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a b s t r a c t

We present an efficient implementation of the Bethe–Salpeter equation (BSE) method for obtaining
core-level spectra including X-ray absorption (XAS), X-ray emission (XES), and both resonant and non-
resonant inelastic X-ray scattering spectra (N/RIXS). Calculations are based on density functional theory
(DFT) electronic structures generated either by abinit or Quantumespresso, both plane-wave basis,
pseudopotential codes. This electronic structure is improved through the inclusion of a GW self energy.
The projector augmented wave technique is used to evaluate transition matrix elements between core-
level and band states. Final two-particle scattering states are obtained with the NIST core-level BSE solver
(NBSE). We have previously reported this implementation, which we refer to as ocean (Obtaining Core
Excitations from Ab initio electronic structure and NBSE) (Vinson et al., 2011). Here, we present additional
efficiencies that enable us to evaluate spectra for systems ten times larger than previously possible;
containing up to a few thousand electrons. These improvements include the implementation of optimal
basis functions that reduce the cost of the initial DFT calculations, more complete parallelization of the
screening calculation and of the action of the BSE Hamiltonian, and variousmemory reductions. Scaling is
demonstrated on supercells of SrTiO3 and example spectra for the organic light emittingmolecule Tris-(8-
hydroxyquinoline)aluminum (Alq3) are presented. The ability to perform large-scale spectral calculations
is particularly advantageous for investigating dilute or non-periodic systems such as doped materials,
amorphous systems, or complex nano-structures.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Core-level spectroscopies provide a quantitative element- and
orbital-specific probe of the local chemical environment and the
atomic and electronic structure of materials. For example, X-ray
absorption (XAS) and emission (XES) spectra probe the unoccu-
pied and occupied densities of states, respectively. The near-edge
absorption region (XANES) is sensitive to oxidation state, spin
configuration, crystal field, and chemical bonding, whereas the
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extended region can be used to reconstruct the local coordination
shells. However, extracting this information requires a reliable in-
terpretation of the measured spectra. Often this is done by com-
parison with reference spectra, but such comparisons are at best
qualitative; it is preferable to calculate spectra quantitatively and
predictively.

An accurate description of core-level excitations must take
into account both the highly localized nature of the core hole
and the extended condensed system. The problem of predictive
computational X-ray spectroscopy has been approached from
many directions, but most can be divided by scale into two major
categories. Atomic and cluster models have sought to include a
more exact treatment of many-body effects by considering a small
subsystem coupled loosely or parametrically to the larger system.
At the other end, various single-particle theories are able to treat
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many hundreds of atoms by approximating the electron–electron
and electron–hole interactions. The utility of calculated spectra
hinges upon compromises between the ability to accurately model
a given system and the ability to address systems large enough
to be representative of experiment: defects, dopants, interfaces,
etc.

Within a first-principles approach, it is easiest to use the
independent-particle approximation. For X-ray absorption, the
extended region of materials is very well reproduced by the real-
space Green’s function code feff, which is widely used over ex-
tensive energy ranges [1]. However, the current implementation
loses accuracy at the edge when non-spherical corrections to the
potential are important. To reproduce the near-edge structure, ac-
curate independent quasi-particle models for deep-core XAS can
be constructed for s-levels [2]. In this case, the X-ray absorption
intensity is proportional to the unoccupied projected density of
states in the presence of a screened core-hole, weighted by final-
state transitionmatrix elements. This approach has been usedwith
different treatments of the core-hole including the ‘‘Slater transi-
tion state’’ model of a half-occupied core state [3] or the final state
picture of a full core hole with [4] or without [5] the correspond-
ing excited electron. Due to the simplicity of their implementa-
tion andmodest computational cost, such core-hole schemes have
been implemented in several standard DFT distributions [6–12] for
near-edge spectra. However, these approaches often fail when the
hole has non-zero orbital angular momentum. Extensions to DFT
such as time-dependent DFT (TDDFT) have been problematic due
to the lack of sufficiently accurate exchange–correlation function-
als for core-excited states. Although recent development of more
accurate short-range exchange–corrected functionals [13,14] has
improved the viability of TDDFT for calculating core-level spectra
more advances will be needed to make TDDFT a generally applica-
ble approach.

For calculating X-ray spectra, the aforementioned approaches
are all limited when many-body or multi-electron excitations are
important. Many-electron wavefunction-based methods consti-
tute one obvious approach to this problem. Contrary to single-
particle descriptions that typically begin from the perspective
of the extended system, atomic and cluster models start with
the goal of completely describing the local problem. In partic-
ular, atomic multiplet theory [15] or configuration interaction
[16,17] and exact diagonalization methods [18] can accurately re-
produce complicated L edges of transition metal systems. How-
ever, these techniques that take a local description typically ignore
solid-state effects and are limited to small clustermodels, although
recent progress at incorporating band structure within the multi-
plet model should be noted [19–21].

