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NOMENCLATURE 
Variables 

a   Speed of sound 

A Cross-sectional area of CFV 
   Beta Ratio = Dd  

*C   Critical flow function 

flowd,C   CFV flow discharge coefficient 

reald,C  
CFV real gas discharge coefficient = 

breal mM   

Pc  Specific heat at constant pressure per 
mass 

d  Diameter of the CFV throat  

D  Diameter in the upstream approach 

h   Specific enthalpy per mass 

th  Total enthalpy per mass = 2/2uh   
M  Molar mass 

m  
Actual CFV mass flow = 

breald,flowd, mCC   

bm  Baseline mass flow derived for ideal 
flow and ITM thermodynamic model 

realM  Inviscid mass flow for a real gas 

Ma  One dimensional Mach number = au  

n  Isentropic exponent 

P  Pressure 

bP  Back pressure 

Pr   Prandtl number 

fR   Recovery factor 

univR   Universal gas constant 

r  

Dimensionless grouping of 
thermodynamic variables assumed 
constant in deriving stagnation 
temperature using the polytropic model 

s  Specific entropy per mass 

Tm1 Temperature measured by the probe in 
the approach piping  

u  Axial velocity in approach pipe or CFV 

1u  Velocity in the approach pipe upstream 
of CFV inlet 

Z  Compressibility factor 
 Ratio of specific heats 

  
Exponent in analytic expression of 
stagnation temperature for polytropic 
model 

 Density 
  

  

  

Subscripts

0 Stagnation condition 

1 Static condition in approach piping 
upstream of CFV inlet 

i Ideal gas 

ITM Ideal thermodynamic model 

JM Johnson method for real gas 
tip Polytropic model 

RGM Real gas model 

x Axial distance upstream from the CFV 
throat 

 
 
 

Superscripts 

* Conditions at CFV throat for Ma = 1 
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ABSTRACT 
For almost 50 years, flow measurement applications using critical flow venturis (CFVs) have relied exclusively on 

the critical flow function ( *C ) to correct for real gas effects.  This work shows that *C  does not account for all 

real gas effects.  For high beta ratio (  > 0.25) CFV installations, real gas effects can result in significant mass 

flow errors even after *C  corrections have been made.  These errors are attributed to the idealized 

thermodynamic models (ITMs) used to calculate the stagnation temperature and pressure.  The errors in the 

stagnation temperature and pressure cause errors in *C , and ultimately in the CFV mass flow.  For methane gas 

the mass flow errors exceeded 0.1 % for   = 0.5 at 10 MPa, and are larger than 0.3 % for   = 0.6 at 20 MPa.  

For CFVs these errors are comparable with the uncertainty of the flow measurement.  This manuscript presents 
a model that compensates for all real gas effects for   up to 0.6.  Comparisons of the real gas model (RGM) and 

the idealized thermodynamic models (ITMs) are shown for methane up to 20 MPa.  We incorporated this new 
model into the REFPROP thermodynamic program so that real gas corrections can be applied to any user defined 
gas.  We expect that this new model will enable high beta ratio CFV installations to be used reliably at lower 
uncertainty in circumstances where a low beta ratio is not practical or is undesirable for temperature measurement 
uncertainty reasons. 

1. INTRODUCTION 
For more than 50 years critical flow venturis (CFVs) have been used to measure gas mass flow.  In 
the early 1960’s researchers realized that accurate mass flow measurements required real gas 

corrections.  Johnson introduced the real gas critical flow factor ( *CJM )1 to correct the CFV mass flow 

model for real gas effects [12- 34].  This thermodynamic property has been considered to be the only 

correction factor needed to account for real gas effects in CFV flows.  Herein we show that *CJM  alone 

does not compensate for all real gas effects.  The stagnation pressure ( 0P ) and temperature ( 0T ) 

also require real gas corrections in high beta ratio CFV installations whenever real gas effects are 
significant. 

 

Figure 1. Typical CFV installation where d  and D  are the respective diameters at the CFV throat section 

and at the pipe section upstream of the CFV inlet.  The ratio of these diameters is the beta ratio 

D/dβ  , and m1T  and 1P  are the measured temperature and pressure in the approach piping. 

