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Human identification by fingerprints is based on the fundamental
premise that ridge patterns from distinct fingers are different
(uniqueness) and a fingerprint pattern does not change over time
(persistence). Although the uniqueness of fingerprints has been
investigated by developing statistical models to estimate the proba-
bility of error in comparing two random samples of fingerprints, the
persistence of fingerprints has remained a general belief based on
only a few case studies. In this study, fingerprint match (similarity)
scores are analyzed by multilevel statistical models with covariates
such as time interval between two fingerprints in comparison, sub-
ject’s age, and fingerprint image quality. Longitudinal fingerprint
records of 15,597 subjects are sampled from an operational finger-
print database such that each individual has at least five 10-print re-
cords over a minimum time span of 5 y. In regard to the persistence of
fingerprints, the longitudinal analysis on a single (right index) finger
demonstrates that (i) genuine match scores tend to significantly de-
crease when time interval between two fingerprints in comparison
increases, whereas the change in impostor match scores is negligible;
and (ii) fingerprint recognition accuracy at operational settings, nev-
ertheless, tends to be stable as the time interval increases up to 12 y,
the maximum time span in the dataset. However, the uncertainty of
temporal stability of fingerprint recognition accuracy becomes sub-
stantially large if either of the two fingerprints being compared is of
poor quality. The conclusions drawn from 10-finger fusion analysis
coincide with the conclusions from single-finger analysis.
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Friction ridge skin on fingers and palms has been purportedly
known to be a physical characteristic of an individual that

does not change over time (i.e., persistence or permanence of
friction ridge pattern) and can be used as a person’s “seal” or
“signature” (i.e., uniqueness or individuality of ridge pattern).
Starting with the first known case where the latent fingerprints
found at a crime scene in Argentina in 1893 were officially accepted
as evidence to convict a suspect (1), friction ridge analysis has be-
come one of the most crucial methods in crime scene investigations
worldwide. The decision made in Frye v. United States in 1923 (2)
was widely cited as the basis for the admissibility of forensic evi-
dence, including friction ridge pattern; Frye standard states that a
scientific principle or discovery that has gained a general acceptance
in the relevant field is admissible in the courts.
In Daubert v. Merrell Dow Pharmaceuticals, Inc., in 1993 (3),

however, the general acceptance test of Frye was superseded by
the Federal Rules of Evidence. The Daubert ruling established a
guideline for admitting forensic evidence, which consists of the
following factors: (i) empirical testing, (ii) peer review and publi-
cation, (iii) known or potential error rate, (iv) standards controlling
the operation, and (v) the Frye standard of general acceptance. The
Daubert standard provoked challenges to admissibility of friction
ridge evidence in the courts. Although all of about 40 such chal-
lenges resulted in a decision that friction ridge analysis is acceptable
as forensic evidence, the Daubert case highlighted a lack of scientific
basis of persistence and uniqueness of fingerprints and standards
that can be universally referred to in friction ridge analysis.
Along with the development of standards and guidelines for

friction ridge analysis (4) and retraining of latent examiners (5) as a
result of the Daubert ruling, a body of research to demonstrate

uniqueness and persistence of friction ridge patterns has emerged.
Although the uniqueness of fingerprints has been studied by
(i) estimating the probability of a random correspondence (i.e., two
different fingerprints selected at random will be sufficiently similar
to be claimed as a mate) (6–8) or (ii) measuring the evidential
value§ of latent fingerprint comparisons (9) (terminologies in-
dicated with § are defined in SI Appendix, section S2), the persis-
tence of fingerprints has been generally accepted based on
anecdotal evidence, including case studies conducted by Herschel
(10) and Galton (11) (SI Appendix, section S4), and the anatomical
structure of friction ridge skin—the ridge pattern formed in the
inner (dermal) layer during gestation remains unchanged with the
protection of the outer (epidermal) layer (12).
The persistence of fingerprints typically refers to the invari-

ance of friction ridge pattern itself. However, the pertinent
question of interest is whether the fingerprint recognition meth-
odology (SI Appendix, section S3) maintains high recognition ac-
curacy as the time interval between two fingerprints being com-
pared increases. The 2009 National Research Council report
Strengthening Forensic Science in the United States: A Path Forward
(13) pointed out, “Uniqueness and persistence are necessary
conditions for friction ridge identification to be feasible, but those
conditions do not imply that anyone can reliably discern whether
or not two friction ridge impressions were made by the same
person.” Fingerprint recognition exhibits two types of comparison
errors: (i) false rejection: two impressions of the same finger (a
genuine fingerprint pair) are declared as a nonmatch due to large
“intrafinger” variability, and (ii) false acceptance: impressions
from two distinct fingers (an impostor fingerprint pair) are
declared as a match due to large “interfinger” similarity. The
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intrafinger variability is observed due to changes in intrinsic
skin condition (e.g., finger skin dryness, cuts, and abrasions) and
extrinsic acquisition process (e.g., finger pressure and placement),
and sensing technology (e.g., interoperability among various fin-
gerprint sensors). The interfinger similarity is observed when the
ridge patterns from two distinct fingers coincide partially.
The biometric recognition literature has reported a phenom-

enon called template aging, which refers to an increase in the
error rate in biometric recognition with respect to the time gap
between a query and a template (or reference) (14). A study
comparing groups of fingerprint pairs with respect to time gap
reported that the fingerprint comparisons with less than a 5-y
time gap show lower error rate than comparisons with a larger
time gap (15). However, cross-sectional analysis used in ref. 15 is
valid only if the longitudinal data§ are balanced§ and time
structured§; this condition is not typically satisfied in most bio-
metrics data, including the dataset used in ref. 15. Longitudinal
studies on fingerprint, face, and iris biometrics published in the
literature are summarized in SI Appendix, section S4.

Study Objectives and Caveats
A longitudinal dataset of fingerprints from 15,597 subjects ap-
prehended by Michigan State Police (MSP) is analyzed, which
consists of five or more fingerprint records over a time span varying
from 5 to 12 y for each subject. Multilevel statistical models with
covariates characterizing properties of fingerprint impressions and
demographics of subjects are designed to analyze the longitudinal
dataset, which is unbalanced and time unstructured. Specifically,
our study aims to address the following issues:

• Trend of fingerprint match scores of genuine and impostor
pairs with respect to the following covariates: time interval
between fingerprints in comparison, subject’s demographic
factors (age, sex, and race), and fingerprint image quality;

• Assessment and comparison of the multilevel models with
various combinations of the covariates;

• Correlations and interactions among covariates;
• Temporal trend of fingerprint recognition accuracy in terms of

probabilities of true acceptance and false acceptance;
• Trend of fingerprint match scores and recognition accuracy

when all 10 of a subject’s fingers are used for recognition, a
prevailing practice in law enforcement.

The results and conclusions made in this paper should be
interpreted with the following caveats:

i) Any variability appearing in fingerprint images collected over
time may be induced by either physical changes in friction
ridge structure or changes in imaging condition and subject’s
behavior during fingerprint acquisition. No distinction be-
tween the two sources of variability is made in the analysis
presented in this paper.

ii) The inferences and conclusions presented in this paper are
drawn from 10-print analysis and do not suggest the same
conclusions for latent fingerprint (or finger mark) analysis.

The detailed explanations about the caveats can be found in SI
Appendix, section S1.

Longitudinal Fingerprint Dataset
A longitudinal dataset of fingerprints was collected from the
records of repeat offenders apprehended by the MSP. SI Ap-
pendix, Fig. S3 shows an example of six fingerprint impressions of
the right index finger of a subject in the dataset acquired between
June 2001 and October 2008. A total of 15,597 subjects were
randomly extracted from the MSP fingerprint archive, such that
each subject has at least five acquisitions from all 10 fingers
on a formatted fingerprint card (called 10-print card) over a
minimum of 5-y time span. The 10-print cards of a subject are
ordered according to the time sequence; a set of 10-print cards
of subject i (i= 1,2, . . . ,N; N is the total number of subjects in

the dataset) is labeled as follows: F i = fFi,1,Fi,2, . . . ,Fi,nig, such
that Ti,1 <Ti,2 <⋯<Ti,ni, where Fi,j is the jth 10-print card of
subject i, Ti,j is the time stamp of Fi,j, and ni denotes the
number of 10-print cards belonging to subject i.
A summary of the dataset is below, and the data statistics are

shown in SI Appendix, Fig. S4.

• Each of the 15,597 subjects has at least five 10-print cards, pro-
viding 122,685 10-print cards in total. The average number of 10-
prints per subject in the dataset is 8, and the maximum is 26 cards.

• The 10-print impressions of a subject have a minimum of 5-y
time span (the time difference between the first and the last
fingerprint acquisitions of a subject); that is, △Ti,1ni ≥ 5 y for
i= 1,2, . . . ,N, where △Ti,1ni =Ti,ni −Ti,1. The average time
span is 9 y, and the maximum time span in the dataset is 12 y.

• Any two consecutive 10-print impressions of a subject are
obtained with at least a 2-mo time gap; Ti,j+1 −Ti,j ≥ 2 mo
for j= 1,2, . . . ,ni − 1 for subject i.

