
Eurographics Workshop on 3D Object Retrieval (2015)
I. Pratikakis, M. Spagnuolo, T. Theoharis, L. Van Gool, and R. Veltkamp (Editors)

SHREC’15: Range Scans based 3D Shape Retrieval

A. Godil1†, H. Dutagaci2†, B. Bustos5, S. Choi3, S. Dong7, T. Furuya4, H. Li7, N. Link8, A. Moriyama4,
R. Meruane5, R. Ohbuchi4, D. Paulus8, T. Schreck6, V. Seib8, I. Sipiran6, H. Yin7, C. Zhang7

1National Institute of Standards and Technology, USA, 2Eskisehir Osmangazi University, Turkey
3Seoul National University, South Korea, 4University of Yamanashi, Japan

5Universidad de Chile, Chile, 6 University of Konstanz, Germany
7 Beijing Technology and Business University, China, 8 University of Koblenz-Landau, Germany

Abstract
The objective of the SHREC’15 Range Scans based 3D Shape Retrieval track is to evaluate algorithms that
match range scans of real objects to complete 3D mesh models in a target dataset. The task is to retrieve a
rank list of complete 3D models that are of the same category given the range scan of a query object. This
capability is essential to many computer vision systems that involves recognition and classification of objects in
the environment based on depth information. In this track, the target dataset consists of 1200 3D mesh models
and the query set has 180 range scans of 60 physical objects. Six research groups participated in the contest with
a total of 16 different runs. This paper presents the track datasets, participants’ methods and the results of the
contest.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Range data, H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—

1. Introduction

Shape retrieval and classification is a challenging and ac-
tive area of research [TV07]. The interest in partial shape re-
trieval and classification [LBZ∗13, SPS14], especially with
range scan images, has increased with the wide availabil-
ity of portable 3D depth sensors with increasing accu-
racy, speed, and lower cost (e.g. Microsoft Kinect). Use of
depth information has considerably increased the accuracy
of scene segmentation algorithms, leading to semantic inter-
pretation of the environment. Such semantic mapping of the
environment demands systems that are capable of categoriz-
ing generic objects from single depth views. Semantic scene
interpretation is a key capability of service robots that can
be used in domestic and industrial applications, elderly care,
security, and search and rescue operations.

Disclaimer: Any mention of commercial products or reference to
commercial organizations is for information only; it does not imply
recommendation or endorsement by NIST nor does it imply that the
products mentioned are necessarily the best available for the pur-
pose.
† Organizers

Shape matching of range scans to complete 3D models is
also essential for model retrieval from a database when the
available form of the query is a physical object. This scheme
has applications in multimedia querying, inventory creation,
advanced manufacturing, and reverse engineering.

The previous SHREC challenges in the range scan based
retrieval are SHREC’09 [DGA∗09], SHREC’10 [DGC∗10],
and the SHREC’13 [SMB∗14], the last one, which was
based on a large set of synthetic range scans. This year’s
contest is a continuation of the objective stated in [DGA∗09,
DGC∗10] with a larger set of query range scans and a larger
target dataset with more categories.

The task of categorization of a novel generic object
from appearance or shape is more challenging than instance
recognition since a model of the exact same object is not
available to the system [RCSM03]. The within class vari-
ations are not limited to changes in pose, acquisition noise,
and viewpoint. Each semantic category contains objects with
widely varying geometric and textural properties; i.e. there
is a semantic gap between shape-based features and the se-
mantic category of the objects. In our case, the task is even
more difficult, since only one view of the object will be
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used to match the query to a dataset of 3D triangular mesh
models. In addition, the range scans are noisy and incom-
plete [TV07], and the triangular mesh models are obtained
from the Web, hence many are not of high quality with un-
even resolution and inconsistent surface normals. These is-
sues of range scan matching to complete triangular meshes
poses a challenge to many of the existing shape retrieval al-
gorithms.

2. The Data Set

The dataset† used for the track consist of two parts: The tar-
get dataset and the range scan query dataset, which are de-
scribed in the following subsections.

2.1. Target Set

The target dataset used for this track is the dataset used in
SHREC’12 generic shape benchmark, which contains 1200
complete 3D models in 60 classes [LGA∗12]. The target
dataset is mainly based on SHREC’11 Generic benchmark
[DGD∗11], SHREC’10 Generic 3D Warehouse [VGD∗10]
and the Princeton Shape Benchmark [SMKF04a]. In the
dataset there are many intra-class variations. For a few
classes, articulation and deformation is also present. The
classes are defined with respect to their semantic categories
and are listed in Table 1. In each class there are 20 mod-
els. The file format to represent the 3D models is the ASCII
Object File Format (*.off).

