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1.  Introduction

The Boltzmann constant kB relates the thermodynamic tem-
perature T to the average energy in a statistical-mechanical 
degree of freedom. A single molecule of mass m has 3 trans-
lational degrees of freedom. When it is in equilibrium with a 
heat bath, its average kinetic energy is related to the thermo-
dynamic temperature by (1/2)m vRMS

2  = (3/2)kBT, where vRMS 

is the root-mean-square velocity of a molecule. In an ideal 
gas of such molecules, vRMS is connected to the zero-density 
speed of sound c0 and the zero-density heat-capacity ratio 
C C/p

0
v
0  ≡  γ0 of the gas through vRMS

2  = (3/γ0)c0
2. For a mona-

tomic gas γ0 is exactly 5/3. For an ideal gas, kB is obtained by:

γ= ( )k c M T N/B 0
2

0 A� (1)
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Abstract
We report progress toward determining the Boltzmann constant kB using the concept of a virtual 
acoustic resonator, a hypothetical resonator that is mathematically equivalent to a cylindrical 
cavity with periodic boundary conditions. We derived the virtual resonator by combining the 
measured frequencies of the longitudinal acoustic modes of two argon-filled, cylindrical cavity 
resonators in such a way to minimize the effects of the cavities’ ends, including transducers and 
ducts attached to the ends. The cavities had lengths of 80 mm and 160 mm and were operated 
in their longitudinal (ℓ,0,0) modes. We explored virtual resonators that combine modes of the 
two resonators that have nearly the same frequencies. The virtual resonator formed from the 
(2,0,0) mode of the 80 mm resonator combined with the (4,0,0) mode of the 160 mm resonator 
yielded a value for kB that is, fractionally, only (0.2   ±   1.5)  ×  10−6 larger than the 2010 
CODATA-recommended value of kB. (The estimated uncertainty is one standard uncertainty 
corresponding to a 68% confidence level.) The same virtual resonator yielded values of the 
pressure derivatives of the speed of sound c in argon, (∂c2/∂p)T and (∂c2/∂p2)T, that differed 
from literature values by 1% and 2%, respectively. By comparison, when each cavity was 
considered separately, the values of kB, (∂c2/∂p)T, and (∂c2/∂p2)T differed from literature values 
by up to 7 ppm, 10%, and 5%, respectively. However, combining the results from the (3,0,0) 
or (4,0,0) modes of shorter resonator with the results from the (6,0,0) or (8,0,0) modes of the 
longer resonator yielded incorrect values of kB that varied from run-to-run. We speculate that 
these puzzling results originated in an unmodeled coupling, either between the two cavities 
(that resonated at nearly identical resonance frequencies in the same pressure vessel) or 
between the cavities and modes of the pressure vessel.
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where M = mNA is the molar mass of gas and NA is the 
Avogadro constant, which is known with the relative standard 
uncertainty of 3   ×   10−8 [1].

Since the 1970s, the acoustic determinations of kB have used 
values of c0

2 that were deduced from accurate measurements 
of the resonance frequencies of cavities of known dimensions 
that were filled with either helium or argon and maintained at 
the temperature of the triple point of water, TTPW [2–11]. In 
principle, c0

2 could be measured using cavities of any shape 
[12]. In practice, the lowest uncertainties have been obtained 
using the radially symmetric modes of spherical or quasi-
spherical cavities and the longitudinal modes of cylindrical 
cavities. Recently, we used single cavities of fixed lengths to 
measure kB [10,11]. In connection with these measurements 
of kB, we have published a detailed theory of fixed-length 
cylindrical cavities, as well as our laboratory realizations of 
such cavities and our experimental procedures [10,11,13–17]. 
Therefore, it is unnecessary to repeat these details here.

The present work does not report a new estimate of kB, but 
explores the advantages and the problems that we encoun-
tered when measuring kB with the virtual cylindrical reso-
nator method. In previous publications [15,18], we described 
a method by which kB could be measured more accurately 
with two cylindrical resonators than with either cylindrical 
resonator alone. Here, we refine the concept in terms of a vir-
tual resonator, that is, a resonator that does not actually exist.  
A virtual resonator is mathematically equivalent to a cylin-
drical resonator with periodic boundary conditions instead of 
end-plates; it is modeled from pairs of longitudinal modes with 
nominally identical resonance frequencies from two physical 
cylindrical cavities having different lengths but nominally 
identical end-plates. The virtual resonator method, discussed 
in section 2, eliminates hard-to-model effects of end-plates.