• Along with 10-print images, the following demographic informa-
tion is also available for each subject: sex (male or female), race
(white/Hispanic, black, American Indian/Eskimo, or Asian/Pa-
cific Islander), and age at the time of 10-print acquisition (the
youngest subject’s age at the time of the first impression is 8 y;
the oldest subject’s age at the time of the last impression is 78 y).

Two commercial off-the-shelf (COTS) fingerprint matchers
(denoted as COTS-1 and COTS-2) are used to compute match
scores. For subject i with ni fingerprint impressions, we conduct
all pairwise comparisons; that is,

�ni
2

�
genuine match scores are

generated from each matcher. This is because law enforcement
agencies often store all of the 10-print records for every subject
and compare a query fingerprint to all records in the database.
Note that the pairwise comparisons of the fingerprint records of
a subject result in correlations among the genuine match scores
of the subject. On the other hand, the impostor scores are
obtained by comparing subject i’s ni fingerprint impressions to
the first impressions from all other subjects. For each finger
position, 481,181 genuine match scores and 1,913,395,260 im-
postor match scores are obtained by each of the COTS matchers.

Multilevel Statistical Model
For balanced and time-structured longitudinal dataset, cross-
sectional analysis can be readily applied by grouping the data
according to cohort (for example, short-term and long-term
fingerprint comparison groups) under the assumption of com-
pound symmetry.§ In reality, however, it is not feasible to collect
longitudinal fingerprint data by following an identical measure-
ment schedule over a large number of subjects in the sample
satisfying the compound symmetry. Multilevel statistical model
(16, 17) is one of several statistical models that can handle the
unbalanced and/or time-unstructured longitudinal data.
As a fingerprint comparison essentially involves two finger-

print impressions to generate a single match score, a simple
linear two-level model with a single covariate for continuous
match scores can be represented by the following:

Level 1 model (intrasubject variability):

yijk =φ0i +φ1i xijk + «ijk, «ijk ∼N �
0, σ2«

�
, [1]

Level 2 model (intersubject variability):

φ0i = β00 + b0i,
φ1i = β10 + b1i,

�
b0i
b1i

�
∼N

��
0
0

�
,
�
σ20 σ01
σ10 σ21

��
. [2]

The level 1 model in Eq. 1 is regressed to the repeated mea-
surements taken from each subject, and accounts for the
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intrasubject variability. In case of genuine fingerprint comparisons,
the variables and parameters in the level 1 model are defined as
follows: yijk is the subject i’s observed response of match score
when the jth and kth fingerprints are compared, xijk is the ex-
planatory variable (or covariate), φ0i and φ1i are the true param-
eters representing the intercept and slope of the linear model for
subject i, and «ijk is the error in the observed response yijk from the
model fit. The error is assumed to be normally distributed with a
zero mean and a variance of σ2«.
In the level 2 model in Eq. 2, where the population-mean ten-

dency and deviations of subjects from the mean trend are modeled
to account for the intersubject variability, the true parameters for
subject i (φ0i and φ1i) can be modeled by a mixture of fixed and
random effects: fixed-effects parameters β00 and β10 represent the
grand means of intercept and slope across all N subjects in the data,
and random-effects parameters b0i and b1i represent the deviations
of subject i’s intercept and slope from β00 and β10. The random
effects are assumed to follow a normal distribution.
To determine whether two fingerprint impressions are from the

same finger, a binary decision for a fingerprint pair is made by ap-
plying a predetermined decision threshold to the match score. If the
match score of a fingerprint pair is greater than the threshold, the
two fingerprints are determined to be a genuine match; otherwise,
they are determined to be an impostor match. If a fingerprint pair
determined to be a genuine match is indeed from the same finger,
the binary decision is a true acceptance. If a genuine-match decision
is made on two fingerprints that are in fact from different fingers, the
decision is a false acceptance. In multilevel modeling, a binary re-
sponse is viewed as a Bernoulli trial with the probability of true (or
false) acceptance πijk, and the expected πijk is modeled after being
transformed by a logit link function.

Level  1 model: g
�
πijk

�
=φ0i +φ1i xijk + «ijk,

y*ijk ∼Bin
�
1, πijk

�
,

Level  2 model: φ0i = β00 + b0i,φ1i = β10 + b1i,
[3]

where gð · Þ is a logit link function: gðπijkÞ= logðπijk=ð1− πijkÞÞ.
The maximum likelihood (ML) and generalized least-squares

(GLS) estimations are widely used to estimate parameters in a
multilevel model (17). Under the assumption that the residuals
are normally distributed, the ML estimates of the parameters are
typically obtained by iterative GLS (16).
With multilevel modeling for longitudinal data analysis, we

investigate the following observed responses:

• Case I: A single finger (right index finger of the subjects that is
typically chosen as the primary finger in fingerprint recognition
with one finger) is used for recognition.
– Normalized genuine match score obtained by the following:

yi,jk =
si,jk − μ

σ
, [4]

where si,jk is the genuine match score between the jth and
kth fingerprint impressions of the right index finger of sub-
ject i, and μ and σ are the mean and SD of fsi,jkg, respectively.

– Normalized impostor match score ðyij,kÞ between the kth
fingerprint impression of the right index finger of subject i
and the right index fingerprint in the first 10-print card of
subject j for j≠ i and k= 1,2, . . . , ni.

– Binary identification decision made on a genuine pair with
match score of si,jk by applying a decision threshold ðThÞ:

y*i,jk =
�
1, if   si,jk >Th
0, otherwise . [5]

– Binary identification decision ðyij,k* Þ made on an impostor pair
with match score of sij,k by applying the decision threshold Th.

• Case II: All 10 fingers are used for recognition.
Similar to Case I, normalized genuine and impostor fusion
scores (Yi,jk and Yij,k) and binary identification decisions made
on genuine and impostor pairs of subjects (Y i,jk* and Y ij,k* ) are
obtained based on the match score fused by a sum rule (SI
Appendix, section S5).

The following covariates are investigated in the multilevel
models for genuine fingerprint pairs:

• △Ti,jk: Time interval between the jth and kth fingerprint im-
pressions of subject i; △Ti,jk =Ti,k −Ti,j for j< k;

• AGEi,jk: Age of subject i when the latter of the jth and kth 10-
print impressions was made; the subject i’s age at Ti,k for j< k;

• Qi,jk: The value corresponding to the lower of the qualities of
the jth and kth fingerprint impressions of subject i. In this
study, the National Institute of Standards and Technology
Fingerprint Image Quality (NFIQ) measure (18) is used,
which assigns one of the five discrete values ranging from 1
(the highest quality) to 5 (the lowest quality), to define fin-
gerprint image quality. According to the definition of NFIQ,
Qi,jk =maxðQi,j,Qi,kÞ, where Qi,j is the NFIQ value of the jth
fingerprint impression of subject i;

• bMi: A binary indicator of sex of subject i; 1 for male, and
0 for female;

• bWi: A binary indicator of race of subject i; 1 for whites, and
otherwise 0.

Multilevel models for impostor pairs are designed with the
following covariates:

• △Ti,1k: Time elapsed since the first 10-print of subject i was
obtained; △Ti,1k =Ti,k −Ti,1, k= 1,2, . . . , ni;

• AGEi,k and AGEj,1: Age of subject i when the kth 10-print
impression was made, and the age of impostor subject j at
the time of the first 10-print acquisition, respectively.

The two-level linear models investigated in our study are listed
in Table 1 and SI Appendix, section S6.

Results
Population-Mean Trend of Genuine Fingerprint Match Scores. Given
that the normality assumptions of the residuals and random ef-
fects in the multilevel model fit to the data are violated (SI
Appendix, section S7), the parameters in the multilevel models
are estimated by a fully nonparametric bootstrap (16). We gen-
erate 1,000 bootstrap samples for genuine match score analysis,
where each bootstrap sample is obtained by a cluster bootstrap—
N subjects are resampled with replacement at level 1, and all of
the level 2 data belonging to those subjects are included in the
sample—to preserve the hierarchy in the longitudinal data.
SI Appendix, Tables S2 and S3 report the mean of the pa-

rameter estimates of the bootstrap samples and the percentile
confidence intervals for the genuine match score models. The
population-mean trends of models BT, BA, and BQ based on the
fixed-effects parameter estimates (β00 and β10) show that the gen-
uine match scores tend to decrease when △Ti,jk, AGEi,jk, and
Qi,jk increase (Fig. 1 and SI Appendix, Fig. S6). The null hy-
pothesis—β10 = 0 in models BT, BA, and BQ (i.e., the slope of
the linear model is zero)—is rejected for all three models at a
significance level of 0.05 because the 95% confidence interval
for β10 does not contain zero.
Models D and E incorporate all three covariates (△Ti,jk,

AGEi,jk, and Qi,jk) into the model; model E includes interaction
terms (△Ti,jkQi,jk and AGEi,jkQi,jk), whereas model D does not.
The covariance matrix in model D shows that the correlations
(i) between △Ti,jk and Qi,jk and (ii) between AGEi,jk and Qi,jk are
very small. Also, the population-mean trends of models D and E
and their 95% confidence intervals, illustrated in SI Appendix,
Fig. S7, indicate that the impact of the interactions (i) between
△Ti,jk and Qi,jk and (ii) between AGEi,jk and Qi,jk on genuine
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match scores is not significant (see SI Appendix, section S8, for
the detailed analysis with models D and E).

