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Abstract 
 
The quality of a selection decision is a function of the decision rule used and the data collected to support the 
decision. When physical measurements are the basis of the decision data, the measurement sampling scheme 
controls measurement uncertainty and influences decision quality. Faced with a fixed experimental budget for 
measurement collection over multiple attributes, a decision-maker must decide how to allocate this budget to best 
support the selection decision. We expand on previous work in this area of sample allocation in multiple attribute 
selection decisions to compare the quality of allocation rules derived under various estimation and decision rules. 
The decision rules considered in this work include the selection of the best (expected value) and multinomial 
selection with allocation rules developed based on maximum likelihood and Bayesian inference. We derive 
allocation rules for each of these cases and illustrate their performance through computational experiments. 
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1. Introduction 
Procurement decisions are selection decisions that are often based on a large number of competing performance 
measures. The value of the performance measures for each alternative may not be known, but must be evaluated 
through experimentation. For example, when the U.S. Customs and Border Protection chooses a radiation detection 
system to install at U.S.-based international airports, the ability of the considered systems to identify an array of 
radiological and nuclear materials of interest must be evaluated in a laboratory setting before a system is selected.     
 
We define a multiple attribute selection problem as a decision in which a decision-maker must select a single 
alternative from a finite set of alternatives and each alternative is described by several characteristics important to 
the decision-maker. A common conceptual model of the multiple attribute selection problem entails the decision-
maker placing a decision value on each alternative by considering the desirability of the alternatives’ important 
characteristics and choosing the alternative that provides the greatest decision value [1-3]. We illustrate this model 
in Figure 1, where m alternatives, 1, , ma a , are each described by k important characteristics (attributes). The 

values of the attributes, 1, ,i ik  , are used by the decision-maker in developing a decision value i  for each of the 

1, ,i m   alternatives. The decision-maker then invokes a selection process to select an alternative, sa . 

 
The field of decision analysis provides a large body of work to aid in operationalizing the conceptual model 
displayed in Figure 1. Decision analysis topics of particular relevance include guidance on generating alternatives, 
formulating mathematical models of decision-makers’ preferences, and methods to combine multiple attribute 
values in creating decision values. Section 2 includes a brief review of these topics.  
 
Often, the true attribute value is not known and must be estimated based on a limited number, ijn , of measurements: 

1, ,
ijij ijnx x . We denote the measured value used in estimating the jth attribute from alternative ia  with the random 
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variable ij ij jX    where ij  is the true attribute value and j  is the random measurement error. Since j  is a 

result of the measurement technique used to measure the jth attribute, we assume that the error distribution for 
attribute j is the same across the m alternatives.  
 

 
 

Figure 1: Conceptual model of a multiple attribute selection problem 
 
The uncertainty in the measured values creates uncertainty about the attribute values, and subsequently, uncertainty 
about the decision values. Thus, the decision-maker may fail to make a correct selection by failing to select the 
alternative that would have been selected had the true attribute and decision values been known. In general, the 
uncertainty in the true attribute values can be reduced by increasing the number of measurements used in their 
estimation, which, in turn, reduces the uncertainty in the decision values and conceivably increases the likelihood of 
making a correct selection. When the decision-maker is provided a fixed measurement budget, B, that must not be 
exceeded, the challenge becomes how to allocate this budget across both the alternatives and across the attributes to 
provide the greatest probability of making the correct selection. This work addresses the problem of allocating a 
fixed budget across both the alternatives and the attributes in the multiple attribute selection problem. 
 
In the following section we provide a brief overview of some of the literature relevant to this problem. In Section 3 
we further define the problem and provide the estimation and selection rules used. In Section 4 we derive several 
allocation rules. In Sections 5 we describe computational experiments used to evaluate the allocation rules with 
results provided in Section 6. We conclude with a summary and discussion of future work in Section 7.   
 
2. Literature Review 
We find this work to be at the intersection of several areas which include statistical experiment design, ranking and 
selection, and multiple attribute decision analysis. With sample size and sample allocation a fundamental question in 
the statistical design of experiments, the underlying principles are paramount in guiding this work. Of particular 
interest is the design of comparative experiments. Box, Hunter, and Hunter [4] and Montgomery [5] provide 
extensive guidance for the principles and methods of statistical design of experiments. 
 
At the core of this current work, we are faced with a decision problem, and more specifically, a multiple attribute 
decision problem. A large body of literature exists on normative multiple attribute value and utility analysis, e.g., [1-
3]. We leverage these works for guidance on combining multiple attribute values to form a univariate decision value. 
 
