ified in [8, 7]. These estimators are suitable for sources that do not necessarily
satisfy the i.i.d. assumption.

– Collision test computes entropy based on the mean time for a repeated
sample value.

– Partial collection test computes entropy based on the number of distinct
sample values observed in segments of the outputs.

– Markov test estimates entropy by modeling the noise source outputs as a
first-order Markov model.

– Compression test computes entropy based on how much the noise source
outputs can be compressed.

– Frequency test computes entropy based on the number of occurrences of the
most-likely value.

We refer to the estimators as the 90B estimators.

4.2 Simulated Data

Datasets of simulated sequences were produced using the following distribution
families:

– Discrete uniform distribution: This is an i.i.d. source in which the samples
are equally-likely.

– Discrete near-uniform distribution: This is an i.i.d source where all samples
but one are equally-likely; the remaining sample has a higher probability
than the rest.

– Normal distribution rounded to integers: This is an i.i.d. source where sam-
ples are drawn from a normal distribution and rounded to integer values.

– Time-varying normal distribution rounded to integers: This is a non-i.i.d.
source where samples are drawn from a normal distribution and rounded to
integer values, but the mean of the distribution moves along a sine curve to
simulate a time-varying signal.

– Markov Model: This is a non-i.i.d. source where samples are generated using
a kth-order Markov model.

80 simulated sources were created in each of the classes listed above. A se-
quence of 100,000 samples was generated from each simulated source, and esti-
mates for min-entropy were obtained from the predictors and 90B estimators for
each sequence. For each source, the correct min-entropy was derived from the
known probability distribution.

Figure 2 shows the results of the lowest estimate given by the 90B estimators4

and the lowest estimate given by the predictors presented in this work, applied

4 The implementation of the SP 800-90B estimators is slightly modified by removing
the restriction that the output space is [0, ..., 2b−1], where b is the maximum number
of bits required to represent output values.



Fig. 2: Comparison of the lowest predictor entropy estimate, the lowest 90B entropy
estimate, and the true entropy from 80 simulated sources with near-uniform distribu-
tions.

Fig. 3: Comparison of the lowest predictor entropy estimate, the lowest 90B entropy
estimate, and the true entropy from 80 simulated sources with normal distributions.

to simulated sources with near-uniform distributions. Near-uniform distributions
are particularly interesting because the majority of the 90B estimators try to fit
the data to a distribution in that family. Thus, one would expect the 90B estima-
tors to work quite well. However, the plot shows that this is not always the case
– there are several points where the 90B methods give massive underestimates.

Figure 3 shows results for the simulated sources with normal distributions.
For this class of simulated source, the 90B estimators are prone to large un-
derestimates. In most cases, the minimum estimate is the result of the partial
collection estimator, although the compression and collision estimates are quite
low as well. The results of the partial collection and collision estimates are highly
dependent on the segment size, and it is unclear whether the current strategy for
selecting the segment size is optimal. The compression estimator, based on Mau-
rer’s universal statistic[12], does not contain the corrective factor c(L,K) that
is used to reduce the standard deviation to account for dependencies between
variables, and this is likely a factor in the low estimates.

Plots depicting the results of the lowest 90B and predictor estimates for the
remaining simulated distribution families are located in Appendix A.



Table 1: Error measures for the lowest 90B and predictor estimates by simulated source
class.

Simulated data class 90B MSE Predictor MSE 90B MPE Predictor MPE

Uniform 2.4196 0.5031 37.9762 17.4796

Near-uniform 1.4136 0.1544 26.6566 6.4899

Normal 4.9680 0.4686 62.6330 14.1492

Time-varying normal 3.0706 0.2564 54.1453 3.1706

Markov 0.9973 0.8294 6.4339 -11.7939

None of the 90B or predictor estimates were overestimates for the uniform
sources, which is to be expected. Overall, underestimates given by the predictors
were smaller than those given by the 90B estimators.

The predictors did give a number of overestimates when applied to the
Markov and time-varying normal sources, particularly as the true min-entropy
increases. This suggests that the predictors, with the parameters used in these
experiments, were unable to accurately model these sources. The 90B estimators
gave both significant overestimates and underestimates for the Markov sources,
and tended towards large underestimates for the time-varying normal sources.

