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Spline filters and their corresponding robust filters are commonly used filters recommended in ISO (the International Organization for 
Standardization) standards for surface evaluation. Generally, these linear and non-linear spline filters, composed of symmetric, 
positive-definite matrices, are solved in an iterative fashion based on a Cholesky decomposition. They have been demonstrated to be 
relatively efficient, but complicated and inconvenient to implement. A new spline-filter algorithm is proposed by means of the discrete 
cosine transform or the discrete Fourier transform. The algorithm is conceptually simple and very convenient to implement. 
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1.  Introduction 
 
      A typical engineering surface consists of a range of spatial frequencies. The high frequency or short 
wavelength components are referred to as roughness, the medium frequencies as waviness and low 
frequency components as form [1, 2]. Filtration is a critical process used to isolate form, waviness, and 
surface roughness from each other as well as from finer, higher frequency content such as instrument noise 
[3]. At present, the Gaussian filter, the spline filter and their corresponding robust filters are recommended 
as ISO standard profile filters [4-7]. Compared with the widely used Gaussian filter, the spline filters have 
advantages such as end preserving, efficient calculation and good form following. 
      Generally, the spline filter is implemented using an iterative procedure based on a Cholesky matrix 
decomposition [2, 8]. It is a widely used and relatively efficient method for solving the spline filter. In this 
paper, a new approach for computing the spline filter is proposed that relies on the discrete cosine 
transform (DCT) or the discrete Fourier transform (DFT) rather than matrix decomposition. This new 
algorithm is conceptually more simple, efficient, and, in practice, more convenient to implement. 
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2. The Spline Filters 
 
2.1  Linear Spline Filter 
 
      In ISO/TS 16610-22 [5], the standard spline filter is given as 
 

(𝑰 + 𝛽𝛼2𝑷 + (1 − 𝛽)𝑸)𝒘 = 𝒛      (1) 
 
where 𝑰 is the identity matrix, 𝒛 is the vector of sampled data values, 𝒘 is the vector of output data values, 
and 𝑷 and 𝑸 are the coefficient matrices. The spline filter of Eq. (1) is obtained as the solution matrix of 
the classic variational method in Eq. (2) [8-9]. 
 

min(‖𝒛 − 𝒘‖2 + 𝛽𝛼2‖𝐷1𝒛‖2 + (1 − 𝛽)‖𝐷2𝒛‖2)         (2) 
 
where ‖⋅‖ denotes the Euclidean norm (L2 norm), and 𝐷1and 𝐷2 stand for 1st and 2nd differential operators. 
Generally, Eq. (2) is described as a linear combination of a least squares approach and a penalty component 
consisting of two differential terms. More specifically, the least squares term aims to guarantee a close 
match between the result 𝒘 and the profile 𝒛 [10], and the penalty component helps to ensure appropriate 
smoothness of the filtered result. The scalars 𝛼 and 𝛽 are used to determine the balance between closeness 
to the original data and amount of smoothness, where 𝛼 = �2sin(π 𝜆𝑐⁄ )�−1 (𝜆𝑐is the cut-off wavelength) 
and 0 ≤ 𝛽 ≤ 1 [5]. Since all terms of Eq. (2) are differentiable, the matrix equation of Eq. (1) is obtained 
directly by simple mathematical derivation. Here it should be noted that the boundary conditions, which are 
dictated by 𝑃 and 𝑄, vary depending on the type of surface profile, which may be classified as periodic or 
non-periodic (see Eqs. (3) and (4)). 
 

      𝑷 =  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

⎝

⎜
⎛

1 −1
−1 2 −1

⋱ ⋱
−1

⋱
2
−1

−1
1 ⎠

⎟
⎞

   non-periodic

⎝

⎜
⎛

2 −1 −1
−1 2 −1

−1

⋱ ⋱
−1

⋱
2
−1

−1
2 ⎠

⎟
⎞

   periodic

   (3) 

 
 

𝑸 =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

⎝

⎜
⎜
⎜
⎛

1 −2 1
−2 5 −4 1
1 −4

⋱
6
⋱
1

−4
⋱
−4
1

1
⋱ ⋱
6 −4 1
−4 5 −2
1 −2 1 ⎠

⎟
⎟
⎟
⎞

non-periodic

⎝

⎜
⎜
⎜
⎛

6 −4 1 1 −4
−4 6 −4 1 1
1

1
−4

−4
⋱

1

6
⋱
1

−4
⋱
−4
1

1
⋱ ⋱
6 −4 1
−4 6 −4
1 −4 6 ⎠

⎟
⎟
⎟
⎞

periodic

   (4) 