Figure 1 shows a CFV with a throat diameter of d  installed in a pipeline of diameter D .  When 

the ratio of the downstream static pressure to upstream stagnation pressure ( 0b PP ) is less than 

the critical back pressure ratio, the gas in the upstream piping accelerates though the convergent 
section of the CFV and reaches sonic velocities at the throat section (i.e., minimum cross sectional 
area).  Pressure waves downstream of the CFV throat section cannot propagate upstream of the 

sonic throat.  Hence, for operating conditions where 0b PP  is maintained below the critical ratio, 

                                                            
1  The subscript “JM” indicates Johnson’s Method. 
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the mass flow is independent of bP .  For a given gas composition the mass flow depends on the 

measured temperature ( m1T  )  and pressure ( 1P  ) in the approach piping upstream of the CFV 

throat (see Fig. 1) .  These measurements of m1T  and 1P  are converted into the stagnation 

temperature ( 0T ) and pressure ( 0P ) with the use of a thermodynamic equation of state and the 

beta ratio ( Dd / ).  Low uncertainty 0T  and 0P  are important since the CFV mass flow directly 

depends on these parameters. 

 
Figure 2. Real gas errors in ITM0 ,P  and ITM0 ,T  plotted verses β .  Plots are for methane gas at 295 K 

for 5 pressures ranging from 0.1 MPa to 20 MPa. 

The stagnation temperature and pressure account for the bulk kinetic energy of the flowing gas 
and therefore differ from the measured temperature and pressure.  In CFV applications the 
stagnation conditions have historically been calculated for a specified gas composition based on 

m1T , 1P , and   with either of two idealized thermodynamic models (ITMs): 1) the ideal gas model, 
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or 2) the polytropic gas model.  When   > 0.25 and real gas effects are significant, errors in 0T  

and 0P  based on the ITMs can become significant relative to the CFV measurement uncertainty.  

In these cases, real gas corrections must be applied to 0T  and 0P  for accurate flow 

measurements. 

The four plots in Fig. 2 show the percent error in ITM,0P  and ITM,0T  versus β .  Here, ITM,0P  and 

ITM,0T  are the stagnation pressure and temperature calculated using the ITMs, and RGM,0P  and 

RGM,0T  are the stagnation pressure and temperature calculated using the Real Gas Model (RGM) 

introduced in this manuscript.  The Real Gas Model is developed in Section 4 and analytic 
expressions for ITM,0P  and ITM,0T  are given in the Appendix.  Errors associated with the ideal gas 

stagnation pressure and temperature are shown in Figs. 2A and 2C, and the corresponding errors 
for the polytropic gas model are in Figs. 2B and 2D.  The results in Fig. 2 are computed for 
methane gas at 295 K for five pressure isobars ranging from 0.1 MPa to 20 MPa.  These plots 

show that errors in ITM,0P  and ITM,0T  are negligible when   ≤ 0.25, but can become significant 

for   > 0.25.  The errors at large   is why documentary standards require   ≤ 0.25 [5, 6].  As 

expected, the maximum error along each isobar occurs at the maximum beta ratio of   = 0.6. 

Errors in ITM,0P  nearly reach 0.4 % for both the ideal gas and polytropic model.  However, the 

maximum error for the polytropic model increases monotonically and reaches its maximum value 
at 20 MPa while the error for the ideal gas model reaches a maximum value at 12 MPa and 
decrease at increasing pressures up to 20 MPa.  The errors for ITM,0T  are as large as 0.16 % for 

the ideal gas model, but only 0.015 % for the polytropic model.  

This manuscript introduces a new model that compensates for real gas effects in high beta ratio 

(  > 0.25) CFV installations.  Traditional real gas corrections based on *CJM  are accurate at low 

pressures and for low beta ratio CFV installations (  ≤ 0.25), but introduce errors of nearly 0.4 % 

at high pressures for   > 0.25.  Herein, we derive the Real Gas Model from the conservation 

laws, and provide numerical solutions of the real gas correction factor.  In this work the Real Gas 
Model is applied to methane gas since CFVs are increasingly used in high pressure natural gas 
applications [78-910].  All thermodynamic properties are computed using the REFPROP 
program [11].2  Moreover, the Real Gas Model has been incorporated into the REFPROP program 
so that CFV end-users can apply the model to user defined gas compositions (wet air, natural 
gas, etc.) for selected beta ratios and stagnation conditions. 