While it can be useful to look at the trends, it is often more informative to
compare the errors. Table 1 shows the mean squared error (MSE) of the lowest
90B estimate and the lowest predictor estimate over 80 sequences from each class
of simulated sources. For all five classes, the MSE was lower for the predictors
than it was for the 90B estimators. This suggests that the predictors are better
estimators; however, the MSE does not tell the entire story. Because of the nature
of the problem, underestimates are preferred to overestimates, and MSE does
not capture the sign of the error. To capture this, the mean percentage error
(MPE) is provided in Table 1 as well.

The MPE values show that the average errors from the 90B and predictor
estimates have the same sign, except in the case of the Markov sources.

4.3 Real-World Data

Results were also obtained using random number generators deployed in the real
world. The true entropy per sample for these sources is unknown, so no error can
be computed for the estimators. However, the estimates from the predictors pre-
sented here can still be compared to the 90B estimates, based on the knowledge
that underestimates from predictors have theoretical bounds. The estimates of
the real world sources are presented in Table 2.

RDTSC Three sequences were generated using the the last bit returned by
calls to RDTSC, which returns the number of clock cycles since system startup.
RDTSC1 has an output alphabet of {0, 1}, RDTSC4 has an output alphabet
of {0, . . . , 15}, and RDTSC8 has an output alphabet of {0, . . . , 255}. These se-



quences are processed. In particular, Von Neumann unbiasing was applied to the
raw sequence generated by the repeated calls to RDTSC.

The lag predictor gives the lowest estimate for RDTSC1, the MultiMMC
predictor gives the lowest estimate for RDTSC4, and the compression estimate
gives the lowest estimate for RDTSC8. In RDTSC1, the lag predictor provides
an estimate 0.205 below that of the 90B collision estimate, suggesting that there
was periodicity that the 90B estimators were unable to detect. The predictors did
not achieve significant gains over uninformed guessing when applied to RDTSC8,
with the LZ78Y estimator performing particularly poorly on this sequence.

RANDOM.ORG [15] is a service that provides random numbers based on
atmospheric noise. It allows the user to specify the minimum and maximum
values that are output. The sequence used here consisted of bytes.

The predictors did not achieve significant gains over uninformed guessing
when applied to this sequence, with the LZ78Y estimator performing partic-
ularly poorly on this sequence. One would expect that this is because of the
cryptographic processing; the entropy estimates should be close to eight bits of
entropy per sample. However, the 90B estimates are between 5.1830 and 5.6662.
Although we cannot prove it, we suspect that this discrepancy comes from the
inaccuracy of the estimators, rather than a weakness of the source.

Ubld.it The final two real-world sequences in this paper come from a TrueRNG
device by Ubld.it [18]. The Ubld.it1 sequence contained bits, and the Ubld.it8 is
the byte interpretation of the Ubld.it1 bit sequence. The outputs of this dataset
have been cryptographically processed and should resemble an ideal uniform
distribution.

The difference between the lowest 90B and predictor estimates for the Ubld.it1
sequence was only 0.0071, which is not a significant difference. The results for
Ubld.it8 are similar to those of the RANDOM.ORG and RDTSC8 datasets –
the predictors did not achieve significant gains over uninformed guessing, and
the LZ78Y estimator gave an impossibly high result.

Across Datasets It is also informative to look at results across the real-world
datasets, particularly when looking at bytes. For byte sequences, the 90B esti-
mates are between five and six bits of entropy per sample, with the collision and
compression estimators providing the lowest estimates. The LZ78Y predictor,
on the other hand, provided impossible results of over 11 bits of entropy per
sample. This indicates that the models constructed by the LZ78Y predictor are
not good fits for these bytes sequences.

4.4 General Discussion

It is interesting that in both the simulated and real-world datasets, the 90B
estimators seem prone to greater underestimation as the sequence sample size



Table 2: Entropy estimates for real world sources. The lowest entropy estimate for each
source is shown in bold font.