 
 

http://dx.doi.org/10.6028/jres.120.010
http://dx.doi.org/10.6028/jres.120.010


 Volume 120 (2015) http://dx.doi.org/10.6028/jres.120.010 
 Journal of Research of the National Institute of Standards and Technology 
 
 
 

 131 http://dx.doi.org/10.6028/jres.120.010 

 

2.2  Robust Spline Filter 
 
      It is well known that the linear filter is vulnerable to outliers [11]. Although there is no agreement on a 
universal and formal definition of an outlier, it is usually regarded as the observations that lie abnormally 
far from others, such as scratches and deep valleys on a surface. The roughness profiles or surfaces will be 
distorted when the linear filtering algorithm is applied to this original sampling data containing outliers. 
The resulting filtered data will contain excessively swollen or sunk areas due to being “pulled down or up” 
in the vicinity of abnormal points. This phenomenon will certainly cause a serious error when performing 
the evaluation or analysis of a practical surface. 
      In order to solve this problem, the concept of the robustness of a filtering algorithm is introduced. In a 
robust filter, the effect of outliers on surrounding data is mitigated. Both L1-norm and L2-norm based robust 
spline filters have been demonstrated [7, 12]. A robust spline filter based on the L2-norm [12] is obtained 
by the direct expansion of Eq. (1), that is: 
 

(𝜹 + 𝛽𝛼2𝑷 + (1 − 𝛽)𝛼4𝑸)𝒘 = 𝜹z     (5) 
 
where 𝑷 and 𝑸 are the same coefficient matrices as in Eqs. (3) and (4). 𝜹 contains the additional weights 
corresponding to each data point of z. 𝜹 is updated with a specified weighting function by using current 
residuals from iteration to iteration, until the residuals remain unchanged [13]. Several weighting functions 
are available such as Huber, Hampel, and Andrews. Indeed, the most widely used weighting function in 
surface metrology is the Tukey function [6]. 
 
 
3.  Simplified Algorithm 
 
3.1  The Spline Filter for Non-Periodic Profiles 
 
      As previously mentioned, the standard spline filter is endowed with different solution matrices based on 
the periodicity of the profile and how this is handled at boundaries. Let us first focus on the matrix 𝑸 under 
the non-periodic condition, which is also called the natural boundary, that is, when the 2nd differential 
equation equals zero. If we instead redefine the boundary condition as the 1st differential equation equalling 
zero, the original matrix 𝑸 can be simplified and rewritten in the following form 
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      It can be easily verified that 𝑸 =  𝑫𝑻𝑫, 
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where 𝑫 is a tridiagonal matrix and 𝑫𝑻 represents the transpose of 𝑫. 
      Furthermore, an eigen decomposition of 𝑫 yields 𝑫 = 𝑼𝑼𝑼𝑇 [13]. 𝑼 is a diagonal matrix containing 
the eigenvalues of 𝑫 [14]: 
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𝑼 = diag(𝜆1, … , 𝜆𝑛) with 𝜆𝑖 = −2 + 2cos ((𝑖 − 1)π/𝑛) 
 
where 𝑛 is the number of sampled points. 
      Since 𝑼 is a unitary matrix, Eq. (1) can be written as 
 

           𝒘 =  (𝑰 − 𝛽𝛼2𝑫 + (1 − 𝛽)𝑫𝑇𝑫)−1𝒛 =  𝑼(𝑰 − 𝛽𝛼2𝑼 + (1 − 𝛽)𝑼2)−1𝑼𝑇𝒛   (8) 
 
According to Reference [15], 𝑼𝑇is a type-2 DCT matrix and 𝑼 is an inverse DCT matrix. Let us define 
𝜞 = diag(𝛤1 , … ,𝛤𝑛) with 𝛤𝑖 = [1 − 𝛽𝛼2𝜆𝑖 + (1 − 𝛽) 𝜆𝑖2]−1, Eq. (8) can be rewritten in the form 
 

      𝒘 = DCT−1�𝜞DCT(𝒛)�     (9) 
 
where DCT−1 represents the inverse discrete cosine transform. 
      In fact, DCT is a Fourier-related transform similar to DFT, a technique for mapping the “time domain” 
to the “frequency domain.” Both DCT and DFT express a signal in terms of a sum of sinusoids with 
different frequencies and amplitudes. The distinction between DFT and DCT is that, DFT uses both cosine 
and sine functions, while DCT uses only cosine functions [16]. Boundary conditions have a direct impact 
on the form of discrete transfer functions such that different combinations of the discrete boundary 
conditions give rise to eight different types of DCT. Of these eight DCT representations, the most 
commonly used transform is type-2 [16]. 
 