Outlying Subjects in Model BT. The parameter estimates of
ðφ0i,φ1iÞ for each subject in model BT are shown in SI Appen-
dix, Fig. S10, in addition to the population-mean trend ðβ00, β10Þ.
Several outlying subjects whose genuine match score trend
markedly deviates from the population-mean trend in terms of
Mahalanobis distance are identified. SI Appendix, Figs. S11–S15
show the individual trends of the outlying subjects and their
fingerprint impressions.

• Outlying subject 1 (SI Appendix, Fig. S11): The estimated in-
tercept of this subject is very small. The subject consistently
gives low genuine match scores because his fingerprints are
severely scarred.

• Outlying subject 2 (SI Appendix, Fig. S12): The intercept of
the fitted model for this subject is rather large, although the
slope is negative. This subject consistently gives high genuine
match scores because his fingerprint impressions are of
good quality.

• Outlying subject 3 (SI Appendix, Fig. S13): This subject shows
a very sharp decrease in genuine match scores as a function of
time interval. In SI Appendix, Fig. S13A, the genuine match
scores involving the first fingerprint impression are very low.
This fingerprint impression is indeed an impostor fingerprint
(SI Appendix, Fig. S13B); it is of tented arch type whereas the
actual pattern of this finger is a right loop. After inspection of
the subject’s 10-print cards, it turned out that the subject’s
left and right hands were swapped at the time of the first
10-print card acquisition; the first impression came from the
subject’s left index finger, instead of right index finger. This
shows that operational fingerprint data can be mislabeled.

• Outlying subject 4 (SI Appendix, Fig. S14): This subject also
has a steep slope. It turned out that the fingerprint impressions
of this subject were collected during his adolescence (start-
ing at the age of 11 until the age of 21). This explains the
sharp decrease in genuine match scores due to growth in finger
size (19).

• Outlying subject 5 (SI Appendix, Fig. S15): A positive slope is
observed for this subject because the comparisons involving a
lower quality fingerprint were made over a shorter time in-
terval than the comparisons with higher quality fingerprints.
This example illustrates that the fingerprint image quality
does not necessarily vary with respect to time elapsed.

Model Assessment and Comparison. Goodness-of-fit of a model
evaluates how well the model fits the data. Furthermore, the
impact of covariates on the observed responses can be assessed
by comparing the goodness-of-fits of different models. The
following three criteria are used to measure the goodness-of-
fit: (i) deviance, (ii) Akaike information criterion (AIC), and
(iii) Bayesian information criterion (BIC). The deviance measure
is used to compare nested models, whereas AIC and BIC add a
constant term to the deviance for the sake of comparing non-
nested models (SI Appendix, section S9). The smaller the de-
viance (AIC or BIC), the better the model fit.
SI Appendix, Table S1 shows the goodness-of-fit measures of

the multilevel models fit to genuine match scores obtained by the
two COTS matchers. The model comparisons based on the
goodness-of-fit lead to the following observations:

• A decrease in deviance is observed when models BT, BA, and
BQ are compared with model A (unconditional mean model
or empty model). This means that each individual covariate
used in model B (△Ti,jk, AGEi,jk, or Qi,jk) can explain some of
the variation in genuine match scores.

• Model BQ provides a better fit to the data than models BT
and BA. This implies that fingerprint quality explains better
the variation in genuine match scores than time interval or
subject’s age.

• Sex and race are not important factors to explain the variation
in genuine match scores because the deviance barely de-
creases from model BT to models CG or CR.

• Models D and E show significantly smaller goodness-of-fit val-
ues than the other models. In other words, including all of the
three covariates (△Ti,jk, AGEi,jk, and Qi,jk) in the multilevel
model better explains the trend in genuine match scores

Table 1. Multilevel models for genuine match score analysis

Model Level 1 model Level 2 model

Model A yi,jk =φ0i + «i,jk φ0i = β00 +b0i

Model BT yi,jk =φ0i +φ1i△Ti,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i

Model BA yi,jk =φ0i +φ1iAGEi,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i

Model BQ yi,jk =φ0i +φ1iQi,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i

Model CG yi,jk =φ0i +φ1i△Ti,jk + «i,jk φ0i = β00 + β01bMi +b0i, φ1i = β10 + β11bMi +b1i

Model CR yi,jk =φ0i +φ1i△Ti,jk + «i,jk φ0i = β00 + β01bWi +b0i, φ1i = β10 + β11bWi +b1i

Model D yi,jk =φ0i +φ1i△Ti,jk +φ2iAGEi,jk +φ3iQi,jk + «i,jk φ0i = β00 +b0i, φ1i = β10 +b1i, φ2i = β20 +b2i, φ3i = β30 +b3i

Model E yi,jk =φ0i +φ1i△Ti,jk +φ2iAGEi,jk +φ3iQi,jk

+φ4i△Ti,jkQi,jk +φ5iAGEi,jkQi,jk + «i,jk
φ0i = β00 +b0i, φ1i = β10 +b1i, φ2i = β20 +b2i, φ3i = β30 +b3i, φ4i = β40, φ5i = β50
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Fig. 1. Population-mean trends of genuine match scores obtained by COTS-1 matcher along with 95% confidence intervals with respect to (A) △Ti,jk,
(B) AGEi,jk, and (C) Qi,jk when a single finger is used for recognition. The confidence intervals for models BT and BQ are too tight along the means to be visible.
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compared with including only a single covariate. The additional
interaction terms in model E slightly improve the model fit.

Population-Mean Trend of Impostor Fingerprint Match Scores. For
impostor score analysis, 1,000 bootstrap samples are con-
structed to accurately capture the variability among distinct
fingers, maintain the size of bootstrap sample feasible for model
fitting, and avoid data dependency. The rth bootstrap sample con-
tains a set of impostor scores for subject i ði= 1,2, . . . ,NÞ,
fsij*,k

		j* ∈ JðrÞi ; k= 1,2, . . . , nig, where JðrÞi is a random set with in-
dices of 10 impostor subjects for subject i. JðrÞi is sampled such that
(i) Jðr1Þi and Jðr2Þi , for r1 ≠ r2, are independent, and (ii) JðrÞj* , where
j*∈ JðrÞi , does not include subject i.
The impact of time elapsed ð△Ti,1kÞ and subjects’ ages (AGEi,k

and AGEj,1) on impostor match scores is evaluated in models
BT′ and BA′ , respectively. Note that model BA′ in SI Appendix,
Eq. S4, has two covariates associated with the age of two sub-
jects involved in an impostor comparison: age of the subject of
interest for longitudinal analysis ðAGEi,kÞ and an impostor sub-
ject’s age as a control ðAGEj,1Þ.
Although the null hypothesis β10 = 0 is rejected in both models BT′

and BA′ at a significance level of 0.05 (SI Appendix, Table S4 and
Figs. S16–S18), (i) the decrease in the population-mean trend of
impostor match scores is negligible for both COTS matchers as time
elapsed since the first fingerprint acquisition increases up to 12 y,
the maximum time span in the dataset, and (ii) subject’s age ap-
pears to have marginal impact on impostor match scores in that the
tendencies observed in two COTS matchers do not coincide (i.e.,
β10 > 0 for COTS-1 matcher and β10 < 0 for COTS-2 matcher), and
the changes in impostor match score with the increase of subject’s
age up to 78 y are small. For a similar reason to (ii), the im-
postor subject’s age has an insignificant impact on the impos-
tor match scores.

Population-Mean Trend of Probability of True Acceptance. The pop-
ulation-mean trend of probability of true acceptance ðπi,jkÞ with
respect to △Ti,jk in model Bp

T in SI Appendix, Eq. S5 is in-
vestigated at various false acceptance rates (FARs) (0.01%,
0.00001%, and empirical 0%). The decision thresholds are de-
termined based on the impostor score distribution obtained by
making all pairwise comparisons among the first fingerprint
impressions of N subjects. The threshold corresponding to
FAR of p is determined by a maximum of match score x sat-
isfying cdf ðxÞ< 1− p, where cdf ðxÞ is the cumulative distribution
function of impostor match scores. The threshold corresponding
to empirical 0% FAR is set to the maximum value in the impostor
score set. The expected value of πi,jk at the operational FAR
range between 0.01% and 0.00001% remains close to 1.0 for the
both COTS matchers even though the time interval between two
fingerprints in comparison increases up to 12 y (Fig. 2A and SI
Appendix, Figs. S19 and S20 and Table S5). At empirical 0% FAR,
an extreme FAR point, the expected πi,jk for COTS-1 matcher
still remains close to 1.0, whereas COTS-2 matcher, which
delivers inferior recognition accuracy compared with COTS-1
matcher, exhibits a considerable degradation in πi,jk with in-
crease in △Ti,jk.
To understand the joint impact of △Ti,jk, AGEi,jk, and Qi,jk on

the probability of true acceptance, model D* in SI Appendix, Eq.
S6 is fit to the binary decisions on genuine fingerprint pairs when
the threshold corresponding to 0.00001% FAR is applied to
COTS-1 match scores. The population-mean trend of πi,jk with
respect to △Ti,jk is shown in Fig. 3 and SI Appendix, Fig. S21, at
various AGEi,jk and Qi,jk values. The bootstrap mean trend re-
mains close to 1.0 across all age groups and fingerprint image
quality levels. Interestingly, whereas 95% confidence intervals of
πi,jk are consistent among different age groups at fixed Qi,jk, 95%
confidence interval of πi,jk increases substantially when the fin-
gerprint quality decreases (recall, the higher the Qi,jk, the lower
the fingerprint quality) regardless of subject’s age group. This
indicates that the tendency of πi,jk with respect to △Ti,jk has a
considerable uncertainty when either of two fingerprints in

comparison is of poor quality. It conforms to the model assess-
ment analysis that fingerprint image quality, rather than time
interval between fingerprints in comparison or subject’s age,
explains well the variation in genuine match scores, and the large
confidence intervals observed in models D and E fit to genuine
match scores.