2. MOTIVATION AND APPLICATIONS OF HIGH BETA RATIO CFV INSTALLATIONS 
For many years international and domestic standards documents [5, 6] have recommended using 

CFV installations with β  ≤ 0.25.  When β  values are small, the velocity in the approach piping 

is low.  For example, for methane gas at 295 K, a beta ratio of β  = 0.1 has an approximate 

velocity of 2.6 m/s.  Two advantages of low velocities include 1) a straightforward calculation of 

                                                            
2 REFPROP is a NIST-maintained database that calculates thermodynamic and transport properties of natural gas mixtures and 

other fluids such as water, air, refrigerants, numerous pure gases, etc. 



9th ISFFM    Arlington, Virginia, April 14 to 17, 2015 

5 

the stagnation temperature, and 2) CFV flow measurements that are nearly immune to velocity 
profile installation effects.  For low velocities, the ITMs accurately predict the stagnation 
temperature even if real gas effects are significant (see Fig. 2).  The acceleration of the low 
velocity gas to sonic conditions at the CFV throat significantly reduces installation effects due to 
non-ideal velocity profiles. 

On the other hand, it is difficult to measure m1T  accurately in slowly moving gases.  Nevertheless, 

the average temperature just upstream of the CFV entrance must be accurately measured for low 
uncertainty flow measurements.  For small flows a heat exchanger is often a practical remedy to 
ensure a low uncertainty temperature measurement; however, for large flows a properly sized 
heat exchanger is often too expensive.  Moreover, when CFVs are used to measure large flows 
there are often additional factors that make an already challenging temperature measurement 
even more difficult.  A few examples include 1) blow-down calibrations where a high pressure 
tank is discharged upstream of a CFV, 2) CFVs installed in large diameter upstream piping where 
the flowing gas temperature differs from the surrounding environment, 3) CFVs used as working 
standards to calibrate other CFVs, and 4) calibration of explosive gases (e.g., natural gas) where 
safety regulations require that temperature probes be installed in thermowells.  The first 3 
scenarios can result in a temperature field that varies spatially and temporally.  Both phenomena 
can introduce additional uncertainty in the temperature measurement [12, 13].  Likewise, 
thermowells can also increase the uncertainty of the temperature measurement due to contact 
resistance and thermal inertia.  In these CFV applications a higher velocity in the approach piping 
would increase convective heat transfer and likely reduce temperature measurement uncertainty.  
The larger velocity realized by a high beta ratio CFV installation could offset the advantages of a 
low velocity flow (i.e., low beta ratio) in these scenarios.  The Real Gas Model introduced herein 
accounts for the real gas corrections that are necessary for high beta ratio CFV installations. 

3. REVIEW OF THE CFV MASS FLOW MODEL 

3.1. Baseline CFV Model 
The CFV mass flow model is based on compressible gas dynamic theory assuming 1) that the 
flow processes are ideal3 and 2) that the gas thermodynamic behavior can be modeled by the 
ITMs [14, 15].  Under these assumptions the baseline mass flow is  

 
ITM

ITMITM

,0univ

,0
*

b

*

TR

APC
=m

M
  (1) 

where 42d*A   is the throat area, M  is the molar mass, univR  = 8314.471 J/(kmol·K) is the 

universal gas constant [16], and *C ITM is the critical flow function determined with the ITMs.4  The 

baseline CFV model generally gives results within 5 % (or better) of the actual mass flow. 
However, if the model is corrected for non-ideal flow phenomena and real gas effects, then low 
uncertainty mass flow measurements can be realized. 