Further improvements in DFT-based approaches to calculating
spectra require a two-particle picture including particle–hole in-
teractions, particle and hole self-energies, and full-potential elec-
tronic structure, within the context of many-body perturbation
theory. Specifically, this involves solving the Bethe–Salpeter equa-
tion (BSE), i.e., a particle–holeGreen’s function. The Bethe–Salpeter
equation description of absorption includes single-particle terms
that describe the quasi-particle energies of the core hole and
the excited photoelectron, together with the interaction be-
tween them. To leading order, the interaction consists of two
terms: the Coulomb interaction, which includes adiabatic screen-
ing of the core hole, and an unscreened exchange term. Even
this two-particle description of the many-body final state is al-
ready a significant improvement for L edges [22]. For example,
when considering the L2,3 edges of the transition metals, the
independent-particle approximation predicts a 2:1 branching ra-
tio between the intensities of the L3 and L2 edges, which is in
contrast to experiments which exhibit branching ratios ranging
from 0.7:1 for Ti to beyond 2:1 for Co and Ni [23–29]. The BSE

largely resolves this discrepancy, yielding branching ratios in rea-
sonable agreement with experiment [30]. However, simpler ap-
proaches such as TDDFT can also account for these corrections
[31–33].

BSE solvers have been implemented in a few core-level codes
to date [34–36] – as well as some valence level codes [37–40] –
but their utility has been limited to a specialist community. In part,
this is due to significantly increased computational cost. feff and
DFT-based core-hole approaches require little more effort than
standardDFT calculations [41], and calculations on systems of hun-
dreds of atoms have become routine. BSE calculations are consid-
erably more intensive and have heretofore typically been limited
to a few tens of atoms. This added cost is largely associatedwith in-
cluding GW self-energy corrections to the electronic structure, ob-
taining the screening response to the core hole, and actingwith the
Bethe–Salpeter Hamiltonian on the electron–hole wavefunction to
obtain the excitation spectrum. However, given the significantly
improved accuracy of the BSE method it is desirable to make this a
more widely used technique. This necessitates improving its ease
of use and reducing the computational cost. Toward this second
objective we report herein several efficiency improvements to our
existing BSE code [42] that now allow BSE calculations on systems
of hundreds of atoms and significantly reduce the time required for
previously viable smaller systems.

The most time-consuming steps of a BSE calculation are:
(1) obtaining the ground-state electronic structure, (2) correct-
ing the quasiparticle energies by adding a (GW ) self-energy,
(3) evaluating the screening response to the core-hole, and
(4) determining the excitation spectrum of the BSE Hamilto-
nian. Our BSE calculations build on self-consistent field (SCF) DFT
calculations of the ground-state charge density and the accom-
panying Kohn–Sham potential. We then use non-self-consistent
field (NSCF) calculations, i.e., direct calculations that solve the
one-electron Schrödinger equation in the already computed
Kohn–Sham potential, to obtain all desired occupied and unoc-
cupied Bloch states. To alleviate the burden of k-space sampling
during the NSCF calculation, and to reduce the plane-wave ba-
sis, we implement a k-space interpolation scheme that solves a
k-dependent Hamiltonian over a reduced set of optimal basis func-
tions [43,44]. This is described in Section 3.1. In most cases, rather
than evaluating the GW self-energy in the typical random-phase
approximation (G0W RPA), we instead use a much more computa-
tionally efficient approximation based on a multi-pole model for
the loss function. This has been previously described in detail [45],
andwewill not discuss it further here. To reduce the time required
to calculate the screening response to the core-hole we take ad-
vantage of the fact that this screening is highly localized around
the excited atomandpartition space accordingly. The electronic re-
sponse is evaluated locally and a model dielectric response proves
adequate for the rest of space [46]. Herewe reduce the time needed
to evaluate the screening response and action of the BSE Hamilto-
nian by parallelizing these portions of the code. This is discussed in
Section 3.2 for the BSE Hamiltonian and Section 3.3 for the screen-
ing. In Section 4 we demonstrate the effectiveness of these im-
provements through XAS calculations on a series of supercells of
SrTiO3. Section 4.1 characterizes the time-scaling of the code with
respect to system size. Section 4.2 evaluates the savings realized by
employing the optimal basis functions. The efficacy of paralleliza-
tion is reported in Section 4.3 for the action of the BSE Hamilto-
nian and in Section 4.4 for the screening response. Example XAS
andXES spectra of the commonly studied organicmolecule Tris-(8-
hydroxyquinoline)aluminum (Alq3) are presented in Section 4.5.
We endwith a summary of the capabilities of ocean and some gen-
eral comments on its applicability.
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2. Formalism

The theoretical description of the absorption of a photon by a
material may be expressed in terms of the loss function σ(q, ω) =

−Im ϵ−1(q, ω). The dielectric response function ϵ depends on the
photon energy ω and the momentum transfer q. A formal many-
body expression for the loss function may be given as

σ(q, ω) ∝ −
1
π
Im⟨0|Ô+G(ω)Ô|0⟩, (1)

where |0⟩ is the many-body ground-state wavefunction, the
operator Ô describes the interaction between the photon field and
the system, and G(ω) is the Green’s function for the many-body
excited-state. The form used for the operator Ô depends on the
physical process being studied, e.g., eiq·r for non-resonant inelastic
X-ray scattering (NRIXS) or the expansion (ê · r) + (i/2)(ê · r)(q ·

r)+· · · for X-ray absorption (XAS); ê being the photon polarization
vector. Using the Bethe–SalpeterHamiltonian, theGreen’s function
for the excitation can be approximated in a two-particle form as

G(ω) = [ω − HBSE]
−1 (2)

where the Bethe–Salpeter Hamiltonian is typically given by

HBSE = He − Hh − VD + VX. (3)

The term for the core-hole

Hh = ϵc + χ − iΓ (4)

contains the average core-level energy ϵc, the spin–orbit interac-
tion χ , and the core-hole life-time Γ . In most practical work, the
excited electron Hamiltonian