Bird Fish NonFlyingInsect
FlyingInsect Biped Quadruped
ApartmentHouse Skyscraper SingleHouse
Bottle Cup Glasses
HandGun SubmachineGun MusicalInstrument
Mug FloorLamp DeskLamp
Sword Cellphone DeskPhone
Monitor Bed NonWheelChair
WheelChair Sofa RectangleTable
RoundTable Bookshelf HomePlant
Tree Biplane Helicopter
Monoplane Rocket Ship
Motorcycle Car MilitaryVehicle
Bicycle Bus ClassicPiano
Drum HumanHead ComputerKeyboard
TruckNonContainer PianoBoard Spoon
Truck Violin BookSet
Knife Train Plier
Chess City Computer
Door Face Hand

Table 1: 60 classes of the target database.

† http://www.itl.nist.gov/iad/vug/sharp/contest/2015/Range/

2.2. Query Set

The query set is composed of 180 range images, which are
acquired by capturing 3 range scans of 60 physical objects,
mainly toys and a few 3D printed items from arbitrary view-
points. The classes of all the query objects are represented in
the dataset.

The range images are captured using a Minolta Laser
Scanner (Figure 1). We removed the background noise man-
ually and used ASCII Object File Format (*.off) to repre-
sent the scans in triangular meshes. Figure 2 and Figure 3
show examples of query objects and their range scans, re-
spectively.

Figure 1: Setup for range scanning.

Figure 2: Examples from the set of the objects that were
scanned to obtain queries.

3. Evaluation Measures

The participants have submitted rank lists for the query in-
puts. The length of each rank list is equal to the size of
the target dataset. Using the rank lists the following evalu-
ation measures were calculated: 1) Nearest Neighbor (NN),
2) First Tier (FT), 3) Second Tier (ST), 4) F-measure (F),
5) Average Precision (AP) 6) Discounted Cumulative Gain
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Figure 3: Examples from the query set.

(DCG), and 7) the Precision-Recall Curves. The measures
are described in [SMKF04b].

4. Submissions

Six research groups participated in the SHREC’15 Shape
Retrieval Contest of Range Scans with 16 runs. The partici-
pants and their methods are listed as follows:

• Cross-Domain Manifold for Range Scan-based 3D Model
Retrieval by T. Furuya, A. Moriyama, and R. Ohbuchi
• 2D-DCT Coefficients of Silhouettes for Range Scan

Matching by H. Dutagaci
• Fast Point Feature Histograms, Bag of Feature and Modi-

fied Shape Distribution approach for Range Scan Match-
ing by C. Zhang, S. Dong, H. Yin and H.Li
• Partial Shape Retrieval with Fast Point Feature His-

tograms (FPFH) and Signature Quadratic Form Distance
(SQFD) by B. Bustos, R. Meruane, I. Sipiran and T.
Schreck
• Depth Image Similarity based Method for Range Scan

Matching by S. Choi
• Hough-Voting in a Continuous Voting Space for Range

Scan Matching by V. Seib, N. Link and D. Paulus

5. Description of Methods

5.1. Ranking on Cross-Domain Manifold for Range
Scan-based 3D Model Retrieval by T. Furuya, A.
Moriyama, and R. Ohbuchi

To compare a range scan and a complete 3D model, most of
existing methods compare the range scan with a set of multi-
view rendered images of the 3D model. However, there is a
gap between range scans and rendered images of 3D mod-
els. As range scans contain "high frequency noise" such as
jagged perimeter edges and cracks, these range scans are of-
ten dissimilar to rendered images of 3D models.

We employ a similarity metric learning algorithm called

Cross-Domain Manifold Ranking (CDMR) [FO14b] to par-
tially overcome the gap between range scans and 3D models.
While the CDMR can be performed in either unsupervised,
supervised, or semi-supervised mode, we use unsupervised
CDMR for this track.