Population-Mean Trend of Probability of False Acceptance. The
population-mean trend of probability of false acceptance ðπij,kÞ is
also investigated at various FARs (0.01%, 0.1%, and 1%). Fig.
2B and SI Appendix, Figs. S22 and S23 and Table S5 show that
the predicted value of πij,k remains close to 0.0 regardless of
△Ti,1k within 12 y. This implies that the binary decisions made on
impostor fingerprint comparisons over time are not likely to be
affected by the time elapsed.

Results When Using All 10 Fingers for Recognition. Ten-finger fusion
results of genuine match scores (SI Appendix, Table S6 and Fig.
S24) and impostor match scores (SI Appendix, Table S7 and Figs.
S25–S27) conform to the results in the single-finger experiments.
It is noteworthy that the probability of true acceptance remains
1.0 for both matchers when match scores from 10 fingers are
fused, even at the extreme FAR point of 0% (SI Appendix, Table
S8 and Figs. S28 and S29). The probability of false acceptance
stays close to 0.0 with the increase in time elapsed (SI Appendix,
Table S8 and Figs. S30 and S31).

Conclusions
Since ancient times, fingerprints have been accepted as persis-
tent and unique to an individual. Early scientific studies on fin-
gerprint recognition in the late 19th century claimed that there is
no significant change in the friction ridge structure over time
by examining small sets of genuine fingerprint pairs captured
over a large time interval. Although fingerprint recognition is
now prevalent in distinguishing a large number of individuals—
for example, Federal Bureau of Investigation’s Next Generation
Identification searches a fingerprint database holding 106 million
criminal and civil files (20)—acceptance of the persistence of
fingerprints has been mostly based on anecdotal evidence.
To understand the behavior of fingerprint match score and

recognition accuracy, multiple fingerprint records of 15,597
subjects apprehended by the MSP over a time span varying from
5 to 12 y were investigated. The genuine and impostor match
scores obtained by two COTS fingerprint matchers were ana-
lyzed by linear multilevel statistical models with various cova-
riates, including time interval between two fingerprints being
compared, subject’s demographic factors such as age, sex, and
race, and fingerprint image quality. The longitudinal study of
fingerprint recognition reported in this paper leads to the fol-
lowing conclusions:
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Fig. 2. Population-mean trend of fingerprint recognition accuracy along
with 95% confidence interval with respect to △Ti,jk. (A) Probability of true
acceptance (πi,jk in model B*T) and (B) probability of false acceptance (πij,k in
model B*′T ). Match scores are obtained by COTS-1 matcher when a single
finger is used for recognition. The confidence intervals are too tight along
the means to be visible in the plots.
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• The hypothesis test for the slope of a linear model indicates
that genuine match scores tend to decrease as the time in-
terval between two fingerprints being compared increases.
Furthermore, genuine match scores tend to decrease as the
subject’s age increases or when the fingerprint image quality
decreases.

• Despite the downward trend in genuine match scores over
time, the probability of true acceptance, at operational FAR
settings, remains close to 1.0 (up to 12 y, the maximum time
span in the dataset). However, if either of two fingerprints in
comparison is of poor quality, the uncertainty in the expected
probability of true acceptance becomes considerably large.

• The changes in impostor match scores with respect to time
elapsed and subject’s age are negligible. Hence, the probability
of false acceptance remains close to 0.0 regardless of the time
interval between two fingerprints.

• A comparison among the models with different covariates fit
to the genuine match scores shows the following:
– Time interval, subject’s age, and fingerprint image quality

can explain the variation in genuine match scores, whereas
subject’s sex and race have marginal impact.

– Fingerprint image quality explains the variation in genuine
match scores better than time interval and subject’s age.

– The correlations (i) between time interval and fingerprint
image quality and (ii) between subject’s age and fingerprint
image quality are negligibly small in the population-mean
trend analysis.

– The impact of the interactions (i) between time interval and
fingerprint image quality and (ii) between subject’s age and
fingerprint image quality on genuine match scores is not
significant.

• Outlying subjects in the dataset who do not conform to the
population-mean trend as determined by model fit are exam-
ined. These outlying subjects illustrate (i) a case where a
COTS matcher consistently provides high genuine match
scores due to high-quality fingerprints from the same finger,
(ii) an example where the matcher generates low genuine
match scores due to the scarring of a finger, (iii) a degradation
in genuine match scores when a juvenile fingerprint is compared
with the corresponding adult fingerprint, and (iv) presence of
labeling errors in the operational fingerprint databases.

• The inferences from single (right index) finger analysis con-
form to the inferences from 10-finger score fusion analysis.

• The results from two different COTS fingerprint matchers
used in the study coincide, except the tendency of impostor
match scores with respect to subject’s age and the temporal
tendency of probability of true acceptance at empirical 0%
FAR in the single-finger analysis.

Our future work will include the following: (i) given that we
make all pairwise comparisons of the fingerprint impressions
from each subject, the correlation among the genuine match
scores of a subject needs to be reflected in the model; and
(ii) nonlinear multilevel models will be investigated and com-
pared with the linear models presented in this study.
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Fig. 3. Population-mean trend and 95% confidence interval of probability of true acceptance ðπi,jkÞwith respect to △Ti,jk when AGEi,jk is 20 and Qi,jk is (A) 1,
(B) 3, and (C) 5 in model D*. The decision threshold is set to the value corresponding to FAR of 0.00001%. Match scores are obtained by COTS-1 matcher when
a single finger is used for recognition.
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S1 Caveats

The results and conclusions made in this paper should be interpreted with the following caveats:

(1) Any variability that appears in fingerprint images collected over time has two potential causes: (i) phys-
ical changes in inherent friction ridge structure of finger skin, and (ii) changes in imaging condition and
subject’s behavior during fingerprint acquisition (e.g., changes in sensing technology and methodology,
finger skin condition, seasonal effect, subject’s habituation to fingerprint capturing, etc.). It is not
possible for us to distinguish between the two sources of variability due to the lack of information
required for conducting such an analysis.

(2) The inferences and conclusions presented in this paper are drawn from tenprint analysis (more specifi-
cally, analysis based on rolled fingerprints) and do not suggest the same conclusions for latent fingerprint
(or finger mark) analysis. This is because latent comparison is different from tenprint matching in the
following aspects:

• As a latent fingerprint is lifted from the surface where the fingerprint impression was left unin-
tentionally, the variability presented in the images is generally much greater than tenprint images
which are typically captured in a controlled environment. A suitable metric for assessing the
variability existing in the latent fingerprints is not yet available.

• In current practice, latent fingerprint identification involves both human examiners and Auto-
mated Fingerprint Identification Systems (AFIS) (i.e., a latent examiner compares the top-K
candidates retrieved from a fingerprint database by AFIS) instead of making a binary decision
based on match score.

Thus, the modeling and analysis schemes used in this paper cannot be directly applied to latent
fingerprints. Further, to the best of our knowledge, there is no latent fingerprint database available for
longitudinal study, which contains multiple latent impressions from each finger over time.

S2 Definitions

The terminologies used in this paper are defined as follows.

Evidential value Evidential value of a comparison between two fingerprints refers to the strength of the
fingerprint comparison that can be used as evidence to claim whether or not they come from the same
finger [9, 11].

Longitudinal data Longitudinal data refers to repeated measurements on a collection of individuals sam-
pled from a population over time. This is in contrast to cross-sectional data where a single measurement
is made on each individual [16].

1



(A) (B)

Figure S1: Fingerprint comparison using minutiae configuration. Minutiae correspondences are shown for
(A) a genuine fingerprint pair and (B) an impostor fingerprint pair. The fingerprint match (similarity) scores
obtained by the COTS-2 matcher are (A) 389 and (B) 11 (note that the match score corresponding to false
acceptance rate (FAR) of 0.01% is 24).

Balanced and time-structured data A longitudinal dataset is characterized by (i) the number of mea-
surements per individual and (ii) the time schedule used to make the measurements [17]. Balanced

dataset means that every subject has the same number of measurements. Time-structured dataset
consists of the repeated measurements following an identical time schedule across individuals. The
sequence of measurements for each individual can be spaced either regularly or irregularly.