He = HKS +ΣGW
− Vxc (5)

is approximated by the Kohn–Sham Hamiltonian HKS with a
GW self-energy correction ΣGW where the exchange–correlation
energy, Vxc , is subtracted off to prevent double-counting. The
excited electron and hole interact via the Coulomb interaction
within themean-field of the remaining electrons. This is separated
into the attractive direct term

VD = âc(r′, σ ′)â+

v (r, σ )W (r, r
′, ω)âv(r, σ )â+

c (r
′, σ ′), (6)

which is screened by the other electrons in the system, and the
repulsive exchange term

VX = âc(r, σ )â+

v (r, σ )
1

|r − r′|
âv(r′, σ ′)â+

c (r
′, σ ′), (7)

which is treated as a bare interaction. The â+
v (âv) operator creates

(annihilates) an electron in the valence level while â+
c (âc) creates

(annihilates) an electron in a core level.
Our implementation of the GW -BSE method is referred to

as ocean (Obtaining Core Excitations from Ab initio electronic
structure and NBSE) and we have previously presented it in de-
tail [42]; NBSE refers to the NIST BSE solver. Because solving the
Bethe–Salpeter equation at the level of approximation described
above is computationally intensive compared to other methods of
calculating X-ray spectra our approach makes several reasonable
approximations to improve the efficiency of the calculation. Specif-
ically, within a plane-wave approach to solving the Kohn–Sham
equations, we use pseudopotentials to reduce the number of elec-
trons and size of the plane-wave basis. The GW self-energy is
obtained through the highly efficient many-pole self-energy ap-
proximation when appropriate [45]. The effort required to obtain
the screening for the direct interaction is also reduced by utiliz-
ing a hybrid real-space approach in which the screening response
is evaluated at the RPA level locally about the absorbing site, but

the long range screening is approximated with a model dielectric
function [46].

Despite these efficacious strategies, the largest system treated
with our previous implementation of ocean was a water cell
consisting of 17molecules [47]. To extend the capabilities of ocean
to treat larger systems we have made several improvements. A
calculation with ocean consists of four stages:
1. DFT 2. Translator 3. Screening 4. BSE
where stage 2 is a translation layer that allows different DFT
packages to be used as the foundation for ocean.

The limiting points of the calculation previously were stages
1 and 3, solving the Kohn–Sham equations and evaluating the
screening response to the core-hole. Stage 4, the actual evaluation
of the Bethe–Salpeter Hamiltonian, was also a limiting point for
systems that required sampling numerous atomic sites. Therefore,
our efforts focused on (i) improving the efficiency of the DFT
calculation and (ii) parallelizing the evaluation of the screening
response and the Bethe–Salpeter Hamiltonian.

3. Implementation

3.1. Optimal basis functions

Our previous version of ocean used abinit [6–9] as the DFT
solver. ocean may now be alternatively based on wavefunctions
obtained with Quantumespresso [10]. For the purpose of this
paper, we report results based on the use of Quantumespresso
rather than abinit, though either DFT solver may be chosen
depending on the preference of the user.

The loss function in Eq. (1) is calculated by transforming the
implied integral over all space into sums over reciprocal-space
k-points within the Brillouin zone and real-space x-points within
the unit cell, as is standard in calculations of periodic systems. The
sum over k-points requires a denser mesh for converging spectra
than properties such as the density. Additionally, the BSE approach
necessitates summing over a large number of unoccupied states
which are also not needed when looking at ground-state proper-
ties. Thus, a considerable number of Kohn–Sham states must be
constructed.

We reduce the computational cost of generating the Bloch
functions through the use of optimal basis functions (OBF) [43].
We have inserted the OBF routines of Prendergast and Louie as a
middle-layer in the ocean code [44]. The OBFs are a method of
k-space interpolation and basis reduction. A fully self-consistent
DFT calculation is carried out to converge the density, using only
enoughbands to cover the occupied states.With this density a non-
SCF calculation is performed, including unoccupied bands for the
screening andBSE calculations (the density is held constant and the
Kohn–Sham eigensystem is solved for all the bands needed for the
BSE). This second calculation is used as a basis to create the OBFs.
By using the OBFs we achieve a significant reduction in the time
spent calculating the Bloch functions for a given system. Further
details and quantitative results are presented in Section 4.2.

3.2. BSE Hamiltonian

In ocean the BSE Hamiltonian acts on a space containing a
core-level hole with index α and a conduction band electron with
indices n, k. A vector in this space is described by the coefficients
ψα,n,k, and the photoelectron wavefunction for a given core index
α is easily expanded in real space from the conduction-band Bloch
functions

|Φα(x,R)⟩ =


n,k
ψα,n,k eik·(R+x)

|un,k(x)⟩. (8)
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Within OCEAN we are interested primarily in the resulting
X-ray spectrum, rather than obtaining the actual eigenvalues
and eigenvectors of the Bethe–Salpeter Hamiltonian, and so the
iterative Haydock technique is used [48,49]. The advantage of an
iterative technique is that the complete Hamiltonian does not
need to be explicitly constructed or stored. Rather, at each step
in the Haydock scheme the BSE Hamiltonian acts on the vector
determined by the previous iteration,

ψ0
= Ô|0⟩; b(0) = 0;

a(i) = ⟨ψ i
|HBSE|ψ

i
⟩ (9)

b(i + 1)ψ i+1
= HBSEψ

i
− a(i)ψ i

− b(i)ψ i−1

where i gives the ith vector, and the procedure is initialized by
choosing a starting vector by acting with the electron–photon
operator on the many-body ground state. Convergence of the
spectrum can be achieved in only a few hundred iterations (true
diagonalization requires a number of steps equal to the dimension
of thematrix). Amore explicit explanation is given by Benedict and
Shirley in Ref. [49]. We separate the BSE Hamiltonian into pieces,
each of which is evaluated in its ideal or most compact basis. This
is outlined in the following two sections. The full vector HBSEψ is
then the sum of contributions from each piece.