5.1.1. Cross-Domain Manifold Ranking

The CDMR first creates a Cross-Domain Manifold (CDM)
graph by connecting range scans and 3D models, which are
represented as nodes, by using visual feature similarities
among them. The CDM graph is represented as a matrix W
having size (NR +NM)× (NR +NM), where NR and NM are
the number of range scans and 3D models in a database re-
spectively. For this track, NR = 180 and NM = 1,200. The el-
ement Wi j in W indicates similarity between the node (i.e.,
range scan or 3D model) i and the node j. Wi j is com-
puted as Wi j = exp(−di j/σ) where di j is a distance be-
tween two nodes, whose computation algorithms will be de-
scribed in Section 5.1.2. A parameter σ controls diffusion
of relevance across the CDM. We use different values σRM
and σMM to compute range scan-to-3D model similarities
and 3D model-to-3D model similarities, respectively. Note
that, for this track, we omit intra-domain connections among
range scans to reduce the number of parameters to be tuned.
That is, similarity Wi j between two range scans i and j is set
to 0. This form of CDM is similar to a manifold graph used
in the SCMR algorithm by Tatsuma et al. [ZWG∗04]. After
generating W representing the CDM, Manifold Ranking al-
gorithm [ZWG∗04] is applied on W to generate rankings of
the 3D models for the given queries.

5.1.2. Visual Distances for Cross-Domain Manifold

Range scan-to-3D model distance: We use an algorithm
called P-SV-DSIFT, which is based on P-BF-DSIFT algo-
rithm [OF09], to compute a distance between a range scan
and a 3D model. The range scan is first rendered from a
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single viewpoint into a depth image having 256× 256 pix-
els. To reduce high frequency noises, we blur the depth im-
age and then apply closing operation to the blurred image
with a circular structural elements of radius 3 pixels. On the
other hand, each retrieval target 3D model is rendered from
42 viewpoints spaced uniformly in solid angle to generate
42 depth images with 256× 256 pixels. We randomly and
densely extract a set of about 1,200 SIFT [Low04] distinc-
tive features from the image. To reduce influence of high fre-
quency noise, we employ Lower Frequency Emphasis (LFE)
[OF09], which is an importance sampling of larger scale fea-
tures. We set the parameter W for LFE to 1.0, which means
that the same number of SIFT features are sampled across
an image pyramid of SIFT algorithm. The set of 1,200 SIFT
features is aggregated into a feature vector per image, i.e.,
per view, by using Super Vector (SV) coding [ZYZH10].
We use soft-assignment variant of SV coding [FO14a]. We
learn a codebook with 2,500 codewords. The aggregated fea-
ture, i.e., P-SV-DSIFT, is power-normalized and then L2-
normalized as with [FO14a]. A distance di j between a range
scan i and a 3D model j is computed as a minimum dis-
tance among a P-SV-DSIFT vector of the range scan and the
set of 42 P-SV-DSIFT features of 42 rendered images of the
3D model. We use Cosine distance, which is computed as
−(c+1)/2 where c is Cosine similarity between two P-SV-
DSIFT features.

3D model-to-3D model distance: We use SV-DSIFT al-
gorithm [FO14a] to compute a distance between two 3D
models. The 3D model is rendered from 42 viewpoints to
generate 42 depth images having 256× 256 pixels. About
300 SIFT features are randomly and densely extracted from
the image. We use LFE with W = 1.0. The set of about
42×300= 12,600 SIFT features is aggregated into a feature
vector per 3D model by using the soft-assignment variant of
SV coding. SV-DSIFT feature is power-normalized and then
L2-normalized as with P-SV-DSIFT. A distance di j between
two 3D models i and j is computed as Cosine distance be-
tween two SV-DSIFT features for the two 3D models.

We submitted the following five runs for this track:
PSVDSIFT: A ranking of 3D models is generated without
using the CDMR. That is, the query and the 3D models are
compared by using P-SV-DSIFT.
CDMR: A ranking of 3D models is generated by relevance
diffusion on the CDM graph. Since ground truth was not
available for the dataset, we could not tune the parameters
for CDMR, i.e., σRM and σMM . We tried the following four
combinations of the parameters; (σRM ,σMM) = (0.01, 0.01),
(0.01, 0.05), (0.05, 0.01), (0.05, 0.05).