Ranking and selection methods are used to compare a finite number of alternatives whose performance measures are 
generated by a stochastic process. The study of ranking and selection first gained traction in the 1950s in the 
statistics community. In 1979 Gupta and Panchapakesan [6] published the first modern text on the subject with 
Bechhofer et al. [7] publishing a more recent text in 1995. During this time, the field of computer simulation, and in 
particular discrete event simulation, began advancing the work of ranking and selection and now accounts for much 
of the research in the area. Kim and Nelson [8] provide an extensive overview of the recent developments in ranking 
and selection with a focus on the indifferent zone (IZ) allocation procedure for selecting the alternative with the 
largest expected value. The IZ procedure determines how often each alternative is observed (simulated) while 
guaranteeing a specified probability of correct selection provided that the true performance of the “best” alternative 
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exceeds that of its closest competitor by an amount the experimenter feels is worth detecting. The IZ procedure has 
no predefined limit on the number of observations. Butler et al. [9] apply IZ to a multiple attribute decision problem.  
 
Rather than selecting the alternative with the largest expected performance value, another often employed selection 
rule, multinomial selection, selects the alternative with the largest estimated probability of being the best on any 
given trial. Miller et al. [10] provide an efficient computational approach for implementing the multinomial selection 
procedure. And recently Tollesfson et al. [11] provided optimal algorithms for the multinomial selection procedure. 
 
Unlike the IZ allocation procedure, the Optimal Computing Budget Allocation (OCBA) procedure derives a sample 
allocation based on a fixed budget. OCBA is the Ranking and Selection procedure most relevant to our work. Chen 
and Lee have published many articles on the subject with a comprehensive collection of ideas presented in a recent 
text [12]. While similar to our work in that the budget is constrained, the OCBA approach considers the allocation 
across multiple alternatives with a single performance measure, while our work is focused on the allocation across 
both alternatives and multiple attributes. We use many of the ideas of OCBA in our development.             
 
3. Multiple Attribute Selection Problem with Measurement Uncertainty 
Expanding on the concepts introduced in Section 1, the random measured value, ijX , used in estimating attribute j 

from alternative ia  adheres to a probability distribution, denoted  ,j ij ijF  θ , that depends upon the attribute’s true 

value, ij , and other distributional parameters, ijθ , to include the uncertainty associated with the measurement 

technique. Upon observing the ijn  measurements used to estimate attribute j, a decision-maker may describe the 

attribute value by a single point, such as a sample mean, or a distribution, such a Bayesian posterior distribution. We 

denote this attribute value description as the probability distribution  , ,j ij ij ijG n φ  that depends upon the 

attribute’s true value, ij , the number of observed measurements, ijn , and other distributional parameters, ijφ , to 

include the uncertainty associated with the measurement technique. The multiple attribute decision model,  f  , is 

used to combine the attribute values, leading to a decision value for each alternative ia . The decision-maker may 

describe the decision values as a single point or a distribution. We denote the decision value description as the 
probability distribution  ,i iH  γ  that depends upon the alternative’s true decision value, i  and other distributional 

parameters, iγ , to include the uncertainty associated with the measurement techniques and the number of observed 

measurements for each attribute. Based on the decision-maker’s description of the decision values, an alternative, 

sa , is selected according to a selection rule that takes into account the information that is generated from the 

measurements. Note that sa  is random because it depends upon the random measurements. The conceptual model 

illustrated in Figure 1 is expanded in Figure 2 to include the measurement processes and distributional descriptions. 
 

 
 

Figure 2: Multiple attribute selection problem model including measurement processes, value estimations, and 
distributional representations 
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3.1. Assumptions 
We make the following assumptions in this work: 

1. The set of m distinct alternatives,  1 , , ma a  is provided, where m is a finite positive integer such that all 

alternatives can be assessed. 

2. Also provided is a decision model,    1 1
, ,

k

i i ik j j ijj
f v    


   , that reflects the decision-maker’s 

preference structure and combines the multiple attribute values to produce a decision value, i , for each 

alternative ia . The decision model is a multiple attribute linear value model with linear individual value 

functions,  j ij ijv   . The attribute weights, j , are defined such that 
1

1
k

jj



 .  