3.2.1. Long-range
Only the direct interaction has a long-range component as the

exchange term requires both r and r′ be at the core-hole site.
The screened-Coulomb interaction can be expanded in spherical
harmonics and separated by angular momentum l,

W (r, r′) =


dr′′

ϵ−1(r, r′′)
|r′′ − r′|

=

∞
l=0

Wl(r, r′). (10)

The long-range part includes only the l = 0 term,

W0(r, r′) =


dr′′

ϵ−1(r, r′′)
[r>]r′′,r′

, (11)

that goes as 1/r away from the core hole. All higherWl are treated
as short ranged. By integrating out the core-hole dependence via
the core-hole density ρα

W0(r) =


dr′ρα(r′)


dr′′

ϵ−1(r, r′′)
[r>]r′′,r′

, (12)

the long-range component of the BSE Hamiltonian is a function of
the electron spatial coordinate only.

We evaluate the action of W0 on a vector by first transforming
to a super-cell space

φα(x, k) =


n

ψα,n,k eik·x
|un,k(x)⟩ (13)

φα(x,R) ≡ Fk→R[φα(x, k)],

where R are the lattice vectors andF indicates a Fourier transform.
The core-hole index α can refer to different angular momentum
and spin lmσ states of the core hole, but the long-range component
of the direct term does not mix spin or angular momentum, and so
these are treated sequentially. The k-space grid used in an ocean
calculation defines a maximum range of the screened core-hole
potential.

The operationψ i+1
= W0ψ

i is laid out in Algorithm 1. Since the
direct interaction is diagonal in real-space this procedure is easily
parallelized by distributing the x-points among all the processors.
The parallel algorithm has the additional final step of summing
the vector ψ i+1 over all the processors. This limits the scaling, but
the vector itself is not large. Both the number of x-points and the
number of empty bands required for a given energy range scale as
the volume of the system.

Algorithm 1 Computing ψ i+1
= W0ψ

i

1: for each x and α do
2: φ(k) =


n ψ

i
n,k,α e

ik·xun,k(x)
3: φ(R) = Fk→R[φ(k)]
4: φ(R) = W (x,R)× φ(R)
5: φ(k) = FR→k[φ(R)]
6: ψ i+1

n,k,α += φ(k) e−ik·xu∗

n,k(x)
7: end for

3.2.2. Short-range
The short-range components of the Hamiltonian are calculated

by projecting the conduction-band states into a local basis
around the core hole. These basis functions have a well-defined
angularmomentumaround the absorbing atomand are reasonably
complete such that near the atom

ϕn,k(r)|r<rc =


ν,l,m

Aν,l,mn,k Rν,l(r)Yl,m(r̂). (14)

Yl,m are the usual spherical harmonics and, following the ideas of
the projector augmented wave method, Rν,l are taken to be solu-
tions to the isolated atom [50,51]. This both allowsus to capture the
correct, oscillatory behavior of the valence and conduction states
near the core-hole and gives us a compact basis for calculating the
matrix elements of the short-range direct and exchange interac-
tions. In practice, our core-hole will typically have 1 (s) or 3 (p)
angular momentum states, and our conduction electrons will have
4 projectors each for l = s, . . . , f or 64 lm states. For an L edge this
gives amaximummatrix dimension of 4×3×64 = 768, including
spin degrees of freedom for both the electron and the hole. This is
completely independent of the overall system size.

The time-consuming steps in computing the short-range
interactions are projecting into and out of the localized basiswhich
requires summing over all of the bands and k-points. Themapping
of band states to localized states is precomputed and stored. We
expand the exchange and local direct by angular momentum and
exploit selection rules to limit the number of multipole terms. The
various pieces of the short-range Hamiltonian are distributed to
different processors. The small number ofmultipole terms and size
disparity between them limits the degree of parallelization, but
alleviates the need for a communication step. Each processor adds
its results for the long- and short-range interactions, and then a
single synchronizing summation of ψ i+1 is carried out.

3.3. Screening

In the direct interaction the core-hole potential is screened by
the dielectric response of the system. We calculate this response
within the random phase approximation (RPA)

χ0(r, r′, ω) =


dω′

2π i
G(r, r′, ω′)G(r′, r, ω′

− ω). (15)

We evaluate this expression in real-space around the core-hole,
and, taking advantage of the localized nature of near-edge core
excitations, we limit our full calculation to a sphere with a radius
of approximately r = 8 a.u., splicing on amodel dielectric function
for the long-range behavior [46]. The cross-over radius from RPA
to model is a convergence parameter so that for each material one
may ensure that this approximationhas nodiscernible effect on the
calculated spectra. We use static screening ω = 0 which assumes
that the exciton binding energy is small compared to the energy
scale for changes in the dielectric response, i.e., smaller than the
band gap.

Our real-space grid is 900 points determined from a 36 point
angular grid and 25 uniformly spaced radial points. We carry out
the integral over energy in Eq. (15) explicitly along the imaginary
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Table 1
Timing budget variation with system size. The run-time of each stage of the
calculation is given in minutes. The DFT portion of the calculation was performed
in parallel and the time shown is the run-time multiplied by the number of cores
used. The remaining stages were carried out on a single core.