Compound symmetry The compound symmetry requires (i) homoscedasticity of variance: the variance
of the measurements at a time instance across all subjects is the same as that of the measurements at
another time instance, and (ii) constant covariance: the correlation between the measurements at the
first and second time instances, for example, is the same as that between the measurements at the first
and third time instances, and so on.

S3 Fingerprint Recognition

A fingerprint pattern consists of intervening ridge lines that are equidistantly spaced. Fingerprint features
used for matching, both by forensic experts and machines (i.e., AFIS), are typically represented at three
different levels: (i) level-1 features (orientation field and singular points) describe ridge flow and pattern
type (e.g., arch, loop, and whorl), (ii) level-2 features (minutiae) represent ridge details such as ridge ending
and bifurcation points, and (iii) level-3 features (pore, incipient ridges, etc.) represent the finest details in
fingerprints [S1].

A comparison between two fingerprints is primarily based on the spatial configurations of minutiae in
the corresponding impressions. If two fingerprint impressions show a high degree of agreement in minutiae
configurations (resulting in high match score), the fingerprints are claimed to be a genuine pair, originating
from the same finger (Fig. S1(A)). Otherwise, they are claimed to be an impostor pair (Fig. S1(B)). Note
that these decisions may not be concurrent with ground truth; in such case, decision errors occur.

Starting around 1900, the Scotland Yard included fingerprints in anthropometric identification cards
which recorded measurements of various physical attributes of criminals [S2]. Since then, the use of fin-
gerprints has spread rapidly worldwide primarily for the purpose of tracking habitual criminals (repeat
offenders) and identifying suspects based on latent fingerprints found at crime scenes. With a phenomenal
and continual increase in the size of fingerprint databases held by various law enforcement agencies, fin-
gerprint recognition technology has made great strides both in terms of matching accuracy and matching
speed (throughput). The Federal Bureau of Investigation (FBI) alone currently holds over 106 million ten-
print records of apprehended criminals and civilian government job applicants as of March 2015 [20]. The
FBI’s Next Generation Identification (NGI) responds to a tenprint record of arrests and prosecutions (RAP)
sheet request in 1 minute and 11 seconds on average (97% of the requests are completed within 15 seconds)
[20]. In the Fingerprint Vendor Technology Evaluation (FpVTE) reported in 2014 [S3], the best performing
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Figure S2: Cross-sectional analysis versus longitudinal analysis of balanced but time-unstructured longi-
tudinal data (adapted from [S10]). For this dataset (two measurements for each of 5 subjects), (A) the
cross-sectional analysis that discards subject labels on data makes an inference that the measurement values

tend to decrease with respect to subject’s age, while (B) the longitudinal analysis interprets the data as the
measurement values tend to increase with respect to subject’s age.

commercial matcher shows 1.9% false negative identification rate (FNIR) for single index fingers at a false
positive identification rate (FPIR) of 0.1% when searching 100,000 fingerprints, and 0.1% FNIR for ten-finger
fusion with rolled prints at the same FPIR when searching 5 million fingerprints. When latent fingerprints
are analyzed, human experts are inevitably involved in the latent search procedure to compensate for the
limitations of state-of-the-art AFIS in reliable feature extraction and identification [S4].

Improvements in fingerprint acquisition technology have led to the prevalent use of fingerprint recognition
in various applications beyond law enforcement and forensics. Fingerprint impressions that were traditionally
obtained by smearing fingers with ink and pressing them on paper are now acquired by optical sensors (e.g.,
at immigration counters in U.S. airports) and solid state sensors (e.g., in smart phones), and these digital
images of fingerprints can be readily processed by AFIS.

S4 Persistence Study of Biometrics Traits

Early studies on persistence of fingerprints focused on demonstrating the invariance of ridge structure in
fingerprints with respect to time. Herschel collected three fingerprints of his son when he was 7, 17, and 40
years old and verified that all ridge details in the three fingerprints did not change over time [10]. Galton
collected 11 pairs of fingerprints from six different individuals at two different time instances [11]. The time
interval between a pair of fingerprints in Galton’s collection ranged from 11 years to 31 years. The six
subjects in his study were selected from different age groups; the age of the subject at the second impression
was as young as 15 years and as old as 79 years. Among the 389 minutiae pairs that were manually labeled
by Galton, only a single minutia was missing in a fingerprint pair (see Plate 13, Fig. 20 in [11]).

More recently, a number of published studies have claimed template aging—an increase in the error rate
in biometric recognition with respect to the time gap between a query and a reference template1 [14]—for
major biometrics modalities, including fingerprint [15], iris [S5, S6], and face [S7]. The question that these
studies posed is essentially the following: “does the stored biometric template remain adequate for person
authentication over time or should the template be updated to account for possible changes in a person’s
biometric trait, imaging conditions, or subject’s behavior?”

These prior studies [15], [S5, S6, S7] use a method of cross-sectional analysis by grouping the longitu-
dinal data that is unbalanced and time unstructured according to time interval between two acquisitions
of a biometric trait and comparing the groups. However, cross-sectional analysis for unbalanced and/or

1A biometric template is a compact representation of a subject’s biometric data. A template then becomes the reference
against which subsequent acquisitions of the subject are compared for authentication.
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Figure S3: Six different impressions of the right index finger of a subject in the longitudinal fingerprint
dataset used in this study

time-unstructured longitudinal dataset may lead to incorrect inferences from the dataset; Fig. S2 shows
a hypothetical example which illustrates that when the dataset is unbalanced and/or time unstructured,
cross-sectional analysis makes incorrect inference against the actual longitudinal behavior.

On the other hand, the longitudinal study on iris recognition reported in [S8, S9] uses a nonlinear mixed-
effects model which is adequate to analyze the longitudinal data used in the study. They show the relationship
between genuine iris match scores and covariates such as time elapsed after enrollment and the difference
in iris dilation. However, this study has the following limitations: (i) the dataset used is truncated in the
sense that the iris match scores from falsely rejected genuine comparisons were not included, and (ii) the
data is collected based on token-less identification. The truncated portion of the data precludes the analysis
to determine the tendency of false rejection with respect to time. Also, the occurrence of false acceptances
is not clear without the ground truth of image pairings.

S5 Longitudinal Fingerprint Data

The observed responses for Case II (when all ten of a subject’s fingers are used) are defined as follows.

• Normalized genuine match score (Yi,jk) following a sum-rule fusion:

Yi,jk =
Si,jk − µ

σ
, where Si,jk =

10∑

m=1

s
(m)
i,jk, [S1]

s
(m)
i,jk is the match score between the impressions from finger m in the j-th and k-th tenprint cards of
subject i, and µ and σ are the mean and standard deviation of {Si,jk}, respectively.

• Binary identification decision made on a pair of genuine tenprint cards with fusion score of Si,jk by

applying a decision threshold (T̃ h):

Y ∗

i,jk =

{
1, if Si,jk > T̃h

0, otherwise
[S2]

• Normalized impostor fusion score (Yij,k) between the k-th tenprint of subject i and the first tenprint
of subject j

• Binary identification decision (Y ∗

ij,k) made on an impostor pair of tenprints with fusion match score of

Sij,k by applying the decision threshold T̃ h.

S6 Models Investigated in the Study

• Multilevel models for genuine match score analysis are shown in Table 1.
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• Multilevel models for impostor match score analysis

Model B′

T

Level-1 Model: yij,k = ϕ0i + ϕ1i△Ti,1k + εij,k,

Level-2 Model: ϕ0i = β00 + b0i, ϕ1i = β10 + b1i. [S3]

Model B′

A

Level-1 Model: yij,k = ϕ0i + ϕ1iAGEi,k + ϕ2iAGEj,1 + εij,k,

Level-2 Model: ϕ0i = β00 + b0i, ϕ1i = β10 + b1i, ϕ2i = β20. [S4]

• Multilevel models for binary decisions on genuine fingerprint pairs

Model B*
T

Level-1 Model: g(πi,jk) = ϕ0i + ϕ1i△Ti,jk + εi,jk,

y∗i,jk ∼ Bin(1, πi,jk),

Level-2 Model: ϕ0i = β00 + b0i, ϕ1i = β10 + b1i. [S5]

Model D*

Level-1 Model: g(πi,jk) = ϕ0i + ϕ1i△Ti,jk + ϕ2iAGEi,jk + ϕ3iQi,jk + εi,jk,

y∗i,jk ∼ Bin(1, πi,jk),

Level-2 Model: ϕ0i = β00 + b0i, ϕ1i = β10 + b1i, ϕ2i = β20 + b2i, ϕ3i = β30 + b3i. [S6]

• Multilevel model for binary decisions on impostor fingerprint pairs

Model B*′
T

Level-1 Model: g(πij,k) = ϕ0i + ϕ1i△Ti,1k + εij,k,

y∗ij,k ∼ Bin(1, πij,k),

Level-2 Model: ϕ0i = β00 + b0i, ϕ1i = β10 + b1i. [S7]

S7 Validation of Normality Assumptions in Multilevel Model

The multilevel model assumes that the residuals (εi,jk) and random effects (bri) follow normal distributions.
The inference made based on the model fitting is valid only if the underlying assumptions of the multilevel
model are satisfied. The normal probability plot is a way to visually verify the normality of the data. If
the normal probability plot is linear, one can ascertain that the data is from a normal distribution. Fig. S5
shows the normal probability plots of εi,jk, b0i, and b1i when model BT is fit to the genuine match scores
obtained from the two COTS matchers.