3. Each alternative is described by 2k   attributes. Separate and independent measurement processes are 
used in obtaining measurement data for each attribute. The measurement data are collected in a single 
experimental effort (single-stage). The random measurement error associated with the measurement 

processes, j , are independent and identically distributed (i.i.d.) where the  2~ 0,j jN  , and 2
j  is 

known. It follows that  2~ ,ij ij jX N   , and the measurements 1, ,
ijij ijnx x  are i.i.d. samples from this 

distribution. Note that in the field of metrology, it is not uncommon for the error associated with a 
continuous measurand to be modeled with a normal distribution and for the variance of this distribution to 
be well characterized and assumed known [13].  

4. The total fixed experimental budget, B mk , shall not be exceeded and the cost of each measurement is 
equivalent. Thus, B is the upper bound on the number of measurements that can be performed. 

 
3.2. Estimation Approach 
The decision-maker uses the limited number of measurements, 1, ,

ijij ijnx x , to estimate the true value, ij , of 

attribute j of alternative ia  in support of the selection decision. We considered two approaches for this estimation 

process: maximum likelihood estimation and Bayesian posterior distribution. 
 
Under the assumption that the random measured value, ijX , is distributed according to a normal distribution with 

unknown mean, ij , and known variance, 2
j , the maximum likelihood estimator (MLE) for ij  is the sample 

mean of the ijn  measurements, 1
1

ij

ij

n

ij ijln l
X x


   [14]. Further, because the measurements 1, ,

ijij ijnx x  are assumed 

to be i.i.d.,  2

~ , j

ijij ij nX N
  . In Section 4.1 we use the MLE of ij , and its properties, to derive an allocation rule 

that aims to maximize the probability that the decision-maker makes a correct selection. 
 
Under the Bayesian paradigm for estimation, we assume that before collecting any measurement data, the decision-
maker’s knowledge of the unknown true attribute value, ij , can be described by the conjugate normal prior 

distribution  2
0 0,ij ijN   . Upon observing the normally distributed measurement data, the decision-maker’s 

knowledge of ij  is updated and presented by the normally distributed posterior distribution [15] as described in 

Equation (1). 

  
2 2 2 2

0 0 0
1 2 2 2 2

0 0

| , , ~ ,   1, , , 1, ,
ij

j ij ij ij ij j ij
ij ij ijn

j ij ij j ij ij

n X
p x x N i m j k

n n

    


   

 
     

     (1) 

 

Assumption 2 provides  1

k

i j j ijj
v  


   for each alternative ia . Let i  be the random variable whose probability 

distribution is the posterior distribution of the decision value i . This distribution describes the decision-maker’s 

knowledge of the true decision value, i  , for alternative ia , after observing ijn  measurements for the estimation of 

each of the k attributes. The distribution of i  is presented in Equation (2). 
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         (2) 

We used the Bayesian posterior distribution of the decision value i  in Sections 4.2 and 4.3 to derive allocation 

rules that aim to maximize the probability that the decision-maker makes a correct selection.  
 
3.3. Selection Process 
Kim and Nelson [8] describe four classes of comparisons as they relate to ranking and selection problems: selecting 
the alternative with the largest or smallest expected performance measure (selection of the best), comparing all 
alternatives against a standard (comparison with a standard), selecting the alternative with the largest probability of 
actually being the best performer (multinomial selection), and selecting the system with the largest probability of 
success (Bernoulli selection). Kim and Nelson further note that in developing an experimental approach for each 
class, a constraint is imposed on either the probability of correct selection or on the overall experimental budget. 
That is, some procedures (e.g., indifference zone procedures) attempt to find a desirable alternative with a guarantee 
on the probability of correct selection with no regards to the experimental budget, and other procedures (e.g., OCBA 
procedures) attempt to maximize the probability of correct selection while adhering to an experimental budget 
constraint. In this work, we considered two selection procedures: selection of the best and multinomial selection, 
while adhering to an overall experimental budget. 
 
3.3.1. Selection of the Best 
We implemented a selection of the best procedure by selecting the alternative that has the largest expected decision 
value. Under the maximum likelihood estimation procedure, it follows from the invariant property of maximum 

likelihood estimators [14] that the maximum likelihood estimator of i  is 
1

k

i j ijj
Y X


  . Furthermore, 

 2 2

1
~ , j j

ij

k

i i nj
Y N

 
 . We select the alternative sa  where arg max i

i
s Y . Under the Bayesian estimation procedure, 

the decision-maker’s knowledge of i  is described by the distribution of i , provided by Equation (2). We select the 

alternative sa  where arg max i
i

s   . 