3.2  The Spline Filter for Periodic Profiles 
 
      For the case of a periodic profile, the boundary conditions will require that matrix 𝑸 refer to the classic 
assumption of circular data defined as 𝑧𝑖 = 𝑧𝑖+𝑛, that is 
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One can obtain the same description 𝑸 =  𝑫𝑻𝑫, where 𝑫 is also a circulant matrix, 
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For this case, a DCT is not able to fulfill the spline filter equation because the boundary definition for any 
type of DCT does not comply with a periodic boundary of 𝑧𝑖 = 𝑧𝑖+𝑛. However, it is interesting that this 
boundary condition is exactly the same as the boundary assumption of the DFT. According to signal 
processing theory, a discrete spectrum necessarily comes from a periodic signal in the time domain. Hence, 
it is rational to apply the fast Fourier transform (FFT) to the computation of the spline filter given a 
periodic boundary. As expected, following the related derivation shown in Section 3.1, we obtain 
 

   𝒘 = FFT−1�𝜞FFT(𝒛)�      (12) 
 
where FFT−1 stands for the inverse fast Fourier transform. 
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4.  Robust Simplified Algorithm 
 
      As previously mentioned, the sensitivity of the linear filter to outliers may result in the mean line 
deviating severely from the actual distribution. The occurrence of dropouts, e.g., resulting from an 
instrument’s inability to measure certain data features, is frequent in practice [13]. Fortunately, the 
weighting function is demonstrated to be an effective method for handling such dropouts. This function 
serves the purpose of giving outliers a low weight and dropouts a weight of zero, while allocating a 
relatively high weight to high-quality data. 
      For convenience, Eq. (5) can be rewritten as 
 

        (𝑰 + 𝛽𝛼2𝑷 + (1 − 𝛽)𝛼4𝑸)𝒘 = (𝑰 − 𝜹)𝒘 + 𝜹z .    (13) 
 
This implicit formula can be solved using an iterative procedure 
 

𝒘𝑘+1  = (𝑰 + 𝛽𝛼2𝑷 + (1 − 𝛽)𝛼4𝑸)−1(𝜹(z −𝒘𝑘) + 𝒘𝑘)    (14) 
 
where 𝒘𝑘+1 refers to 𝒘𝑘 at the kth iteration step. Furthermore, referring to Eqs. (9) and (12) for the 
appropriate boundary conditions, we can easily obtain the new equations 
 

   𝒘𝑘+1  = DCT−1(𝜞DCT(𝜹(z −𝒘𝑘) + 𝒘𝑘) ) for the non-periodic case,    (15) 
 
or 
 

     𝒘𝑘+1  = FFT−1(𝜞FFT(𝜹(z −𝒘𝑘) + 𝒘𝑘) ) for the periodic case.    (16) 
 
The robustness to outliers is realized by iterating the weighted function of Eq. (15) or (16) and updating the 
weights using robust estimators for the current residuals (z −𝒘𝑘). It should be noted that during one 
iteration, the DCT and FFT only require 𝑛log(𝑛) operations for a profile with n data points, whereas Eq. 
(1) requires a Cholesky factorization with a computational complexity of 𝑂(𝑛3) [13]. 
 
 
5.  Experiments and Comparison 
 
      Comparing filtering results for a standard surface is helpful for highlighting the advantages or 
shortcomings of particular filtering algorithms. The comparison to be presented here will use both 
simulated and practical profiles. 
      Figure 1 shows an experiment that assesses the linear filtering techniques. A simulated profile 
composed of 10 harmonic components with frequencies ranging from 0.1/𝜆𝑐 to 25/𝜆𝑐 is created, where the 
cut-off wavelength 𝜆𝑐 equals 1600 points. The DCT based linear spline filter and standard spline filter were 
applied to this simulated profile. The filtering results and differences between the filtered profiles are 
shown in Figs. 1 (a) and (b) respectively. Figure 1 (b) clearly shows that the mean lines obtained by 
applying these two filters are almost identical, except at the ends of the surface. The identical results over 
most of the surface demonstrate the validity and feasibility of the new filtering algorithm. Also, the 
distortion occurring on both ends demonstrates the effect of the 1st differential boundary condition. In Fig. 
1 (a) the actual maximum deviation at the edges is 0.0145 µm, and the largest error is less than 2.02 % 
relative to the peak-to-peak value of the simulated surface. In fact, for a general measurement, this small 
error does not significantly impact the assessment of the profile as a whole. 
      In Fig. 2, a simulated periodic profile is used to validate the spline filtering algorithm based on the FFT. 
Both Eq. (12) and the standard spline filter with periodic boundary conditions are implemented. As 
expected, their filtered profiles are identical, even at the boundaries. This perfect result further 
demonstrates the accuracy and effectiveness of the new algorithm. 
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Fig. 1. Simulated profile and mean lines: (a) DCT based linear spline filter and standard spline filter under cut-off wavelength 0.8 mm; 
(b) Difference of the mean line of the DCT based spline filter relative to the standard filter. 