Estimator RDTSC1 RDTSC4 RDTSC8 RANDOM.ORG Ubld.it1 Ubld.it8

Collision 0.9125 3.8052 5.3240 5.1830 0.9447 5.2771

Compression 0.9178 3.6601 5.3134 5.1926 0.9285 5.5081

Frequency 0.9952 3.9577 5.8666 5.6662 0.8068 5.8660

Markov 0.9983 3.9582 5.7858 5.3829 0.8291 5.7229

Partial Collection 0.9258 3.7505 5.3574 5.5250 0.9407 5.8238

D1 0.9616 3.9986 7.9619 7.9126 0.8734 7.9489

Lag 0.7075 3.9883 7.9546 7.9237 0.7997 7.9862

LZ78Y 0.9079 3.9989 11.9615 11.5924 0.7997 11.8375

MultiMA 0.9079 3.6458 7.9594 7.8508 0.8073 7.9441

MultiMCW 0.9079 3.9888 7.9381 7.9744 0.8072 7.9544

MultiMMC 0.9079 3.6457 7.9663 7.9237 0.8072 7.9880

goes from bits to bytes. There are two limiting factors as sample sizes increase.
First, the near-uniform distribution only contains two probability levels (p and
q, where p > q), and any source distribution with more than two levels seems
to cause p to increase, and therefore, the entropy decreases. Second, the Markov
estimate “maps down” the sequence so that only six bits are used to construct
the first-order model. Therefore, estimates from the set of 90B estimators are
capped at six bits of entropy per sample.

5 Conclusions

In this work, we attempted to estimate the min-entropy of entropy sources using
predictive models, and show that even simplistic learners are capable of esti-
mating entropy. We have also compared results from our simplistic learners with
those of the entropy estimation suite provided in [3].

Barak and Halevi [2] criticize the approach of estimating the entropy from
the point of an attacker, by just testing the outputs. We agree that the entropy
estimation of a noise source should be done by analyzing the physical properties
of the source, constructing a model of its behavior, and using that to determine
how much unpredictability is expected from the source. However, there are still
a number of places where external tests of entropy estimates are very useful:

For the designer The best efforts of the designer to understand the behavior
of his noise source may not be fully successful. An independent test of the
unpredictability of the source can help the designer recognize these errors.

For an evaluator A testing lab or independent evaluator trying to decide how
much entropy per sample a source provides will have limited time and exper-
tise to understand and verify the designer’s analysis of his design. Entropy
tests are very useful as a way for the evaluator to double-check the claims of
the designer.



For the user A developer making use of one or more noise sources can sensi-
bly use an entropy estimation tool to verify any assumptions made by the
designer.

Predictors are well-suited to providing a sanity-check on the entropy estima-
tion done by the designer of a source based on some kind of deeper analysis,
because they give an upper-bound estimate, which is very unlikely to be much
below the correct entropy per sample. If the designer’s model indicates that
a source gives h bits of entropy per sample, and a predictor consistently esti-
mates that it has much less than h bits/sample, this is strong evidence that the
designer’s estimate is wrong.

Additionally, a designer who has a good model for his noise source can turn it
into a predictor, and get an entropy estimate based on that model in a straight-
forward way. He can then evaluate the entropy of his source based on the min-
imum of these simple, general-purpose predictors and his own more carefully
tailored one.

5.1 Future Work

This work shows the usefulness of a number of simple, generic predictors for
entropy estimation. In future work, we will adapt mainstream classification al-
gorithms and data stream mining algorithms to fit the predictor framework, and
examine their effectiveness as generic predictors.

Our hope is that this work inspires additional research in two different direc-
tions:

1. We hope that experts on the physical properties of specific noise sources will
use the predictor framework to design better predictors that capture the
behavior of those sources more precisely than our generic predictors.

2. We hope that experts from the machine learning community will bring more
sophisticated machine-learning tools to bear on the practical problem of the
entropy estimation of noise sources.
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A Additional Figures



Fig. 4: Comparison of lowest predictor entropy estimate, lowest 90B entropy estimate,
and the true entropy from 80 simulated sources with uniform distributions.

Fig. 5: Comparison of lowest predictor entropy estimate, lowest 90B entropy estimate,
and the true entropy from 80 simulated sources with Markov distributions.

Fig. 6: Comparison of lowest predictor entropy estimate, lowest 90B entropy estimate,
and the true entropy from 80 simulated sources with time-varying normal distributions.