Supercell (N) 1 2 3 4

Rel. system size 1 8 27 64

DFT 22 832 17,161 265,226
Translator 0.08 2.5 43.8 754
Screening 0.2 2.0 15.4 76.5
BSE 0.5 26.1 250 1915

axis, and for large systems the bulk of time is spent projecting the
wavefunctions onto this grid and constructing the Green’s function

G(r, r′, µ+ it) =


n,k

ψn,k(r)ψ∗

n,k(r
′)

µ+ it − ϵn,k
, (16)

where µ is the chemical potential. Using the OBFs, we determine
the Bloch functions on the spherical grid and distribute the calcu-
lation across processors by dividing up the spatial coordinates. On
modern computer architectures this operation will be limited by
memory bandwidth. To alleviate this we have each processor work
on one or more small blocks of the Green’s function such that we
can be confident that the block will remain in the cache during the
summation over bands.

To gain an additional level of parallelization we can also dis-
tribute the calculation by k-point. We divide the total processors
into pools of equal size, and every pool calculates Gk. The sum
G =


k Gk is carried out across the pools, placing the complete

G on the master pool. Then each processor in the master pool cal-
culates χ0 via Eq. (15), performing the integral over the imaginary
energy axis for its blocks. Finally, the complete matrix χ0 is writ-
ten to disk. In practice, a 2 × 2 × 2 shifted k-point grid is used for
screening calculations, giving 8 unique points in the Brillouin zone
and allowing up to 8 pools. There is some cost to performing the
parallel sum of G over pools and inefficiency in evaluating χ0 on
only the master pool, however neither of these contribute signifi-
cantly to the running time.

4. Results

To demonstrate the scaling performance of ocean we consider
the Ti L-edge XAS of supercells of SrTiO3. Pure SrTiO3 is a
wide band-gap semiconductor and incipient ferroelectric that
assumes an undistorted cubic structure at ambient conditions.
SrTiO3 is a foundational material on which a remarkable variety
of electronic and opto-electronic devices are based. Epitaxially
interfacing SrTiO3 with other oxide compounds, notably LaAlO3,
can yield interfacial 2-dimensional electron gases that are
good conductors [52], are superconductors [53], show magnetic
ordering [54], or are even simultaneously superconducting and
magnetically ordered [55,56]. Doping SrTiO3 also produces a wide
range of useful physical properties. Addressing these interesting
systems numerically requires the use of large supercells. For
instance, a doping level of 3.7% (1/27) necessitates a 3 × 3 × 3
supercell while for a 1.56% (1/64) doping level a 4×4×4 supercell
must be constructed.

In this section we consider run-times for cubic supercells of
pure SrTiO3 with N = {1, 2, 3, 4} repetitions of the conven-
tional cell in each direction. This corresponds to systems with
{5, 40, 135, 320} atoms and {32, 256, 864, 2048} valence elec-
trons, respectively. We begin in Section 4.1 with benchmark
calculations by investigating the single-core time-scaling of the
original screening and BSE portions of the calculation. The four su-
percells are run with equivalent parameters and the usual basis of

Kohn–Sham orbitals, that is, without employing the optimal ba-
sis functions. We next consider in Section 4.2 the savings gained
through the k-space interpolation scheme of optimal basis func-
tions. In Sections 4.3 and 4.4, we determine the scaling behavior
of the parallel implementation of the BSE and screening routines,
respectively. We end in Section 4.5 with a brief demonstration of
ocean by calculating the X-ray absorption and emission spectra of
an organic molecule commonly used in light emitting diode de-
vices.

4.1. Single processor calculations

Before discussing the improvements we have made it is infor-
mative to establish the prior baseline performance of ocean. We
performed a series of timing tests for which the DFT portion of
the calculation was executed in parallel over a given number of
cores while the remaining stages of the calculation used only a
single core. We use the Quantumespresso density-functional the-
ory package to generate the ground-state electronic structure upon
which the spectral calculations are based. These calculations are
performedwith norm-conserving pseudopotentials obtained from
the abinit distribution [6–9] with the exception of Ti for which we
made a pseudopotential with semi-core states included in the va-
lence configuration. We employ the local-density approximation
to the exchange correlation functional and truncate the planewave
basis at 50 Ry. Γ -point sampling was used to obtain the ground-
state electron density, whichwas subsequently expanded into sep-
arate sets of Kohn–Shamorbitals for the evaluation of the screening
and the Bethe–Salpeter Hamiltonian. In each case, the number of
empty bands utilized equaled the number of occupied bands. For
the screening response, states were constructed at a single k-point
while to evaluate the Bethe–Salpeter Hamiltonian states were ex-
panded on a shifted 2×2×2 grid. The above valueswere sufficient
for convergence of the final spectrum for supercells with N ≥ 2.
Since our purpose at present is to study the scaling performance
of ocean we use these same values for the N = 1 case (conven-
tional cell) even though this k-point sampling is insufficient for
convergence at this size. (Convergence at N = 1 can be reached
by increasing the k-point sampling to 2×2×2 for the density and
evaluation of the screening, and to 3 × 3 × 3 for the BSE.)