5.2. 2D-DCT Coefficients of Silhouettes for Range Scan
Matching by H. Dutagaci

Observing that the silhouette of an object gives sufficient in-
formation about its category most of the time, we adopted
a scheme where the silhouettes of both range queries and

the silhouettes of 3D models obtained from various view-
points are described by 2D-Discrete Cosine Transform (2D-
DCT) coefficients. We rendered the 3D complete mesh mod-
els from 66 view points distributed over the view sphere to
obtain 66 silhouette images of size 400×400. These silhou-
ettes are scale normalized so that the binary image covers
the entire silhouette with a predetermined margin of 4 pix-
els. Since 2D-DCT is dependent on the in-plane orientation
of the shape, we have pose-normalized the silhouette in the
image using second moments such that the principal orien-
tation of the silhouette aligns with the horizontal axis of the
image. We applied the same normalization scheme to the sil-
houettes of the range scans prior to extraction of 2D-DCT
coefficients. K×K low frequency 2D-DCT coefficients are
retained as descriptors for the pose-normalized silhouettes
of both range scans and 3D models. In this track we set K to
10, hence each silhouette is represented with a feature vec-
tor of size 100. For matching, the L2-norms of the distances
between the feature vector of the range scan and the feature
vectors of the 66 views of the 3D target model are computed.
The smallest distance is assigned to be the distance between
the range scan and the 3D target model.

5.3. Fast Point Feature Histograms, Bag of Feature and
Modified Shape Distribution Approach for Range
Scan Matching by C. Zhang, S. Dong, H. Yin and
H.Li

In this approach, every model in the target dataset is con-
verted to a point cloud so as to extract consistent descrip-
tors with the input. First, we calculate the Fast Point Feature
Histograms (FPFH) [RBB09] features of each point in the
corresponding point cloud of a model, which is either from
query or target dataset. And then the global FPFH descriptor
(BoF-FPFH) of each point cloud is computed by using Bag
of Feature (BoF) approach [OF08]. Modified Shape Distri-
bution (MSD) [LLL∗15] algorithm is adopted to obtain the
distance information between each pair of points, which we
sample from the surface of the 3D model randomly. At last,
we adopt the IF-IDF model to implement shape matching.

5.3.1. Preprocessing

FPFH descriptor is intrinsically invariant to scale, orienta-
tion, and position. However, scale and position normaliza-
tion is implemented so that the same parameters of the FPFH
descriptor can be set for different 3D models. Then, we ran-
domly sample 1,024 sample points for each model.

5.3.2. BoF-FPFH Descriptor Extraction

The BoF-FPFH feature extraction can be divided into two
stages: FPFH feature extraction and encoding the BoF-FPFH
descriptor by BoF approach:

FPFH feature extraction: FPFH is a robust multi-
dimensional feature which is initially employed in the 3D
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registration and describes the local geometry around a point
p for 3D point cloud. More specifically, a point p’s FPFH
is based on the relationships between the points in the k-
nearest-neighborhood and their estimated surface normals.
Simply put, it attempts to capture as best as possible the sam-
pled surface variations by taking into account all the interac-
tions between the directions of the estimated normals. In our
experiments, we calculate FPFH features of all random sam-
ple points. As an alternative to calculating FPFP features of
all sample points, Harris keypoints of the 3D model are ex-
tracted from the 1,024 sample points to enhance the compu-
tation time. The mean numbers of extracted Harris keypoints
are approximately 331 and 90 for the target dataset and query
dataset, respectively.

Encoding the BoF-FPFH descriptor: To calculate BoF-
FPFH, we generate a codebook of visual words in advance.
The visual word is thus defined as the center of a cluster ob-
tained by applying K-means clustering to the FPFH features
of the models in the target dataset. Note that the 3D models’
point set is either represented by the random sample point set
or the Harris keypoint set. K-means clustering is performed
with K = 512. Then, the frequency histogram based on the
visual words of the FPFH features is counted as the global
feature vector (BoF-FPFH) of the 3D target model. Simi-
larly, the frequency histogram of the visual words is obtained
for a query model as its BoF-FPFH feature vector.

5.3.3. IF-IDF Model

We use the IF-IDF model (term frequency-inverse docu-
ment frequency) [WMB99] to define importance of a visual
word and use the following IF-IDF function to compute term
weights:

h j =

(
h j/∑

i
hi

)
log
(
N/ f j

)
(1)

where N denotes the total number of FPFH feature in this
collection and f j the frequency of visual word j in the whole
collection. As a result, we can evaluate the similarity dis-
tance by the formula:

D(i, j)T F−IDF = log1/2
(〈

h,h
〉
/‖h‖

∥∥h
∥∥) . (2)

At last, the similarity distances of BoF-FPFH and MSD
are normalized and then summed with equal weight (BoF-
FPFH-MSD) to implement feature fusion. We have submited
two results based on the random sample point sets and Harris
keypoint sets.