While the residuals generally follow normal distributions, significant departures from normality are ob-
served at the tails for the scores output by both the matchers. A possible cause of non-normality at the tails
is that the scores from the COTS fingerprint matchers are typically censored, i.e., very low or high match
scores are trimmed so that the output scores are in a finite range.

When the model assumptions are violated, the parameter estimates for fixed and random effects tend
to be still reliable while the standard errors (consequently, confidence intervals) tend to be underestimated
[S11]. In this case, bootstrapping is a useful way to estimate parameters and confidence intervals [S12].
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Table S1: Goodness-of-fit of the models for genuine match scores shown in Table 1

COTS-1 COTS-2
Model Deviance AIC BIC Deviance AIC BIC

Model A 1,114,948 1,114,954 1,114,988 1,142,532 1,142,538 1,142,571
Model BT 1,099,980 1,099,992 1,100,058 1,115,191 1,115,203 1,115,269
Model BA 1,100,979 1,100,991 1,101,057 1,120,911 1,120,923 1,120,990
Model BQ 1,028,899 1,028,911 1,028,978 1,060,037 1,060,049 1,060,115
Model CG 1,099,969 1,099,985 1,100,074 1,115,117 1,115,133 1,115,222
Model CR 1,099,817 1,099,833 1,099,921 1,114,378 1,114,394 1,114,483
Model D 1,003,908 1,003,938 1,004,105 1,019,412 1,019,442 1,019,608
Model E 1,003,839 1,003,873 1,004,062 1,018,986 1,019,020 1,019,209

S8 Genuine Match Score Analysis with Models D and E

In models D and E, the fixed-effects parameter estimates for △Ti,jk (β10), AGEi,jk (β20), and Qi,jk (β30)
remain negative, similar to models BT, BA, and BQ. The correlations between any two covariates can be
calculated from the estimated covariance matrices in models D and E. In particular, we are interested in (i)
σ13 which gives the correlation between △Ti,jk and Qi,jk and (ii) σ23 which gives the correlation between
AGEi,jk and Qi,jk. Although the estimated values for σ13 and σ23 are negative, the correlations among the
covariates are very small—in model D, the correlation coefficients for σ13 and σ23 based on COTS-1 match
scores are −0.0324 and −0.0464; for COTS-2 matcher, they are −0.0174 and −0.1035. Moreover, σ13 in
models D and E with COTS-2 matcher cannot be claimed to be significantly different from 0 since the null
hypothesis σ13 = 0 is not rejected at a significance level of 0.05.

The impact of the interactions (i) between △Ti,jk and Qi,jk and (ii) between AGEi,jk and Qi,jk on
genuine match scores is assessed by comparing the population-mean trends of genuine match scores with
respect to △Ti,jk at different values of AGEi,jk and Qi,jk in models D and E (see Fig. S7). As the 95%
confidence intervals in models D and E are overlapped, it cannot be said that these interactions significantly
affect the variation in genuine match scores with respect to △Ti,jk.

The temporal trend of genuine match scores is analyzed by fixing one of the covariates AGEi,jk and
Qi,jk in model E (see Figs. S8 and S9). In Fig. S8, the population-mean trends of genuine match scores
with respect to △Ti,jk for each subject’s age group (AGEi,jk is (A) 20, (B) 40, (C) 60, and (D) 78) are
shown. For the age group of 20, the population-mean trends of fingerprint comparisons grouped by the NFIQ
(Qi,jk is 1, 3, or 5) are well separated at a significance level of 0.05. However, for subjects at older ages,
the 95% confidence intervals of the fingerprint quality groups become overlapped. On the other hand, the
population-mean trends of genuine match scores with respect to △Ti,jk for each fingerprint quality group
(Qi,jk is (A) 1, (B) 3, and (C) 5) are shown in Fig. S9. At any level of fingerprint quality, the impact of
subject’s age is not significant on genuine match scores since the 95% confidence intervals of all age groups
are completely overlapped.

S9 Assessment of Goodness-of-Fit

The details of the goodness-of-fit measures used in this study are as follows.

• Deviance (D): Deviance can be used to compare the goodness-of-fit of nested models. The nested
property is easily determined by checking if one model becomes equivalent to the other by setting the
coefficients for some of the covariates to zero. For example, whereas models A and BT are nested and
models A and BQ are nested, models BT and BQ are not nested. The deviance is defined as:

D = −2 log(L), [S8]

where L is the maximum value of the likelihood function for the model.

6



• Akaike Information Criterion (AIC): AIC can be used for any model comparison task (models do not
need to be nested). AIC is defined as:

AIC = 2k − 2 log(L), [S9]

where k is the number of parameters in the model, and L is the maximum value of the likelihood
function for the model.

• Bayesian Information Criterion (BIC): Under the assumption that the data distribution is in the
exponential family, BIC is defined as:

BIC = k log(n)− 2 log(L), [S10]

where k is the number of parameters in the model, n is the number of data points, and L is the
maximum value of the likelihood function for the model. BIC also can be used for comparisons of
non-nested models.
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Figure S4: Statistics of the longitudinal fingerprint dataset used in this study. Histograms of (A) the number
of tenprint cards per subject, (B) time span of data collection for a subject, (C) age at the first and last
tenprint acquisitions, (D) sex, and (E) race.
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Table S2: Parameter estimates and 95% confidence intervals of genuine match scores obtained by COTS-1 matcher when a single finger (right index)
is used for recognition

Parameters Model BT Model BA Model BQ Model D Model E

Fixed Effects

β00 0.1496 0.5682 0.7087 0.9137 1.1472
(0.1406; 0.1590) (0.5335; 0.6015) (0.6954; 0.7221) (0.8765; 0.94710) (1.0827; 1.2100)

β10 -0.0440 -0.0175 -0.2750 -0.0368 -0.0283
(-0.0450; -0.0430) (-0.0185; -0.0164) (-0.2798; -0.2702) (-0.0378; -0.0358) (-0.0313; -0.0255)

β20 -0.0030 -0.0110
(-0.0042; -0.0019) (-0.0130; -0.0090)

β30 -0.2509 -0.3486
(-0.2558; -0.2463) (-0.3739; -0.3241)

β40 -0.0035
(-0.0045; -0.0024)

β50 0.0033
(0.0026; 0.0041)

Variance Components

σ2
ε 0.4980 0.4897 0.4210 0.3640 0.3639

σ2
0 0.5298 5.6056 0.9096 6.6323 6.6565

σ2
1 0.0034 0.0050 0.1163 0.0041 0.0041

σ01 -0.0134 -0.1576 -0.2543 0.0949 0.0950
σ2
2 0.0068 0.0068

σ02 -0.1941 -0.1945
σ12 -0.2092 -0.2207
σ2
3 0.1165 0.1181

σ03 -0.0036 -0.0036
σ13 -0.0007 -0.0011
σ23 -0.0013 -0.0010

1
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Table S3: Parameter estimates and 95% confidence intervals of genuine match scores obtained by COTS-2 matcher when a single finger is used for
recognition

Parameters Model BT Model BA Model BQ Model D Model E

Fixed Effects

β00 0.2032 0.7447 0.8456 1.0353 1.4398
(0.1939; 0.2127) (0.7072; 0.7843) (0.8316; 0.8595) (0.9946; 1.0750) (1.3706; 1.5102)

β10 -0.0616 -0.0243 -0.3439 -0.0533 -0.0654
(-0.0625; -0.0606) (-0.0254; -0.0231) (-0.3489; -0.3385) (-0.0543; -0.0522) (-0.0678; -0.0629)

β20 -0.0024 -0.0130
(-0.0036; -0.0011) (-0.0152; -0.0107)

β30 -0.3064 -0.4693
(-0.3112; -0.3015) (-0.4925; -0.4466)

β40 0.0048
(0.0039; 0.0057)

β50 0.0043
(0.0036; 0.0050)

Variance Components

σ2
ε 0.5162 0.5070 0.4540 0.3755 0.3751

σ2
0 0.5744 7.5573 0.9105 7.8990 7.8357

σ2
1 0.0039 0.0066 0.1027 0.0040 0.0040

σ01 -0.0277 -0.2136 -0.2473 0.0800 0.0825
σ2
2 0.0081 0.0081

σ02 -0.2335 -0.2314
σ12 -0.1466 -0.1646
σ2
3 0.1039 0.1077

σ03 -0.0033 -0.0033

σ13 -0.0004* -0.0005*

σ23 -0.0030 -0.0027
* The hypothesis test indicates that the null hypothesis that the parameter is zero is not rejected at a significance level of 0.05.
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Figure S6: Population-mean trends of genuine match scores obtained by COTS-2 matcher and 95% confidence
intervals with respect to (A) △Ti,jk, (B) AGEi,jk, and (C) Qi,jk, when a single finger is used for recognition.
The confidence intervals for models BT and BQ are too tight along the means to be visible.
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(A) AGEi,jk = 20, Qi,jk = 1
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(B) AGEi,jk = 20, Qi,jk = 3
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(C) AGEi,jk = 20, Qi,jk = 5
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(D) AGEi,jk = 40, Qi,jk = 1
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(E) AGEi,jk = 40, Qi,jk = 3
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(F) AGEi,jk = 40, Qi,jk = 5
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(G) AGEi,jk = 60, Qi,jk = 1
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(H) AGEi,jk = 60, Qi,jk = 3
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(I) AGEi,jk = 60, Qi,jk = 5
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(J) AGEi,jk = 78, Qi,jk = 1
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(K) AGEi,jk = 78, Qi,jk = 3
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(L) AGEi,jk = 78, Qi,jk = 5