                                                            
3 Here ideal flow indicates that the flow is one-dimensional (i.e., flat sonic line at throat section) and inviscid. 

4  Analytical expressions of *CITM  for the ideal gas model and the polytropic model are given in the Appendix. 
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3.2. Review of Flow and Real Gas Correction Factors 
Composite Linear CFV theory [17] shows that non-ideal flow corrections are independent from 
real gas effects, and vice versa.  That is, the coupling between real gas effects and non-ideal flow 
physics (i.e., the boundary layer along the CFV wall and multidimensional effects in the core flow) 
result in second order corrections to the mass flow that are generally negligible relative to other 
uncertainty sources.  As a result the baseline model can be corrected using two independent 
correction factors, one that corrects for non-ideal flow phenomena and the other that corrects for 
real gas effects.  For the CFV installation shown in Fig. 1, the corrected mass flow model is  

 brealdflowd mCC=m ,,
  (2) 

where flowd,C  is the flow discharge coefficient, and reald,C  is the real gas discharge coefficient.  The 

flow discharge coefficient corrects for non-ideal flow phenomena.  It accounts for Reynolds number 
effects associated with the boundary layer along the CFV wall [18] and the curvature of the sonic line 
at the throat [19].  The real gas discharge coefficient accounts for real gas behavior and is defined by  

 
b

real
real,d m

M
C




 


 (3) 

where realM   is the inviscid real gas mass flux, and *Amm bb
   is the baseline mass flux.  In 

contrast to flowd,C , which is generally determined experimentally via flow calibration, reald,C  is 

theoretically determined. 

3.3. Real Gas Corrections based on Johnson’s Method [4] 
In the 1970’s Johnson used the best available thermodynamic equation of state and numerically 

solved for JMreal,M   [1].  He calculated the stagnation entropy and stagnation enthalpy based on 

gas composition, and the stagnation pressure and temperature in the CFV approach piping.  His 
numerical algorithm calculated the temperature and pressure along an isentrope until 1) the value 
of the local stagnation enthalpy equaled the upstream value, and 2) the Mach number was unity.  
At the condition of unity Mach number, the product of the density and speed of sound equals the 
real gas mass flux.  

Johnson’s real gas model is still the state of the art for correcting real gas behavior in CFV flows.  
Over the years the numerical algorithm has been improved and the thermodynamic equations of 
state have become more accurate, but the framework developed by Johnson has remained 
essentially unchanged.  The required inputs for Johnson’s model are the gas composition and the 
stagnation pressure and temperature in the approach piping.  His model assumes that all real gas 

effects can be lumped into the real gas critical flow function ( *CJM ).  As such, the stagnation 

pressure ( ITM,0P ) and temperature ( ITM,0T ) are based on the ITMs, and these idealized values 

are used to determine the entropy and stagnation enthalpy in the Johnson model.  

When Johnson’s numerical solution is depicted in a form analogous to Eqn. (1) the resulting 
expression for the real gas mass flow is 

 
ITM

ITMJM

,0univ

,0
*

JMreal,JMreal,

*
*

TR

APC
AMM

M
   (4) 
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where the real gas critical flow function ( *CJM ) is defined by [1] 

 
M0

0univ

P

TR*a*ρ
*C  . (5) 

Here *  and *a  are the respective density and speed of sound at the condition of unity Mach 

number.  By combining Eqns. (3) and (4), the contemporary real gas discharge coefficient is  

 
b

JMreal,
JMreal,,d m

M
C




 


*

*

ITM

JM

C

C
 . (6) 

the critical flow function developed by Johnson divided by either of the critical flow functions based 
on the ITMs.  The current CFV mass flow model is derived by combining Eqn. (6) with Eqns. (1) 
and (2) giving  

 
ITM

ITMJM

,0univ

,0
*

flow,d
bJMreal,,dflow,dJM

*

TR

APCC
mCC=m

M
 . (7) 

where all real gas effects are lumped into *CJM . 

3.4. Real Gas Model (RGM) for High Beta Ratio CFV Applications  
Equation (6) is presently the state of the art for correcting real gas effects in CFV flows.  As such, 
thermodynamic software programs have been developed to compute the critical flow function 

( 

*CJM  ) for a specified gas composition and input stagnation conditions ITM,0P  and ITM,0T .  The use 

of ITM,0P  and ITM,0T  is justified at low pressures and in low beta ratio applications (   ≤ 0.25) as 

evidenced by the good agreement between the RGM and the ITMs shown in Fig. 2.  However, 

the differences between the RGM and ITMs for   > 0.25 indicate a need for additional real gas 

corrections for high beta ratio CFV installations.  The RGM developed herein is intended to correct 
for these cases. 