Table 1 reports the timing budget separated by stage of the cal-
culation for each of the four supercells. The DFT segments of the
calculations were run in parallel and the time reported is the prod-
uct of the run-time and the number of cores used. The remaining
stages of the calculation were all run on a single core; only a sin-
gle Ti site was interrogated for each supercell. Extrapolating these
times to all Ti sites in each supercell, we find that the run-time
required for the three stages after the DFT portion constitutes
approximately 30% of the total calculation time for the larger su-
percells. Table 1 shows that the time spent in the BSE stage dom-
inates that used in the screening portion of the calculation. Thus,
it is essential to implement an effective parallelization scheme for
the BSE stage; this will be demonstrated below. The wavefunction
translation step also becomes time consuming for large systems.
At present, we have not sought to improve the efficiency of this
process, but future efforts may be directed at reducing the time re-
quired here.

The individual run-time scaling of the screening and BSE stages
of the calculation are presented in Fig. 1. These results demonstrate
that both the screening calculation and the evaluation of the BSE
scale as the number of states to the second power. Sincewe use the
same k-point grids for all supercells the variation in the number of
states comes from the increasing number of bands which grows
proportionally with the supercell size. In this example we have
considered a single site in the super cell. The number of sites also
grow with volume, leading to an overall scaling of volume cubed
for both the screening and BSE. Given that as the system size
increases the BSE stage comes to dominate the overall run-time, it
is clearly advantageous to find an effective parallelization scheme
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Fig. 1. Run-time scaling. The relative run-times for the screening and BSE portions
of the calculation are presented versus system size. Both the screening (red circles)
and the BSE (blue squares) go as the system size to the second power.

Table 2
The relative time required for each step in generating Bloch functions and the
speedup with respect to the total run time achieved by using the OBFs (the total
run-time includes steps not explicitly listed in the table).

Supercell (N) 1 2 3 4

Rel. system size 1 8 27 64

# Processors 8 32 64 128

SCF 0.48 2.20 6.45 42.5
NSCF 0.06 0.38 7.11 38.6
OBF 0.18 1.55 12.1 49.7

Total 1.00 4.90 30.3 152

Speedup 1.27× 1.22× 2.24× 2.46×

for this stage. This is discussed below in Section 4.3.
From Eq. (16) it appears that the screening calculation should

scale directly with the number of bands as the radial grid is
independent of system size. However, for large systems much of
the time is spent projecting the DFT wave functions onto the radial
grid from the planewave basis. Both the number of planewaves
and bands grow with system size leading to this second power
behavior. This indicates that an improved approach to projecting
the Kohn–Sham states onto the local basis is an avenue to further
reducing the time spent in the screening routine.

As per Section 3.2, the BSE Hamiltonian is broken into three
sections: non-interacting, short-range, and long-range. The non-
interacting term is diagonal, and, for a single site scales directly
with system size. The short-range part, like the screening calcu-
lation, relies on a small, localized basis that does not change with
system size. Also like the screening calculation, for large system
the projection of the DFT orbitals into this localized basis to deter-
mine the coefficients A (Eq. (14)) will grow with both the number
of planewaves and bands. While this projection happens only once
at the beginning of the BSE stage, it does lead to scaling with the
second power of the system size. The long-range part of the BSE
is the most computationally expensive. As shown in Algorithm 1,
the action of W0 grows with both the number of x-points and the
number of empty states, both of which scale linearly with system
size. Therefore the BSE section of the code is expected to scale with
the second power of system size, as is confirmed in Fig. 1.

4.2. Reduced basis

For the SrTiO3 supercells presented in this work, Γ point
sampling was used as an input to the OBF scheme and the Bloch
functions were interpolated onto 2 × 2 × 2 k-point grids (for
the single cell a 23 k-point grid was interpolated to a 33 grid). As

Fig. 2. BSE cost. The cost, ratio of actual run-time to theoretical linear scaling, as
a function of processor count. Each line represents a different number of threads
per node. One or two MPI tasks per socket (6 or 3 threads) are seen to give the best
performance.

NSCF DFT calculations scale linearly with the number of k-points
this represents a potential 8× speedup (3.4× for the conventional
cell). This gain, however, is partially offset by the additional steps
needed to carry out the OBF interpolation.

In Table 2 we show the relative time for the SCF, NSCF, and
OBF stages that are needed to generate Bloch functions for the
BSE calculation. By assuming that the NSCF would necessarily take
8 × (3.4×) longer without the OBF interpolation we estimate the
savings as a percentage of the total run-time. While the small cells
show only a modest improvement, the 33 and 43 cells complete in
less than half the timewhenusing theOBF scheme. Generically, the
expected savings will dependmost strongly on the needed k-point
sampling for the system under investigation. Metallic systems
require much denser k-point grids for convergence and will yield
correspondingly larger savings.

4.3. BSE scaling

To investigate the scalability of our parallel BSE solver with
processor number we focus on the 4 × 4 × 4 supercell of SrTiO3.
This system approaches the limits of single node execution due
to memory considerations. A significant amount of time for each
run is spent reading in the wavefunctions. For this example the
wavefunctions require 12 GB of space (3072 conduction bands, 8
k-points, and 32,768 x-points). The time needed to read these data
typically ranged from 40 to 60 s [57]. Currently, the wavefunctions
are read in by a single MPI task and then distributed so this time is
relatively constant with processor count. To give a better picture
of the scaling, we subtract out the time required for this step
before comparing runs. If multiple runs are carried out on the
same cell, varying atomic site, edge, or X-ray photon (polarization
or momentum transfer), the wavefunctions are kept in memory,
and therefore this upfront cost will be amortized over all the
calculations. In the present example we calculate the spectra for
three polarizations, using 200 Haydock iterations.