Figure S7: Comparison between models D and E. Population-mean trends of genuine match scores with
respect to △Ti,jk are shown when AGEi,jk varies from 20 to 78 and Qi,jk varies from 1 to 5 in models D
and E. Solid lines are the bootstrap means, and the shaded areas represent the 95% confidence intervals. A
single finger is used for recognition and match scores are obtained from COTS-1 matcher.
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Figure S8: Population-mean trends of genuine match scores with respect to △Ti,jk when AGEi,jk is fixed
and Qi,jk varies from 1 to 5 in model E. Solid lines are the bootstrap means, and the shaded areas represent
the 95% confidence intervals. A single finger is used for recognition and match scores are obtained from
COTS-1 matcher.
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Figure S9: Population-mean trends of genuine match scores with respect to △Ti,jk when Qi,jk is fixed
and AGEi,jk varies from 20 to 78 in model E. Solid lines are the bootstrap means, and the shaded areas
represent the 95% confidence intervals. A single finger is used for recognition and match scores are obtained
from COTS-1 matcher.
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Figure S10: Parameter estimates of model BT with genuine match scores provided by two COTS match-
ers. The estimates for the population-mean parameters (β00, β10) and the parameters for each subject
(ϕ0i, ϕ1i) = (β00 + b0i, β10 + b1i) are represented as red triangles and blue dots, respectively. The parame-
ters associated with five outlying subjects are marked as green squares in (A).
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(B)

Figure S11: A subject whose intercept in model BT is very small due to the severe alteration (i.e., scarring)
of the fingerprint pattern (outlying subject 1). (A) The observed responses and fitting result of the subject,
and (B) fingerprint impressions of the subject at different ages.
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Figure S12: A subject with high quality ridge pattern resulting in the large intercept in model BT (outlying
subject 2). (A) The observed responses and fitting result of the subject, and (B) fingerprint impressions of
the subject at different ages.
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Figure S13: A subject with steep negative slope (outlying subject 3) resulting from a mislabeled fingerprint
(the first impression). (A) The observed responses and fitting result of the subject, and (B) fingerprint
impressions of the subject at different ages.
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Figure S14: A subject with steep negative slope due to fingerprint impressions made during his adolescence
(outlying subject 4). (A) The observed responses and fitting result of the subject, and (B) fingerprint
impressions of the subject at different ages.
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Figure S15: A subject with positive slope (outlying subject 5) where the comparisons involving a lower
quality fingerprint (at age 25) have short time intervals. (A) The observed responses and fitting result of
the subject, and (B) fingerprint impressions of the subject at different ages.
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Table S4: Parameter estimates and 95% confidence intervals of impostor match scores obtained by two COTS matchers when a single finger is used
for recognition

COTS-1 COTS-2
Parameters Model B′

T Model B′

A Model B′

T Model B′

A

Fixed Effects

β00 0.0017* -0.2271 0.0158 0.0578
(-0.0005; 0.0039) (-0.2407; -0.2139) (0.0135; 0.0180) (0.0462; 0.0696)

β10 -0.0006 0.0037 -0.0042 -0.0008
(-0.0010; -0.0001) (0.0034; 0.0040) (-0.0047; -0.0037) (-0.0011; -0.0005)

β20 0.0047 -0.0014
(0.0043; 0.0050) (-0.0017; -0.0011)

Variance Components

σ2
ε 0.8760 0.8744 0.9454 0.9477

σ2
0 0.1322 0.1841 0.0590 0.0647

σ2
1 1.0065e-05 1.5156e-05 0.0002 1.5917e-06

σ01 -0.0009 -0.0014 -0.0013 -0.0003
* The hypothesis test indicates that the null hypothesis that the parameter is zero is not rejected at a significance level
of 0.05.
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(A) COTS-1
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(B) COTS-2

Figure S16: Population-mean trends and 95% confidence intervals of impostor match scores obtained by
two COTS matchers with respect to △Ti,1k (model B′

T), when a single finger is used for recognition. The
confidence intervals are too small to be visible in the plots.
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(A) AGEj,1 = 20
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(B) AGEj,1 = 40
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(C) AGEj,1 = 60
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(D) AGEj,1 = 78

Figure S17: Population-mean trends and 95% confidence intervals of impostor match scores obtained by
COTS-1 matcher with respect to AGEi,k (model B′

A), when a single finger is used for recognition. The
confidence intervals are too small to be visible in the plots.
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(A) AGEj,1 = 20
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(B) AGEj,1 = 40
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(C) AGEj,1 = 60
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(D) AGEj,1 = 78

Figure S18: Population-mean trends and 95% confidence intervals of impostor match scores obtained by
COTS-2 matcher with respect to AGEi,k (model B′

A), when a single finger is used for recognition. The
confidence intervals are too small to be visible in the plots.
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Table S5: Expected probability of true acceptance (πi,jk) and probability of false acceptance (πij,k) and their 95% confidence intervals, when a single
finger is used for recognition

COTS-1 COTS-2
Time Interval in Years 0 6 12 0 6 12

πi,jk

FAR = 0.01% 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999
(1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (0.9999; 1.0000) (0.9998; 0.9999)

FAR = 0.00001% 1.0000 1.0000 0.9999 0.9988 0.9976 0.9954
(1.0000; 1.0000) (0.9999; 1.0000) (0.9999; 0.9999) (0.9986; 0.9990) (0.9969; 0.9982) (0.9933; 0.9968)

FAR = 0% 0.9999 0.9999 0.9998 0.9791 0.9536 0.9004
(0.9999; 0.9999) (0.9998; 0.9999) (0.9997; 0.9999) (0.9778; 0.9803) (0.9488; 0.9579) (0.8863; 0.9124)

πij,k

FAR = 0.01% 0.0264e-05 0.0215e-05 0.0175e-05 0.0146e-05 0.0005e-05 0.0000e-05
(0.0144; 0.1012) (0.0053; 0.1402) (0.0020; 0.1942) (0.0053; 7.3642) (0.0000; 5.3964) (0.0000; 3.9544)

FAR = 0.1% 2.2000e-05 1.8930e-05 1.6288e-05 0.1555e-05 0.0266e-05 0.0045e-05
(1.1828; 6.1468) (0.4414; 6.7883) (0.1648; 7.4968) (0.0961; 0.8369) (0.0000; 0.4699) (0.0000; 0.2638)

FAR = 1% 0.0062 0.0057 0.0053 0.0056 0.0040 0.0028
(0.0058; 0.0065) (0.0051; 0.0064) (0.0044; 0.0063) (0.0053; 0.0060) (0.0035; 0.0046) (0.0023; 0.0035)

* Numbers in the tables are rounded off to four decimal points unless written in exponential notation. For some very small numbers, round-off
to nine decimal points is used.

** If the expected probability is in exponential notation, its confidence interval is also in the same exponential notation.
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(A) FAR = 0.00001%
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(B) FAR = 0%

Figure S19: Population-mean trend and 95% confidence interval of probability of true acceptance (πi,jk)
with respect to △Ti,jk (A) when the decision threshold corresponding to FAR of 0.00001% is used, and (B)
when the maximum impostor score is used as the decision threshold (corresponding to empirical 0% FAR).
Match scores are obtained by COTS-1 matcher when a single finger is used for recognition. The confidence
intervals are too small to be visible in the plots.
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(A) FAR = 0.01%
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(B) FAR = 0.00001%

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time Interval in Years

P
ro

b
a
b
ili

ty
 o

f 
T

ru
e
 A

c
c
e
p
ta

n
c
e

 

 

Bootstrap Mean
95% Confidence Interval

(C) FAR = 0%

Figure S20: Population-mean trend and 95% confidence interval of probability of true acceptance (πi,jk)
with respect to △Ti,jk (A) when the decision threshold corresponding to FAR of 0.01% is used, (B) when
the decision threshold corresponding to FAR of 0.00001% is used, and (C) when the maximum impostor
score is used as the decision threshold (corresponding to empirical 0% FAR). Match scores are obtained by
COTS-2 matcher when a single finger is used for recognition. The confidence intervals are too small to be
visible in (A) and (B).
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(A) AGEi,jk = 40, Qi,jk = 1
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(B) AGEi,jk = 40, Qi,jk = 3
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(C) AGEi,jk = 40, Qi,jk = 5
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(D) AGEi,jk = 60, Qi,jk = 1
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(E) AGEi,jk = 60, Qi,jk = 3
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(F) AGEi,jk = 60, Qi,jk = 5
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(G) AGEi,jk = 78, Qi,jk = 1
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(H) AGEi,jk = 78, Qi,jk = 3
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(I) AGEi,jk = 78, Qi,jk = 5