5.4. Partial Shape Retrieval with Fast Point Feature
Histograms (FPFH) and Signature Quadratic Form
Distance (SQFD) by B. Bustos, R. Meruane, I.
Sipiran and T. Schreck

This method involves the application of a flexible distance
used to compare two shapes which are represented by fea-
ture sets. The signature quadratic form distance [BUS10]

is a context-free distance that has proven to be effective in
the image retrieval domain. In addition, in this algorithm,
we build a feature set composed of normalized local de-
scriptors. The idea is to compute an intermediate represen-
tation for each shape using a set of local descriptors which
are calculated around a set of representative surface points.
This algorithm is a modified version of the method evaluated
in [BBB∗12].

All objects were scaled to fit in a 1× 1× 1 box and then
they were preprocessed in order to have uniform point den-
sity. We used two methods to select the sample points: In
the first method we select interest points using Harris 3D
[SB11]. We select 1 % of the number of vertices of a shape
(with the highest Harris response) as keypoints. We called
this method fpfh1. In the second method we do a dense in-
terest point selection based on uniform sampling. We called
this second method fpfh2. For each interest point we com-
pute a local FPFH descriptor [RBB09].

The set of local descriptors of a shape forms the fea-
ture space of that shape. Next, a local clustering algorithm
[LL04] is applied to obtain a set of representative descrip-
tors. In brief, the clustering uses two thresholds to define the
inter-cluster and intra-cluster properties of the space, so it
does not depend on the number of clusters. Hence, the clus-
tering only depends on the distribution of the descriptors in
the feature space. Given a partitioning after the clustering,
the intermediate representation SP of an object P is defined
as a set of tuples as follows:

SP = (cP
i ,w

P
i ), i = 1, ...,n (3)

where cP
i is the average local descriptor in the i-th cluster and

wP
i is the fraction of elements belonging to the i-th cluster.

The representation of an object depends on the local cluster-
ing and two objects do not necessarily have the same num-
ber of clusters. We test this same approach using Spin Im-
ages [JH99] descriptor.

5.5. Depth Image Similarity based Method by S. Choi

This entry to the range scans track of SHREC’15 investigates
the use similarities between depth images of a 3D model
taken from various possible view points and the range scans.
We exhaustively rotated each 3D target model with 30 de-
gree intervals for x-axis and z-axis, so there are 12 x 12 =
144 total viewpoints. Then for each viewpoint, a depth im-
age of size d×d is acquired. Similarily, for each 2.5D range
query model we extracted 144 depth images. Then, one rep-
resentative depth image with the widest surface is chosen for
the query model. Finally, we calculated the distance score
between all 144 depth images from a 3D model in the target
set and 1 depth image from 2.5D range query model. Depth
image distance is calculated as following steps:

1. Depth normalization: Pixel values in the depth images are
normalized to be in the range of [0,1]. If a pixel is outside
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the object shape boundary, a null value is assigned to that
pixel.

2. Given two depth images A and B, the sum of pixelwise
distanes is calculated:

Distance(A,B) =
d×d

∑
p=1

D(A(p),B(p)) (4)

3. D(a,b) function is a L1 distance measure based heuristic
function. It is defined as follows:

• When a == null and b! = null, D(a,b) = 1
• When a! = null and b == null, D(a,b) = 1
• When a == null and b == null, D(a,b) = 0
• When a! = null and b! = null, D(a,b) =−1+ |a−b|

Per each 3D model in the target dataset, 144 depth image dis-
tances are calculated. 3D models in the target set are ranked
by their respective least depth image distance. We submitted
two runs: In SNU_1, d is set to 50. In SNU_2, d is set to
100.

5.6. Hough-Voting in a Continuous Voting Space by V.
Seib, N. Link and D. Paulus

Our shape retrieval approach for the track is related to the
Implicit Shape Model formulation by Leibe et al. [LLS04].
Recently, adaptations of this method to 3D data were pro-
posed [KPW∗10, STDS11, WZS13]. In contrast to the origi-
nal formulation, the adaptations to 3D data all use a discrete
Hough-space for voting. We use a continuous voting space
and omit the vector quantization of features in order not to
lose the feature’s descriptiveness. To be able to generalize
from learned shapes, we match each extracted feature with
the k best matches in the learned dictionary.