   
3.3.2. Multinomial Selection 
Multinomial selection procedures were originally designed for experiments with a categorical response [8]. 
Goldsman [16] suggested a more general perspective for the field of computer simulation. Given m competing 
alternatives, it is assumed that there is an unknown probability vector  1 , , mp pp   such that 0 1ip   and 

1
1

m

ii
p


 . The ip  are the probabilities that alternative ia  “wins” on any given trial, where winning is the 

observation of a most desirable criteria of goodness (e.g., the largest decision value). p thus defines an m-nomial 
probability distribution for winning over the set of alternatives. The goal of a multinomial selection procedure is to 
identify the alternative with the largest ip .  

 
We used this idea and implemented a multinomial selection procedure for the Bayesian estimation approach where 

 , 1, , ,i i rp P r m r i        . Because it is difficult to calculate ip , we used Monte Carlo simulation to 

estimate it. From each of the distributions for i , 1, ,i m  , we draw a single realization and note the alternative 

with the largest realized value among the m values. We repeat this process a large number of times, N, (e.g., 
1000N  ) and tabulate the relative frequency, ˆ ip , that alternative ia  provided the largest realized value. As 

N  ,  ˆ , 1, , ,i i rp P r m r i        . We select the alternative sa  where ˆarg max i
i

s p . 

 
4. Measurement Allocation 
The probability of correct selection (PCS) is the probability that the alternative identified for selection, sa , is indeed 

the most preferred alternative (largest true decision value). The primary goal of this work was to determine, given 
the assumptions provided in Section 3.1, the number of samples (measurements), ijn , required to maximize the PCS 
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such that 
1 1

m k

iji j
n

    does not exceed the total experimental budget, B. This sample allocation problem can be 

expressed by the optimization problem in Equation (3). 

 

 

1 1

max  is actually the most preferred alternaitve

. .
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s
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ij
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PCS P a

s t n B

n i m j k

 





  




  (3) 

In the subsections to follow, we derive sample allocation rules by defining the PCS and subsequent constraints 
according to the estimation and selection processes considered. 
 
4.1. Selection of the Best using Maximum Likelihood Estimation 
For this case, without loss of generality, we assume that 1 i   for all 2, ,i m  . That is, alternative 1a  is truly 

the most preferred alternative. Given this assumption and the selection and estimation approaches, we define PCS. 

      1 1 1
2

, 2, , 0
m

s i i
i

PCS P a a P Y Y i m P Y Y


 
        

 
    (4) 

In order to compute ijX , and subsequently iY , it is required that 1ijn   for all i, j, so we can restate the sample 

allocation problem of Equation (3) using Equation (5). 

 

 1
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  (5) 

 
We first consider the 2m   alternatives case. The objective function in Equation (5) thus becomes 

 2 1max 0
ijn

PCS P Y Y   . Since  2 2

1
~ , j j

ij

k

i i nj
Y N

 
 , then  2 22

2 1 2 1 1 1
~ , j j

ij

k

ni j
Y Y N

  
 

    . This yields the 

definition of PCS provided by Equation (6). 
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  (6) 

 y  in Equation (6) denotes the standard normal cumulative distribution function evaluated at y. Because  is a 

monotonically increasing function and 1 2 0   , maximizing PCS requires minimizing 
2 22

1 1

j j

ij

k

ni j

 

   . Note that 

this expression is the sum of the mean squared errors (MSE) of the estimators iY  (see [14] for discussion of MSE). 

The optimization problem in (5), with 2m  , is equivalent to: 

 

2 22
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We restated the second constraint of the nonlinear optimization problem in (7) as 1ijn   , and derived the optimal 

solution displayed in Equation (8) using the Kuhn-Tucker conditions [17]. 
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Since the objective function, z, in (7) is the sum of convex functions, then z is too a convex function. As the 
constraints of this minimization problem are linear, they are also convex. Therefore, the Kuhn-Tucker conditions are 
necessary and sufficient for the solution displayed in Equation (8) to be an optimal solution. 
 
When 2m  , there is no closed-form expression for PCS as defined in the objective function of Equation (5). The 
solution to the 2m   case suggested an approach to overcome this dilemma, so we derived a sample allocation that 

minimized the sum of the mean squared errors of the estimators iY , for all 1, ,i m   subject to the constraints 

provided in (5). The solution to this general m alternative problem is provided by Equation (9).  