To assess the scaling of the BSE section we use the metric cost.
The cost reflects what the user would be charged on a computing
facility: the run-time multiplied by the number of processors. A
perfectly parallelized code would maintain a cost of 1.0 when
run across any number of processors. Costs less than 1.0 would
indicate some superscaling behavior, most likely from accidental
cache reuse. In Fig. 2we show the relative cost of the BSE section as
a function of the number of processors. The testbed for this section
consists of identical, dual socket nodes with 6 processors (cores)
per chip and connected via high-speed interconnects. Each multi-
node test was run five times and the best time for each was used.
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Fig. 3. Screening scaling. The relative time for the screening section as a function of
the number of processors. We show both the total time required for a single site, 16
sites, and 32 sites relative to the time needed to run the single site on 16 processors.
The per site time is lower with a larger number of sites due to amortization of i/o
and other initialization costs. While the scaling with processor number is poor, we
see only very limited detrimental effects from usingmore processors, and therefore
the screening calculation is run using the same processor count as the other stages.

The BSE section is a hybrid MPI/OpenMP code so we compare
execution with various levels of threading. As can be seen in Fig. 2,
the use of threads improves the speed of the calculation over
pure MPI. This is true even when 12 threads are used, requiring
communication across the two sockets via OpenMP. We also see
very acceptable scaling with processor count. The benchmark
calculation takes a little over 8.5 h on a single node and single
thread, while running on 192 cores can be done in approximately
3.5 min for a real-world speedup of 114×.

Sublinear scaling, a cost in excess of 1.0, is, in general, the re-
sult of non-parallelized sections of code, synchronization costs, and
memory bandwidth constraints. With the exception of the afore-
mentioned wavefunction initialization, the BSE code has very little
explicit serial execution. Further work is needed to investigate and
alleviate the bottlenecks preventing linear scaling.

4.4. Core-hole screening scaling

In this section we investigate the timing of calculating the va-
lence electron screening of the core-hole. As stated before, for core-
level spectroscopy we are mainly interested in the local electronic
response. Limiting our calculation of the RPA susceptibility to a re-
gion of space around the absorbing atom makes the calculation
much cheaper than traditional planewave approacheswithout sac-
rificing accuracy [46]. Within this approach, and for most other
methods of calculating core-excitation spectra, a separate screen-
ing calculation is required for each atomic site. In systems with
inequivalent sites due to differences in bonding, defects, or vibra-
tional disorder contributions from each atom must be summed to
generate a complete spectrum.

To test the behavior of the screening section we use the same
test case as for the BSE, the 4 × 4 × 4 supercell of SrTiO3. The
RPA susceptibility is calculated using a single k-point and 4096
bands. We show results for a single site, 16 sites, and 32 sites (out
of the 64 titanium atoms in our supercell). The number of sites
will vary based on the system being investigated. Impurities may
require only a single site, but liquids or other disordered systems
necessitate averaging over many sites [47,58]. As is evident in
Fig. 3, this section of the calculation does not scale beyond a few
dozen processors. This is especially true when only investigating a
single site. While better scaling is desirable, as observed in Table 1
the total time for this section is quite small. In this particular test
the screening calculation took just under 8 min for a single site
while the initial DFT calculations required approximately 3 h on
128 processors.

Fig. 4. Ti L-edgeXASof SrTiO3 . Comparison of the Ti L-edgeXASof SrTiO3 calculated
from the primitive cell using abinit and the serial version of ocean and from the
5 × 5 × 4 supercell using the OBFs and parallelized ocean code.

4.5. Example spectra

Fig. 4 presents the Ti L edge of pure SrTiO3 calculated for both
the primitive cell (one formula unit) using our previous version
of ocean [42] and for the 5 × 5 × 4 supercell (100 formula
units) obtainedwith the code improvements described herein. This
comparison serves to verify that the fidelity of the computational
scheme has been preserved through the modifications we have
made and demonstrates the feasibility of calculating spectra of
much larger systems than previously possible. Doping SrTiO3
yields a wide range of interesting physical properties and we
imagine that in future investigations it will be fruitful to apply
ocean to studies of such systems. Compounds of SrTiO3 dopedwith
transition metals are investigated for use in photocatalysis and as
permeable membranes, among other uses. Further, there is some
evidence that dopingwithMn, Fe and Comay yield dilutemagnetic
semiconductors [59–61]. The task of improving the performance
of such materials is assisted by a better understanding of how the
dopant element interacts with the host system. It is now possible
to model such spectra with a realistic, first-principles approach.

As a second example system we consider the organic molecule
Tris-(8-hydroxyquinoline)aluminum (Alq3). Alq3 has remained a
leading molecule for the electron transport and emitting layer in
organic light emitting devices since it was first proposed for this
purpose [63]. Despite numerous academic and industrial investi-
gations of such systems, significant problems remain, particularly
regarding device lifetime. The Alq3 molecule is susceptible to de-
composition through reaction with water molecules [64] or metal
atoms from the cathode layer [65,66]. X-ray spectroscopy is com-
monly used to further reveal the interaction of water or metal ions
with the Alq3 molecule and the pathway bywhich the complex de-
composes. However, results are difficult to properly interpret be-
cause such experimental work is rarely coupled with calculated
spectra and because the molecule is sensitive to decomposition
due to X-ray beam exposure. In this section we demonstrate the
ability of ocean to produce reliable XAS and XES spectra for this
system.