 
Fig. 2. FFT based linear spline filter and standard spline filter for a periodic function using cut-off wavelength of 0.8 mm. The results 
from the FFT based algorithm and traditional matrix decomposition are indistinguishable. 
 
 
      Figure 3 shows a more complicated profile with a 5.6 mm length. It is found that there are many 
outliers such as scratches, deep valleys and sharp spikes distributed along this profile. The DCT based 
robust spline filter, the L2-norm based robust spline filter and the standard spline filter are applied to obtain 
the mean lines with a cut-off wavelength of 0.8 mm. It should be noted that the two robust filters can also 
easily handle missing data and dropouts if these points are assigned values that deviate far from the profile 
such that they appear as outliers. From the result in Fig. 3, it is evident that the robust algorithms are 
resistant to the outliers and able to acquire the satisfactory mean lines that follow the practical form very 
well. 
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Fig. 3. DCT based robust spline filter, L2-norm based robust spline filter and standard spline filter with a cut-off wavelength of 
0.8 mm applied to data with outliers. In the graph, the filtered curves for DCT based robust spline filter and L2-norm based robust 
spline filter are indistinguishable in most parts. 
 
 
      In order to further demonstrate the efficacy of the newly proposed filter, an example consisting of a 
profile that may be encountered in practice is shown in Fig. 4. This practical engineering profile is 14.3 mm 
in length with sampling interval 0.125 µm. In this figure, the mean lines determined by the DCT based 
robust spline algorithm, the L2-norm based robust spline filter, and the second-order Gaussian regression 
filter with a cut-off wavelength of 0.8 mm are presented concurrently. The robustness of the DCT based 
algorithm throughout the entire profile is verified again, but a larger difference between the robust spline 
filters and the Gaussian regression filter is exhibited in this example. These differences are caused by the 
dissimilar transmission characteristics of the filters and the second-order polynomial fitting principle in the 
Gaussian regression filter [17]. 

 
Fig. 4. DCT based robust spline filter, L2-norm based robust spline filter and Gaussian regression filter with a cut-off wavelength of 
0.8 mm applied to a practical profile. 
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      For this example, all of the filtering algorithms were implemented in Matlab and executed on an 
ordinary, commercially available desktop computer. For the test profile in Fig. 4, which contains 114,400 
data points, the second-order Gaussian regression filter requires multiple hours to attain the robustness 
requirement. In comparison, the L2-norm based robust spline filter requires 1160 ms to finish the task, and 
the newly developed DCT robust algorithm takes only 720 ms to filter this profile. While the speed 
enhancements of the proposed method are only marginal for the profiles investigated here, it is possible that 
more dramatic improvements can be realized for larger or higher dimension arrays. Nevertheless, the 
primary benefit of this method is the relative simplicity of computing Eq. (15) and (16) without the 
requirement of any matrix operation and manipulation. 
 
 
6.  Conclusion 
 
      In this paper, several new algorithms for the spline filters are proposed based on the DCT and FFT. 
Both the linear and robust spline filters for periodic and non-periodic profiles are considered. In the 
resulting algorithms, the DCT and FFT which are utilized in the filtering process require only 𝑂(𝑛log(𝑛)) 
computations, whereas the traditional algorithm based on Cholesky factorization requires 𝑂(𝑛3). In 
addition to the potential scaling benefits, the DCT and FFT produce a more straightforward and simple to 
implement algorithm than the standard spline filter based on matrix decomposition. Meanwhile, although 
an approximation for the non-periodic boundary condition is utilized, the error caused by the end effects 
does not affect the surface evaluation significantly. For periodic profiles, the new and faster FFT based 
algorithm showed no differences when compared to the traditional spline filter. 
      In brief, these new algorithms for generating spline filters, based on the discrete cosine and discrete 
Fourier transforms, provide measureable improvements in computational speed and demonstrate excellent 
robustness to outliers and dropouts that are expected in real world data. Comparison of this new approach 
with traditional methods directly demonstrates the utility of these new techniques. 
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