The virtual resonator concept has two ancestors. One 
ancestor is the procedure of the National Physical Laboratory 
(NPL) for the measurement of kB during the 1970s that used a 
cylindrical acoustic resonator with a moveable end (an acoustic 
interferometer) that was displaced an accurately measured 
distance. The second ancestor is the remarkably successful 
method of generating calculable capacitance changes by using 
cylindrical cross capacitors containing a tubular guard that is 
displaced an accurately measured distance while maintaining 
constant end effects [19].

As shown schematically in figure 1, we used two fixed-
length cavity resonators that had lengths of 80 mm and 
160 mm. The 80 mm resonator was operated in its longitu-
dinal (ℓ,0,0) modes, and the 160 mm resonator was operated 
in its (2ℓ,0,0) modes with ℓ = 2, 3, and 4 for both resona-
tors. Here, we identify the modes (ℓ,0,0) using the notation 
of Gillis [20]. We simply identify the modes by the index ℓ. 
The ends of the cavities were designed to be identical. Any 
differences in the physical or material properties between 
the fabricated end-plates introducing second-order effects 
were deemed to be inconsequential. Because both resonators 
operated at nearly identical resonance frequencies and had 
nearly identical end-plates, the acoustic admittances of the 
ends, which are frequency-dependent and hard to calculate, 
were the same as first-order. By using the theory of virtual 

resonators, these admittances cancel out to first-order in our 
calculation of kB.

The virtual resonator formed by combining data in the two 
resonators near 3.8 kHz [the (2,0,0) mode of the shorter reso-
nator and the (4,0,0) mode of the longer resonator] yielded 
a value of kB that was, fractionally, only (0.2   ±   1.5)  ×  10−6 
larger than the 2010 CODATA-recommended value of kB, 
and the pressure derivatives of the speed of sound c in argon, 
(∂c2/∂p)T and (∂c2/∂p2)T, were within 1% and 2%, respec-
tively, of the widely recognized literature values. The virtual 
resonator from the combined modes near 5.8 kHz [the (3,0,0) 
mode in the shorter resonator and the (6,0,0) mode in the 
longer resonator] and the virtual resonator from the combined 
modes near 7.7 kHz [the (4,0,0) mode in the shorter resonator 
and the (8,0,0) mode in the longer resonator] yielded poor 
values for kB that differed by up to 7   ×   10−6 from CODATA 
and varied from run to run in a way that we do not understand.

In this article, we review the theory of the virtual resonator, 
describe key features of the measurements, and discuss the 
uncertainties that might be expected. We describe the puz-
zling, run-dependent results and planned changes that, we 
hope, will solve the puzzle.

2. Theory of the virtual cylindrical resonator

A virtual cylindrical resonator is a mathematical model used 
to analyze the resonance frequency and half-width data from 
the longitudinal gas modes of two gas-filled cylindrical cavi-
ties with identical resonance frequencies and identical end-
plates but with different lengths. The combined measurements 
from the two modes are equivalent to a single mode in a 
hypothetical cylindrical cavity without end-plates. Because 
the virtual resonator has no end-plates, its mode has a higher 
effective quality factor (Q) and requires smaller corrections 
than the modes from either of the actual resonators when ana-
lyzed independently.

Figure 1.  Schematic diagram of two resonators used to make a 
virtual resonator.
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As a simple example, consider a rigid-walled cylindrical 
cavity (radius a) with one end-plate that is fixed and one that is 
a moveable piston. A sound source at a fixed frequency f drives 
acoustic oscillations in the gas. As described previously [2,3], 
when the piston is moved to change the length of the cavity, 
the source excites a series of resonances of the longitudinal 
gas modes (ℓ,0,0) when the distance L between the end-plates 
has specific values ℓL . The speed of sound c in the gas may 
be determined from a single mode by a measurement of ℓL . 
The accuracy of the speed of sound measurement using this 
technique is limited by the accuracy with which the distance 
between the piston and the fixed end-plate can be measured. 
A better technique utilizes two adjacent longitudinal modes 
and requires a measurement of the displacement of the piston, 
Δ = −ℓ+ ℓL L L1 , which can be measured more accurately than 
the cavity’s length.