The mass flow computed using the Real Gas Model follows the form used for the baseline mass 
flow model in Eqn. (1) and the contemporary model established by Johnson in Eqn. (4).  It is 
expressed by 

 
RGM,0univ

,0
* *RGMRGM

RGM
TR

APC
m

M
  (8) 

where RGM,0P , RGM,0T , and *C RGM are the stagnation pressure, temperature, and real gas critical 

flow function calculated by the RGM.  We point out that *C RGM will in general differ from *CJM  even 

though they are both based on the same definition for the real gas critical function given in 

Eqn. (5).  Their values differ because each is evaluated at different stagnation conditions; *CJM  is 

evaluated at ITM,0P  and ITM,0T  while *C RGM is evaluated at RGM,0P  and RGM,0T .  Figure 2 shows 

that the stagnation conditions based on the ITMs do not in general agree with the RGM for 

  > 0.25. The difference between *CJM  and *C RGM is shown in Section 5. 
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In the following sections we present the theoretical basis of the RGM, and derive six coupled, 
algebraic expressions that comprise the model.  These equations must be solved with a low 
uncertainty thermodynamic equation of state to determine the real gas correction factor.  In 
general, low uncertainty thermodynamic equations of state are too complex to obtain analytical 
solutions, and a numerical approach is necessary.  We outline the numerical method used herein 
and compare solutions of the RGM with the contemporary model in current use.  

4. FORMULATION OF THE REAL GAS MODEL (RGM) 
The gas dynamic equations for mass, momentum, and energy conservation are the underlying 
equations for the RGM.  Since real gas effects are unaffected by non-ideal flow physics (i.e., the 
multi-dimensional core flow and viscous boundary layer adjacent to the wall), the conservation 
equations are solved for an ideal flow (i.e., one-dimensional and inviscid).  For an ideal flow the 
conservation equations are [20] 

 xxxreal Au=M   (9a) 

 xt,0 h=h  (9b) 

 x0 s=s   (9c) 

where the subscript “x” indicates any axial location between the approach pipe and CFV throat.  

Conservation of mass is given by Eqn. (9a), which indicates that the density ( x ), velocity ( xu ), 

and cross sectional area ( xA ) vary in the x direction so that the real gas mass flow ( realM ) is 

constant.  Equation (9b) is energy conservation, and Eqn. (9c) is a linear combination of 
momentum and energy.  The latter two equations indicate that the flow process is both 
isoenergetic and isentropic.  The isoenergetic and isentropic conditions stipulate that the total 

enthalpy ( 22
xxxt, uhh   ) and the entropy ( xs ) for any x location are constant, and equal their 

respective values evaluated at the stagnation conditions.  

4.1. Six Coupled Algebraic Equations Comprising the Real Gas Model (RGM) 
The conservation laws specified in Eqns. (9a) through (9c) are used to develop five of the 
equations used in the RGM.  The sixth equation is an empirical relationship relating the 

temperature measured in the approach piping ( m1T ) to the static temperature ( 1T ). 

Empirical Relationship between the Measured and Static Temperature 

The required inputs for the RGM include the measurements of temperature ( m1T ) and static 

pressure ( 1P ) made in the approach pipe shown in Fig. 1, the beta ratio ( β ), and the recovery 

factor ( fR  ).  The recovery factor is a dimensionless ratio of temperature differences given by 

 
10

1m1
f TT

TT
=R




 (10a) 

where the numerator is the difference between the measured and static temperature, and the 
denominator is the difference between the freestream stagnation temperature and the static 
temperature.  As illustrated in Fig. 1 the temperature probe protrudes into the flow stream so that 
the gas comes to rest against the surface of the probe.  As the gas decelerates in the boundary 
layer adjacent to the probe surface, frictional heating causes the static temperature ( 1T ) to 
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increase.  At the probe surface where the velocity is zero, the gas temperature increases to m1T .  

If frictional heating is balanced by conductive losses (i.e., unity Prandtl number, Pr  = 1) then the 
process can be considered to be adiabatic and the measured wall temperature equals the 
freestream stagnation temperature, m1T  = 0T  [21].  If on the other hand, all of the generated heat 

is lost to conduction (i.e., Prandtl number approaching zero, Pr   0) then m1T  = 1T .  In this way 
the recovery factor is a function of the Prandtl number ( Pr ). 