Alq3 exhibits two isomers, commonly referred to as facial and
meridional. The meridional isomer is favored energetically and
we consider only this structure. In Fig. 5 we present the C, N
and O K-edge XAS and XES from the meridional Alq3 molecule,
which consists of 52 atoms. We treat the molecule in the gas-
phase, though devices typically contain amorphous films of the
molecule. Since thermal atomic motion can noticeably impact
spectral features for lighter elements we sum spectra from a
series of configurations generated by a molecular dynamics (MD)
simulation. The spectra presented in Fig. 5 show the average
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Fig. 5. XAS and XES of Alq3 . The calculated K-edge XAS (solid, color) and XES (solid, black) of carbon (left, red), nitrogen (middle, green) and oxygen (right, blue) for gas-phase
meridional Tris-(8-hydroxyquinoline)aluminum (Alq3). Dashed, gray curves show the experimental data for amorphous films of Alq3 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Source: Reproduced from Ref. [62].

produced from 10 configurations of a MD simulation performed at
300 K within Quantumespresso. In addition to averaging over the
MD configurations, each spectrum is an average over each atomic
site in the molecule for the given element. Thus, these results
represent a series of 30 calculations for the N edge, 30 calculations
for the O edge, and 270 calculations for the C edge (keeping inmind
that the same ground state DFT calculation can be used for all edges
of a given MD configuration). Despite the large sampling required
to produce these spectra the calculations are not particularly
burdensome. After averaging over all samples and sites, self-
energy corrections to the electronic structure were incorporated
within the multi-pole self-energy scheme of Kas et al. [45]. Finally,
an ad hoc rigid energy shift was applied to each spectrum to align
the absolute energies with the experimental values.

Our calculations are generally in good agreementwith themea-
sured spectra of Ref. [62]. The X-ray emission spectramatch the ex-
perimental results very well for each element. (We use less broad-
ening in our calculation compared to the experiment in order to
show the spectral features with greater resolution.) The primary
structure of the XAS is reproduced for each element with only a
few minor differences. For carbon, the feature near 289 eV in our
calculation appears in the experiment around 288 eV, for nitrogen,
the second double peak feature is about 1 eV too high in energy in
the calculation, and for oxygen, the calculated spectrum is slightly
stretched in energy compared to experiment, but otherwise
matches the experimental spectrumquite closely. Theseminor dif-
ferences could originate in differences in electronic structure be-
tween the gas-phase, as we consider, and the condensed-phase
material probed in experiment. Additionally, we presently neglect
vibronic coupling in the excited-state [67–69] which can be partic-
ularly important in molecules with light elements [70,58]. Never-
theless, agreement with experiment is generally quite favorable.

5. Conclusion

We have implemented a series of improvements that allow
core-level spectral calculations basedon solving theBethe–Salpeter
equation to be performed for much larger systems than previously
possible. Whereas ocean was previously limited to systems of a
few tens of atoms, here we have reported calculations on systems
as large as a 5 × 5 × 4 supercell of SrTiO3, which consists of 500
atoms and 3200 valence electrons and would allow for the direct
simulation of doping at the 1% level. This particular calculation re-
quired only 12.5 h on 128 cores. This enhanced capability makes
spectral calculations on amorphous and dilute systems feasible.

We reduced the cost of the non-self consistent field DFT
calculation through a k-space interpolation scheme based on a
reduced set of optimal basis functions. This yielded a speed-up by
a factor of 2–2.5 for large systems. Parallelization of the screening

calculation and evaluation of the BSE Hamiltonian provided
further savings. We find that the parallelization of the screening
response scales only to a few dozen processors. However, since
the evaluation of the screening at this level of parallelization has
a limited cost compared to the initial DFT calculation this is not a
significant concern at present. The BSE section of the code scales
well to a few hundred processors with only a small growth in
overhead that appears linear in processor count. When both MPI
and OpenMP parallelization are used we achieved a speedup of
114× on 192 processors. However, when only MPI is used there
is evidence that the overhead is growing superlinearly. There
remains room for future improvement to reduce theMPI overhead.

In addition to X-ray absorption spectra and X-ray emission
spectra, inelastic X-ray scattering spectra may also be calculated
with ocean. We view ocean as uniquely capable of evaluating
such spectra, particularly at L edges, with ab initio accuracy and
predictive ability for complex and dynamic systems. We envision
use of ocean to interpret data collected on a wide range of systems
including in operando studies of fuel cell materials, photocatalysts,
gas sensor and energy storage materials, as well as from liquid
environments.

One should keep in mind that the Bethe–Salpeter equation is
one of several approaches to calculating X-ray spectra. While the
BSEmethod holds advantages in being a predictive, first-principles
approach, its two-particle formulation, in certain cases, is still a
crude approximation to the actual many-body problem. Contrary
to this, many-particle approaches such as multiplet calculations
and cluster models capture many-body physics more completely,
though typically at the cost of band-structure effects. The challenge
for these local methods is to incorporate the electronic structure
of the extended system in a scalable fashion. It appears possible
to make considerable progress toward this goal by working
within a localized basis constructed from an extended electronic
structure [19]. For the BSE technique, it will be necessary to
incorporate additional many-particle effects. We expect that a
better description of self-energy effects being made accessible by
recent cumulant expansion development will prove advantageous
in this respect [71,72].

The ocean source code is now available for general use; for de-
tails and documentation see [73].
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