 
1

1, , , 1, ,b b
ab k

j jj

B
n a m b k

m

 

 


 
   
 
 

    (9) 

 
Note that in Equations (8) and (9), the sample allocation is dependent only on the second index which represents the  
attribute. This means that for this single-stage problem, the sample allocations may vary across attribute, but are 
equivalent across the alternatives. 
 
Because the number of measurements made on any attribute must be an integer value greater than or equal to one, 
and the total number of measurements must not exceed B, we implement the following rounding rule, which 
completes our definition of the sample allocation procedure for the selection of the best using maximum likelihood 
estimation (MLE allocation rule). 

1. Calculate the ijn  according to Equation (9) for alternatives ia , 1, ,i m   and attributes 1, ,j k  . 

2. Calculate ij ijn n     , where     is the ceiling function. 

3. Calculate ij ij ijr n n  .  

4. Calculate 
1 1

m k

iji j
O n B

 
   . 

5. Order the 1ijn   in decreasing order of ijr . (For any j, 1 j mjr r  ; thus, for each j such that 1ijn   the 

ijn  are ordered in increasing order of i.)  

6. Subtract 1 from each of the first O ordered ijn .  

 
4.2. Selection of the Best using Bayesian Estimation 
As we did deriving the MLE allocation rule, we assumed that 1 i   and defined the PCS using the Bayesian 

estimation of i  (Equation (2)) and the rule to select sa  where arg max i
i

s   . With 2m   alternatives this led to 

the optimization problem in Equation (10). 
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Because the unknown attribute values ij  cannot be separated from the decision variables ijn , we chose to 

minimized the sum of the mean squared errors of the estimators i  as described in Equation (11) for the general case 

with m alternatives.   
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The optimal solution to this general m alternative problem, found using the Kuhn-Tucker conditions, is displayed in 
Equation (12).   
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When there is little prior knowledge of the true attribute values, ij , that is, the prior distribution for the ij  are 

diffuse and the variances of the prior distributions, 2
0ij , are very large, then the limiting posterior distribution for 

ij  can be stated as displayed in Equation (13): 

  
2

2
1 0| , , ; , 1,2 ~ , as 

ij

j
ij ij ijn ij ij

ij

p x x i j N X
n


 

  
   

 
   (13) 

Further, as 2
0ij   , the allocation solution for the selection of the best using Bayesian estimation displayed in 

Equation (12) converges to the solution found using maximum likelihood estimation provided in Equation (9). 
 
We finalize our definition of the sample allocation procedure for the selection of the best using Bayesian estimation 
(Bayes allocation rule) by providing a rounding rule that assures that the number of measurements made on any 
attribute is a non-negative integer and the total number of measurements does not exceed B. The rounding rule is 
identical to the MLE allocation rule rounding rule with one exception: Step 5 is replaced by the following: 

5. Order the ijn  in decreasing order of ijr  (For any j, 1 j mjr r  ; thus, for each j, the ijn  are ordered in 

increasing order of i.)  
 
4.3. Multinomial Selection using Bayesian Estimation 
Under the Bayesian estimation model, we also implemented a multinomial selection procedure (described in Section 
3.2.2). Under this procedure, again assuming 1 i   for all 2, ,i m  , the PCS is defined as in Equation (14).  

    1 1ˆ ˆ , 2, ,s iPCS P a a P p p i m        (14) 

 
With 2m   alternatives, 1 2ˆ ˆp p  is true if and only if 1ˆ 0.5p  , thus  1ˆ 0.5PCS P p  . In the limit, 1p̂  

approaches  1 1 2p P     , which, provided the distribution of i  in Equation (2), is computed as Equation (15).  

    
2 2 2

0

2 2
0

1 2
1 1 2 2 1

2

1 1

0
j j ij

j ij ij

k

i j n

p P P
  

 

 
   

  

 
 

       
 
  

       (15) 

From Equation (15) it is seen that 1 0.5p   if and only if 1 2 0    . So, we restate the PCS as Equation (16). 

    1 2 1ˆ 0.5 0PCS P p P          (16) 

 
Because the PCS definition of Equation (16) is the same as the PCS definition from the selection of the best 
procedure using Bayesian estimation in Section 4.2 (Equation (10)), the allocation rule for this multinomial selection 
procedure is also the allocation rule provided by Equation (12). We suspect that this relation between the selection 
of the best and the multinomial selection procedures holds only for symmetric posterior distributions of the decision 
values, such as the normal distribution considered in this work.  
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5. Numerical Experiments 
In Section 4 we derived the MLE allocation rule and the Bayes allocation rule. Here we briefly describe a 
computational experiment that compared the performance of these rules to a uniform allocation that provides an 
equal sample allocation to each of the attributes across all alternatives (a common allocation approach, consistent 
with the principle of balance in the traditional design of experiments discipline). 
 