Theoretical work has shown that for laminar flow over a flat plate the recovery factor can be 

approximated by Pr  while for turbulent flow it is 3 Pr  .  Since most low-density gases have 
70.Pr   the recovery factor typically ranges from fR  = 0.84 to 0.9 for flow over a flat plate [22]. 

For a temperature sensor the recovery factor is affected by Pr  as well as the probe design, 
shape, and orientation to the flow.  Moffat found that the recovery factor for thermocouple 
junctions of round wire oriented parallel to the flow were fR  = 0.86 ± 0.09, but decreased to 

fR  = 0.68 ± 0.07 when oriented perpendicular to the flow [23]. In this work we take fR  = 0.75. 

Application of Conservation Laws in Deriving the Real Gas Model 
The isoenergetic and isentropic conditions specified by Eqns. (9b) and (9c) are applied at the 
CFV throat, and the resulting expressions are 

 22
0 *a*h=h   (10b) 

 *s=s0  (10c) 

where *h  and *s  are the respective static enthalpy and entropy at the CFV throat.  These 
equations show that the thermodynamic state at the CFV throat is uniquely defined by the 
upstream stagnation properties.  Thus, if we knew the upstream stagnation conditions we could 

determine *  and *a , and subsequently the thermodynamic property *C  defined in Eqn. (4).  

The isoenergetic and isentropic conditions are applied a second time to relate the stagnation 
conditions to those in the approach pipe. The resulting expressions are 

 22
110 uh=h   (10d) 

 10 s=s  (10e) 

where 1h  and 1s  are the respective static enthalpy and entropy in the approach pipe.  The velocity 

( 1u ) in Eqn. (10d) is strongly coupled to the beta ratio through the conservation of mass in 

Eqn (9a), which when applied between the approach pipe and CFV throat gives  

 2
11 **  au   (10f) 

where the ratio of the CFV throat area ( 42d*A  ) to the approach pipe area ( 42
1 DA  ) is 

  squared.  

4.2. Numerical Solution of the Real Gas Model (RGM) 
All thermodynamic properties in Eqns. (10a) through (10f) are evaluated using the REFPROP 
program [10].  The equations are solved numerically following the 6 step iterative routine shown 
in Fig. 3.  The iterative procedure begins in Step 1 by estimating the stagnation pressure and 
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temperature by ITM0,P  and ITM0,T .  In Step 2 we solve Eqns. (10b) and (10c) for the throat 

temperature ( *T ) and pressure ( *P  ) based on the stagnation pressure and temperature from 
step 1.  These two equations are solved numerically using the Secant Method [24]. In Step 2 we 

also solve Eqn. (10a) for the static temperature in the approach pipe ( 1T  ).  Next, in Step 3 we 

solve Eqn. (10f) for the velocity in the approach pipe ( 1u ) using the computed values of *T , *P

, and 1T  .  The Secant Method is used a second time in Step 4 to calculate updated values of 

stagnation pressure ( 0P ) and temperature ( 0T ) by solving Eqns. (10d) and (10e).  Step 5 

compares the updated values of 0P  and 0T  with the values used in Step 1.  If the absolute 

difference of the stagnation pressure (or stagnation temperature) changes by more 0.000001 % 
between Steps 1 and 4, then another iteration is performed using the updated stagnation values 

as inputs in Step 1.  On the other hand, if the updated values of 0P  and 0T  do not change by 

more than 0.000001 %, we first verify that Eqns. (10b) and (10c) are satisfied before exiting the 

iterative loop and calculating the real gas mass flow ( realM  ), the real gas critical flow function (

*C RGM), and the stagnation pressure ( RGM,0P ) and temperature ( RGM,0T ) in Step 6. 
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Figure 3. Schematic depicting the iterative scheme used to solve the Real Gas Model. (Thermodynamic 

properties evaluated using the REFPROP program.) 