For an inviscid gas in a perfectly cylindrical cavity bounded 
by a rigid, insulating wall, the expression for the speed of sound 
using the single-mode technique is = ℓℓc fL2 / ; using the dis-
placement technique, the expression is = Δc f L2 . For sound 
speed measurements in real gases using either technique, the 
measured length or displacement must be corrected to account 
for the presence of the viscous and thermal boundary layers 
whose characteristic lengths (δv and δt, respectively) depend on 
the pressure and on the acoustic frequency. However, because 
f is constant, the lengths δv and δt do not change as L changes. 
With the single-mode technique, the expression for the speed 
of sound is, including the boundary layer corrections,

⎡

⎣
⎢

⎛
⎝
⎜

⎞
⎠
⎟
⎤

⎦
⎥δ γ δ γ δ δ=

ℓ
+ + ( − ) + ( − ) + Οℓ

ℓ
c

f L

a a L a

2
1

2
1

2
1v t t t

2

2

�

(2)

In equation (2), the second and third terms in the rectan-
gular brackets account for the boundary layers at the cylin-
drical wall, and the fourth term accounts for the thermal 
boundary layer at the end-plates. In contrast, the expression 
for the speed of sound measured with the displacement tech-
nique is

⎡
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Equation (3) is preferable to equation  (2) because the 
term (γ  −  1)δt/L that accounts for heat conduction at the end-
plates is not present. Furthermore, equation (3) contains the 
displacement ΔL instead of the length Lℓ in equation  (2). 
Equation (3) describes a mathematical cylindrical cavity with 
radius a and length ΔL but with periodic boundary conditions 
at the ends instead of end-plates. We call this end-free cavity 
a virtual resonator.

We considered testing the virtual resonator concept using a 
cylindrical ‘acoustic interferometer’ (described above) similar 
to the one used at NPL in the 1970s [2,3]. However, we were 
discouraged by the challenges of building a cylindrical cavity 
(with a diameter on the order of 8 cm) terminated by a piston 
that could be displaced several centimeters along the cylin-
der’s axis while maintaining stable orientation with respect 
to that axis. Furthermore, the gap (or sliding seal) between 

the piston and the cavity’s wall must have a stable (preferably 
predictable), acoustic admittance and it must not contaminate 
the test gas with impurities at sub-part-per-million levels. To 
avoid these complexities, we chose to test the virtual-resonator 
concept by using the two fixed-length (80 mm and 160 mm) 
resonators as sketched in figure 1.

We designate the longer cavity ‘1’ and the shorter cavity 
‘2.’ The sinusoidal curves in figure 2 illustrate the standing 
pressure waves in the cavities when the modes ℓ2 = 2 and ℓ1 = 
4 are resonant. Because the cavities’ lengths and mode indices 
differ by factors of 2, the wavelength of sound (and therefore 
the frequency) is the same in both cavities. The dashed lines in 
figure 2 show how the two halves of resonator-2 are mapped 
onto the end sections  of resonator-1. The center section  of 
resonator-1 inside the dashed lines is the virtual resonator 
with length Δ = −L L L12 1 2 and has no end-plates. Thus, from 
first-order perturbation theory, the surface integral over the 
acoustic admittance in cavity-1 is the sum of the integral over 
cavity-2 and the integral over the virtual cavity. A detailed 
analysis predicts the working equation for the speed of sound 
in terms of the measured resonance frequencies f 1, f 2 and the 
measured cavity lengths is (from equation (17) described pre-
viously [15])

⎛
⎝
⎜

⎞
⎠
⎟δ=

Δ
ℓ − ℓ

−
Δ

c
f f L

f f

L

L

2
1 ,1 2 12

1 2 2 1

12

12
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is a small correction that depends on the perturbations Δf1 and 
Δf2 for the individual resonators. By design, ℓ = ℓ21 2, ≈f f1 2, 