Figure S21: Population-mean trend and 95% confidence interval of probability of true acceptance (πi,jk) with
respect to △Ti,jk when AGEi,jk varies from 40 to 78 and Qi,jk varies from 1 to 5 in model D* for binary
decisions on genuine fingerprint pairs. The decision threshold is set to the value corresponding to FAR of
0.00001%. Match scores are obtained by COTS-1 matcher when a single finger is used for recognition.
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(A) FAR = 0.01%
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(B) FAR = 0.1%
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(C) FAR = 1%

Figure S22: Population-mean trend and 95% confidence interval of probability of false acceptance (πij,k)
with respect to △Ti,1k when the decision threshold corresponding to (A) FAR of 0.01%, (B) FAR of 0.1%,
and (C) FAR of 1% is used. Match scores are obtained by COTS-1 matcher when a single finger is used for
recognition. The confidence intervals are too small to be visible in the plots.
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(A) FAR = 0.01%
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(B) FAR = 0.1%
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(C) FAR = 1%

Figure S23: Population-mean trend and 95% confidence interval of probability of true acceptance (πij,k)
with respect to △Ti,1k when the decision threshold corresponding to (A) FAR of 0.01%, (B) FAR of 0.1%,
and (C) FAR of 1% is used. Match scores are obtained by COTS-2 matcher when a single finger is used for
recognition. The confidence intervals are too small to be visible in the plots.
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Table S6: Parameter estimates and 95% confidence intervals when the genuine match scores from ten fingers obtained by each of two COTS matchers
are fused by a sum rule

COTS-1 COTS-2
Parameters Model BT Model BA Model BT Model BA

Fixed Effects

β00 0.1896 0.5588 0.2258 0.7461
(0.1800; 0.1995) (0.5167; 0.5991) (0.2159; 0.2360) (0.7040; 0.7887)

β10 -0.0603 -0.0174 -0.0726 -0.0247
(-0.0612; -0.0594) (-0.0185; -0.0162) (-0.0736; -0.0717) (-0.0259; -0.0234)

Variance Components

σ2
ε 0.4306 0.4266 0.4375 0.4325

σ2
0 0.5986 7.3744 0.6599 9.1532

σ2
1 0.0037 0.0064 0.0040 0.0078

σ01 -0.0144 -0.2053 -0.0304 -0.2553
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(A) Model BT, COTS-1
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(B) Model BA, COTS-1
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(C) Model BT, COTS-2
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(D) Model BA, COTS-2

Figure S24: Population-mean trends of genuine match scores obtained by two COTS matchers and 95%
confidence intervals with respect to (A) and (C) △Ti,jk and (B) and (D) AGEi,jk, when the scores from ten
fingers are fused. The confidence intervals for model BT are too small to be visible in the plots.
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Table S7: Parameter estimates and 95% confidence intervals when the impostor match scores from ten fingers obtained by each of two COTS matchers
are fused by a sum rule

COTS-1 COTS-2
Parameters Model B′

T Model B′

A Model B′

T Model B′

A

Fixed Effects

β00 0.0155 -0.5357 0.0474 0.2029
(0.0135; 0.0172) (-0.5495; -0.5226) (0.0453; 0.0494) (0.1886; 0.2176)

β10 -0.0044 0.0089 -0.0122 -0.0031
(-0.0047; -0.0040) (0.0086; 0.0093) (-0.0126; -0.0118) (-0.0034; -0.0027)

β20 0.0107 -0.0047
(0.0103; 0.0111) (-0.0050; -0.0043)

Variance Components

σ2
ε 0.7498 0.7453 0.8293 0.8384

σ2
0 0.2697 0.3213 0.1829 0.2146

σ2
1 0.0005 9.9563e-06 0.0010 1.3781e-05

σ01 -0.0037 -0.0017 -0.0048 -0.0012
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(A) COTS-1
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(B) COTS-2

Figure S25: Population-mean trends and 95% confidence intervals of impostor match scores obtained by
two COTS matchers with respect to △Ti,1k (model B′

T), when the scores from ten fingers are fused. The
confidence intervals are too small to be visible in the plots.
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(A) AGEj,1 = 20
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(B) AGEj,1 = 40
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(C) AGEj,1 = 60
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(D) AGEj,1 = 78

Figure S26: Population-mean trends and 95% confidence intervals of impostor match scores obtained by
COTS-1 matcher with respect to AGEi,k (model B′

A), when the scores from ten fingers are fused. The
confidence intervals are too small to be visible in the plots.
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(A) AGEj,1 = 20
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(B) AGEj,1 = 40
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(C) AGEj,1 = 60
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(D) AGEj,1 = 78

Figure S27: Population-mean trends and 95% confidence intervals of impostor match scores obtained by
COTS-2 matcher with respect to AGEi,k (model B′

A), when the scores from ten fingers are fused. The
confidence intervals are too small to be visible in the plots.
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Table S8: Expected probability of true acceptance (πi,jk) and probability of false acceptance (πij,k) and their 95% confidence intervals, when the
match scores from all ten fingers are fused by a sum rule

COTS-1 COTS-2
Time Interval in Years 0 6 12 0 6 12

πi,jk

FAR = 0.01% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000)

FAR = 0.001% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000)

FAR = 0% 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000) (1.0000; 1.0000)

πij,k

FAR = 0.01% 0.0279e-05 0.0186e-05 0.0124e-05 0.0253e-05 0.0002e-05 0.0000e-05
(0.0148; 0.1055) (0.0016; 0.1333) (0.0002; 0.1684) (0.0060; 10.1003) (0.0000; 3.6459) (0.0000; 1.3160)

FAR = 0.1% 2.2612e-05 1.7002e-05 1.2784e-05 0.5792e-05 0.1964e-05 0.0666e-05
(1.3119; 4.5754) (0.4309; 4.5704) (0.1415; 4.5654) (0.4099; 1.2990) (0.0231; 0.7103) (0.0013; 0.3884)

FAR = 1% 0.0047 0.0037 0.0029 0.0037 0.0014 0.0006
(0.0044; 0.0051) (0.0032; 0.0043) (0.0023; 0.0036) (0.0030; 0.0042) (0.0010; 0.0025) (0.0003; 0.0015)

* Numbers in the tables are rounded off to four decimal points unless written in exponential notation. For some very small numbers, round-off
to nine decimal points is used.

** If the expected probability is in exponential notation, its confidence interval is also in the same exponential notation.
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(A) FAR = 0.01%

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Time Interval in Years

P
ro

b
a
b
ili

ty
 o

f 
T

ru
e
 A

c
c
e
p
ta

n
c
e

 

 

Bootstrap Mean
95% Confidence Interval

(B) FAR = 0.001%
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(C) FAR = 0%

Figure S28: Population-mean trend and 95% confidence interval of probability of true acceptance (πi,jk) with
respect to △Ti,jk (A) when the decision threshold corresponding to FAR of 0.01% is used, (B) when the
decision threshold corresponding to FAR of 0.001% is used, and (C) when the maximum impostor score is
used as the decision threshold (corresponding to empirical 0% FAR). Match scores are obtained by COTS-1
matcher from all ten fingers and fused by a sum rule. The confidence intervals are too small to be visible in
the plots.
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(A) FAR = 0.01%
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(B) FAR = 0.001%
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(C) FAR = 0%

Figure S29: Population-mean trend and 95% confidence interval of probability of true acceptance (πi,jk) with
respect to △Ti,jk (A) when the decision threshold corresponding to FAR of 0.01% is used, (B) when the
decision threshold corresponding to FAR of 0.001% is used, and (C) when the maximum impostor score is
used as the decision threshold (corresponding to empirical 0% FAR). Match scores are obtained by COTS-2
matcher from all ten fingers and fused by a sum rule. The confidence intervals are too small to be visible in
the plots.

31



0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Time Interval in Years

P
ro

b
a
b
ili

ty
 o

f 
F

a
ls

e
 A

c
c
e
p
ta

n
c
e

 

 

Bootstrap Mean
95% Confidence Interval

(A) FAR = 0.01%
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(B) FAR = 0.1%
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(C) FAR = 1%

Figure S30: Population-mean trend and 95% confidence interval of probability of false acceptance (πij,k)
with respect to △Ti,1k when the decision threshold corresponding to (A) FAR of 0.01%, (B) FAR of 0.1%,
and (C) FAR of 1% is used. Match scores are obtained by COTS-1 matcher from all ten fingers and fused
by a sum rule. The confidence intervals are too small to be visible in the plots.
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(A) FAR = 0.01%
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(B) FAR = 0.1%
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(C) FAR = 0.01%

Figure S31: Population-mean trend and 95% confidence interval of probability of false acceptance (πij,k)
with respect to △Ti,1k when the decision threshold corresponding to (A) FAR of 0.01%, (B) FAR of 0.1%,
and (C) FAR of 1% is used. Match scores are obtained by COTS-2 matcher from all ten fingers and fused
by a sum rule. The confidence intervals are too small to be visible in the plots.
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