5. RESULTS 
The Real Gas Model (RGM) described in this manuscript is used to assess the error levels of the 
contemporary model used in the CFV mass flow model.  The current model to correct for real gas 
effects is based on the work of Johnson [1], who lumped all real gas corrections into the real gas 

critical flow function ( *
JMC ).  This thermodynamic parameter is determined as a function of the 

stagnation pressure ( ITM,0P ) and temperature ( ITM,0T ) based on the ITMs.  These parameters are 

used to determine the real gas mass flow ( JMreal,M ) given in Eqn. (4).  The errors in the stagnation 

pressure ( ITM,0P ) and temperature ( ITM,0T ) are shown in Fig. 1.  In this section we first assess the 

error of *
JMC  followed by the error in JMreal,M  .  Results are shown for CFV installations with β  

values ranging from 0.01 to 0.6.  The working fluid is methane gas at 295 K and pressures ranging 
from 0.1 MPa to 20 MPa. 
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Figure 4. Errors in *
JMC  for methane gas at 295 K plotted versus  : A) *

JMC  is determined using stagnation 

pressure and temperature based on the ideal gas model, and B) *
JMC  is calculated using 

stagnation pressure and temperature based on the polytropic gas model.  

Figure 4 plots the error in the real gas critical flow function ( *JMC ) versus  .  Here *
JMC  is 

calculated with the REFPROP program with input stagnation pressure and temperature from the 
ITMs.  In particular, the stagnation conditions were determined based on the ideal gas model in 
Fig. 4A, and on the polytropic gas model in Fig. 4B.5 As expected, the figures show no significant 
error for β  ≤ 0.25.  However, Fig. 4A shows increasing errors above 10 MPa for β  > 0.25. 

Absolute maximum errors are 0.15 % at 20 MPa and β  = 0.6. In contrast, in Fig. 4B the maximum 

error in *JMC  is less than than 0.04 %. 

Figure 5 plots the error in the real gas mass flux ( JMreal,M  ) versus  .  As indicated in Fig. 5A the 

ideal gas stagnation pressure and temperature are used to determine *JMC , and subsequently 

JMreal,M  .  Similarly, values of JMreal,M   in Fig. 5B are determined using stagnation pressure and 

temperature based on the polytropic model.  Both Figs. 5A and 5B show negligible error for 

β  ≤ 0.25, thereby demonstrating that the existing real gas model is accurate for low beta ratio 

CFV installations.  However, for β  > 0.25 Fig. 5B shows that the error increases with increasing 

pressures, reaching a maximum error of nearly 0.4 % at 20 MPa and β  = 0.6.  In contrast, the 

errors in Fig. 5A reach a maximum value of 0.3 % at 10 MPa.  At higher pressures the absolute 
error decreases, and ultimately obtains a value of 0.2 % at 20 MPa. 

                                                            
5  Analytic expressions for the ITMs are given in the Appendix. 
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Figure 5. Error in JMreal,m   computed using ITMs plotted versus  . (Plots are for methane at 295 K for the 

5 pressures ranging from 0.1 MPa to 20 MPa.) 

6. CONCLUSIONS 

A new real gas model is presented that corrects for real gas effects in high beta ratio (β  > 2.5) CFV 

installations.  The model is derived using the gas dynamics conservation laws, and is solved 
numerically for CFV installations with beta ratios ranging from 0.1 to 0.6.  All thermodynamic 
properties are determined using the REFPROP program, and solutions of the Real Gas model are 
given for methane gas at 295 K and pressures up to 20 MPa.  The high beta ratio real gas model is 
used to assess error levels in the contemporary low beta ratio real gas model based on the work of 

Johnson [1].  As expected, for low beta ratio CFV installations ( β  ≤ 2.5) both models agree to better 

than 0.01 %; however, the agreement is not as good at high beta ratios and high pressures.  Error 

levels exceed 0.1 % for β  = 0.5 and a pressure of 10 MPa, and are greater than 0.3 % at β  = 0.6 

and a pressure of 20 MPa. 
 

The Real Gas Model introduced herein is programed into the REFPROP software so that end-
users can compute high beta real gas corrections for selected gas compositions, beta ratios, and 
stagnation conditions.  