5.6.1. Shape Retrieval Approach

In training, key points are extracted from full 3D models us-
ing a uniform voxel grid and a SHOT descriptor [TSDS10]
is computed for each key point. For each feature, a vector
pointing from the feature to the object’s centroid is obtained,
in the following referred to as center vector. To classify ob-
jects, features are detected on the input data in the same man-
ner as in the training stage. Matching detected features with
the previously trained data pool yields a list of feature corre-
spondences. The distance between learned feature descrip-
tor fl and detected feature descriptor fd is determined by the
distance function d( fl , fd) = ‖ fl − fd‖2. Since we can not
expect to encounter the same objects during classification
as were used in training, each detected feature is associated
with the k best matching features from the learned data pool.

The center vectors of the created correspondences are
used to create hypotheses on object center locations in a con-
tinuous voting space. A separate voting space for each class
is used. Each vote in the voting space is weighted by its like-

lihood

ω =
1√

2πσ2
exp

(
−d( fl , fd)

2

2σ2

)
. (5)

The value σ
2 is class specific and is determined during train-

ing by the sample covariance.

Each voting space can be seen as a sparse representation
of a probability density function. Maxima in the probabil-
ity density function are detected using the Mean-shift algo-
rithm. We use a modified Mean-shift vector as proposed by
Cheng [Che95] to account for weighted votes. In a final step
we merge found maxima positions from all voting spaces of
individual classes. In case multiple maxima are found at the
same position, i.e. if they are closer than half of the kernel
bandwidth, only the maximum with the highest probability
is retained.

5.6.2. Evaluation

We created point clouds from the provided normalized
dataset and sampled the point clouds with a grid size of
1.0 cm. The models were trained from SHOT features cal-
culated with a radius of 1 m.

The presented algorithm returns a list of results ranked
by the common weight of the contributing votes. Since this
challenge requires of report distances, we apply this simple
transformation from weights to distances for each object i:
dist = ωmax−ωi (where ωmax is the weight of most likely
object hypothesis).

Results were obtained with the following parameters:

• continuous-hough_bw-3.0m_ls-0.25_k3: bandwidth for
Mean-shift = 3.0 m, leaf-size for key point sampling =
0.25 (relative to the leaves size during training) and
matching k = 3 nearest features.

• continuous-hough_bw-0.5m_ls-0.25_k5: bandwidth for
Mean-shift = 0.5 m, leaf-size for key point sampling =
0.25 (relative to the leaves size during training) and
matching k = 5 nearest features.

6. Results

The six participants of the SHREC’15 Shape Retrieval Con-
test of Partial Models submitted 16 sets of rank lists each.
The results for the 16 submissions are given in Figure 4 as
scalar performance measures. The precision-recall curves of
the best runs of the participants are presented in Figure 5.

The best performance is achieved by Furuya et al.’s
CDMR method, where SIFT descriptors are extracted from
rendered views of 3D models. The 2D-DCT method of Duta-
gaci, which is again a view-based method, comes second in
terms of retrieval performance. This method yielded moder-
ate results as compared to Furuya et al.’s methods, however,
the retrieval success is much higher than the other four sets
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of runs. Choi’s view-based method comes third, although
with much lower performance figures. Zhang et al.’s, Bus-
tos et al.’s, and Seib et al.’s algorithms are all based on point
sampling from model surfaces. Their results are similar to
each other, however much lower than those of the view-
based methods.

We can conclude that view-based methods are more suit-
able to describe the models in the target dataset as compared
to descriptors that rely on surface properties of the 3D mod-
els. The 3D triangular meshes in the target dataset are ob-
tained from the Web, hence are not of high quality, with un-
even resolution, internal triangles, incomplete parts, and in-
consistent surface normals; therefore a reliable surface rep-
resentation of the model cannot be obtained through point
sampling of the polygons. In contrast, rendering depth im-
ages of the 3D models from various view-points allows a
more coherent representation among the 3D target models
and the range-scans.
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Figure 5: Precision-recall curves.

7. Conclusions

In this paper, we have described and compared six algo-
rithms and their variants of six research groups that partic-
ipated in the SHREC’15 - Range Scans based 3D Shape
Retrieval. The algorithms accept a range scan as the in-
put and retrieve similar models from a database of com-
plete 3D models. The methods based on view-based meth-
ods yielded better overall performance as compared to the
methods based on surface point descriptors.
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