We generated 500 concave efficient frontiers (decision cases), each consisting of 5m   alternatives described by 

2k   attributes. The true values of the attributes were randomly assigned from the domain [100, 200], subject to the 
constraints necessary for nondominance and concavity. For each decision case, the standard deviation of the 
measurement error for each attribute was randomly assigned from a uniform distribution with parameters min = 1 
and max = 30. We considered 19 different decision models defined by      1 2, 0.05,0.95 , , 0.95,0.05     and a 

sample budget of B = 50. For the allocations provided by the two allocation rules and a uniform allocation, we 
simulated 10 000 measurement experiments and calculated the frequency of correct selection (fcs) using the 
selection of the best selection procedure under both MLE and Bayesian estimation. The prior distribution for ij  

used in the Bayesian estimations,  2150,35N , was equivalent for all attributes for all decision cases. We calculated 

the relative fcs (or rel fcs) as the ratio of the fcs provided by the rule-based allocation to the maximum fcs obtained 
across all sample allocations that provided equivalent allocations across alternatives. Within the confines of this 
problem, the rel fcs measure allows us to quantify how much better the selection could have been if a different 
sample allocation were chosen. See [18] for further details. 
 
6. Results 
We took the perspective that the estimation and selection procedures were provided by the decision-maker and the 
only remaining decision was how to allocate the overall budget, B, amongst the alternatives and attributes. Thus we 
were not concerned with the overall PCS, but rather the performance of the allocation relative to the optimal 
allocation (i.e., rel fcs) under the given selection, estimation and budget constraints. The left panel of Figure 3 
displays the performance of the uniform allocation and the MLE allocation rule (using MLE estimation procedures) 
as a function of decision model ( 1  value). Similar results are displayed in the right panel for the uniform and Bayes 

allocation rules, but under Bayesian estimation. The performance of a rule, for each decision weight, was defined to 
be the average rel fcs of its sample allocation across the 500 test cases. The uncertainties in the average rel fcs were 
expressed as 95 % confidence intervals using the normality assumptions provided by the Central Limit Theorem. 
 

 
 

Figure 3: Relative frequency of correct selection averaged across all decision cases for each 1  value. The dotted 

lines represent the 95 % confidence intervals. 
 
From the left panel of Figure 3, we observed that the MLE allocation rule provided a rel fcs near 1 across all 
decision models under the given selection, estimation and budget constraints. We also note that this allocation rule 
outperforms the common uniform allocation across all decision models. The Bayes allocation rule provided 
performance results (right panel) that were statistically indistinguishable from the uniform allocation for 

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1

re
l f

cs

MLE Estimation

MLE Uniform

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

1

re
l f

cs

Bayesian Estimation

Bayes Uniform



Leber, Herrmann 

10.25 0.75  . This result may be driven by the general and nonspecific prior distribution provided for all 

attributes and alternatives for all decision cases. While the rel fcs results under the Bayesian approach are often 
smaller than those proved by the MLE approach, this does not mean that the absolute fcs was smaller. The absolute 
fcs values were seen to be statistically indistinguishable with the Bayesian approach outperforming the MLE 
approach when 1 was near 0 and 1.   
  
7. Conclusions and Future Work 
The optimal allocation rule depends upon the estimation and selection procedures used. The results of our 
computational experiments show that, in the cases considered, the MLE allocation rule performs at a near optimal 
level, while the derived Bayes allocation rule performed only slightly better than the common uniform allocation. 
These results emphasize that decision modeling and experimental design should be done jointly rather than 
independently (which, unfortunately, is currently not uncommon). Such a cooperative approach can improve the 
overall selection results of the project. This work extends previous work [18] and adds to our knowledge of how to 
allocate samples across attributes and alternatives in a multiple attribute selection problem. We plan to study the 
impact of the Bayesian prior distribution on the performance of the Bayes allocation rule. We will also consider 
another important area of experimental testing: Bernoulli trials in pass-fail testing. Although this work focused on a 
single-stage experiment, future work will consider multiple stage and sequential experiments.  
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