APPENDIX 

Analytical Expressions used in CFV Calculations based 
on the Idealized Thermodynamic Models (ITMs) 

The two idealized thermodynamic models (ITMs) currently used in CFV applications include the 

following: 1) the ideal gas model for which the gas density is TRPρ univM  and the specific 

heat ratio (   ) is taken to be constant, and 2) the polytropic model for which the density varies 

with pressure according to ttanconsP n  and the isentropic exponent ( n ) is taken to be 
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constant.6  Researchers have used the ITMs to develop analytical expressions for ITM0,P , ITM0,T  , 

and *CITM  [14, 15, 20].  The analytical expressions of ITM0,P  and ITM0,T  are used both in the 

baseline mass flow model in Eqn. (1) as well as the inputs to Johnson’s method for calculating 

the real gas critical flow function ( 

*CJM ) [1 - 4].  In contrast, values of *CITM  do not generally provide 

sufficient accuracy for low uncertainty flow measurements and should only be used if real gas 

effects are insignificant [25].  Nevertheless, for completeness the expression for *CITM  are included 

in this Appendix. 

Analytic Expressions based on the Polytropic Gas Model 
Cornelius [15] solved Eqns. (10d) and (10e) using the polytropic gas model and developed 
analytic expressions for the stagnation pressure, stagnation temperature, and the critical flow 
function.  The expressions for these parameters are  
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where the subscript “p” indicates the polytropic gas model, and )( m11 T,Pnn   is the isentropic 

exponent evaluated using the measured pressure and temperature, and )( p0p00 ,, T,PZZ   is the 

compressibility factor evaluated at the stagnation condition pressure and temperature. The 
exponent on the stagnation temperature is 
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where the parameter r  is defined by 
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where Z  is the compressibility factor,  
PT T   is the partial derivative of density with 

respect to temperature at a fixed pressure, and Pc  is the specific heat capacity at constant 

pressure.  Cornelius assumed that the grouping of thermodynamic variables defined by r  was 
constant in his analytic expression of the stagnation temperature [15].  This parameter is 

evaluated at the measured temperature and pressure, )( m11 T,Prr  .  

                                                            

6  The isentropic exponent is defined by 
sρ

P
P

ρ
n


  where ρ  is the density and the derivative term is the speed of 

sound squared, s
2 ][ ρPa  . 
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The expression for the stagnation temperature given in Eqn. (11b) is not practical for CFV 

calculations since 1T  is unknown.  The equation is combined with Eqn. (10a) so that the stagnation 

temperature is given in terms of the measured temperature,  
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However, instead of using the exact expression given by Eqn. (11f), for convenience, the CFV 
flow measurement community uses a low Mach number approximation of the stagnation 
temperature given by 
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which is accurate to Mach number to the fourth power. A low Mach number approximation is also 

used to relate the Mach number to  , 
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The exact Mach number relationship [14, 20] is generally inconvenient to use as the Mach number 

cannot be analytically solved explicitly as a function of  .  The approximation in Eqn. (11h) gives 

Mach number to accuracies better than 0.02 % for   ≤ 0.6 [7]. 

Analytic Expressions based on the Ideal Gas Model  
All of the analytic expressions based on the ideal gas model are derived in the literature [14, 20]. 
These expressions can also be derived using expressions from the polytropic model.  In particular, 
if we assume that the gas behavior is ideal (i.e., a unity compressibility factor), then n .  In 

this way the polytropic equations simplify to the ideal gas equations by taking 1Z  and  n .7  

These equations are given here for completeness.  The stagnation pressure, temperature, and 
critical flow function are given by  
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where the subscript “i” indicates the ideal gas model, )( m11 T,P   is the specific heat ratio 

evaluated using the measured pressure and temperature, and i1Ma  is the Mach number in the 

                                                            
7  For the ideal gas model the variable r  in Eqn. (11e) becomes the specific heat ratio, r . As a result the exponent defined in 

Eqn. (11d) equals unity, 1 . 
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approach pipe.  The exact expression for the stagnation temperature expressed as a function of 
the measured temperature is  
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and the low Mach number approximation used in the CFV flow measurement community is 
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which is accurate to Mach number to the fourth power. 

The Mach number is a function of the beta ratio and the specific heat ratio and is given by 
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The exact Mach number relationship [14, 20] is generally inconvenient to use as the Mach number 

cannot be analytically solved as a function of  .  The approximation in Eqn (12d) gives Mach 

number to accuracies better than 0.02 % for   ≤ 0.6 [7]. 
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