Δ ≈L L/ 21 12 , and Δ ≈L L/ 12 12 . Because the frequencies and the 

Figure 2.  The concept of a virtual resonator derived from 
measurements in two resonators whose lengths differ by a factor 
of 2. The longitudinal mode indices differ by a factor of 2, so the 
frequencies will be nearly equal.
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end-plates in the two resonators are similar, the perturbation 
from the end-plates caused by the thermal boundary layer can-
cels out to the first order in equations (4) and (5). Of greater 
importance, the hard-to-model, frequency-dependent pertur-
bations from the compliance of the end-plates, fill ducts, and 
transducers built into the end-plates, and from the differences 
between the optical and acoustic lengths cancel out to the first 
order in equation  (5), provided that the compliances, ducts, 
transducers, and optical coatings are identical in both end-
plates and that the frequencies in both resonators are similar. 
The analysis of the virtual resonator predicts the resonance 
half-width is

=
Δ

−
Δ( ) ( ) ( )

g

f

L

L

g

f

L

L

g

f
,12

12
0

1

12

1

1
0

2

12

2

2
0� (6)

where g1 and g2 denote the half-widths from resonator-1 and 
resonator-2, respectively. For first-order, g12 is just the sum of 
the thermal and viscous losses on the cylindrical wall in the 
center section of resonator-1. We used equation (6) to examine 
the differences between the measured and calculated half-
widths for the virtual resonator.

3.  Apparatus and measurements

Figure 3 shows the 80 mm resonator on a support plate that 
was hung from thin rods. The rods were hung from springs that 
were attached to the lid of a pressure vessel. The 160 mm reso-
nator (not shown) was hung in the same way from the same lid. 

A common manifold supplied argon gas from a single source 
to both resonators through a tee union. Both resonators were 
operated at nearly identical temperatures and pressures and at 
nearly identical frequencies. Furthermore, data were acquired 
from both resonators at the same time, thereby reducing the 
time needed for measurements. In hindsight, these advantages 
may have been offset by an un-modeled coupling between the 
resonators, as discussed in section 7 below.

The 80 mm long resonator is the same one that we used 
in a previous measurement of kB [11]. The 160 mm resonator 
was constructed to resemble the 80 mm resonator as closely 
as possible. The cylindrical portions of both resonators were 
made from the same billet of bearing steel. Both cylinders 
had nominal inner diameters of 80 mm and wall thicknesses 
of 40 mm. The cross-section of each cylinder was circular 
within 0.01 mm. As explained in our previous publication 
[11], two ends of a practical cylinder cavity are tilted at an 
angle. According to the request of the laser interferometry 
and the capability of machining, we designed the machining 
tolerance for the tilted angle for each cylinder to be within 
the range (4.2 to 5.8)  ×  10−6 radians, which is equivalent to 
0.5 μm to 0.7μm across the chosen diameters. The optical 
length between the end-plates of each resonator was meas-
ured using two-color interferometry, as described previously 
[11]. The fractional uncertainty of the length measurement 
was 0.28   ×   10−6 for the 160 mm resonator and 0.81   ×   10−6 
for the 80 mm resonator.

The end-plates of each cavity were 15 mm thick and 
were made from the same block of optical quartz glass. The 

Figure 3.  The 80 mm cylindrical resonator and supports.
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end-plate surfaces inside the cavity were coated with a par-
tially reflecting metal film. The clamping rings and bolts 
holding each end-plate in place were of similar construction. 
The bolts were machined from the same billet of bearing steel 
used to fabricate the cylindrical cavities. The bolts were unlu-
bricated and were tightened to the same torque. Nominally 
identical piezoelectric transducers made from lead zirconium 
titanate (PZT) were embedded in wells that had been ground 
into the outside surface of each fused quartz end-plate. The 
bottom of each well served as a quartz diaphragm transmitting 
sound into or out of the cavity but preventing the gas in the 
cavity from mixing with the gas in the pressure vessel outside 
the cavity. Fill ducts with nominally identical dimensions led 
from one end of the cylindrical wall of each cavity to a single 
gas purifier/manifold. Additional details concerning the reso-
nators can be found in our previous publication [11]

As described in section 5.2 of our previous publication [11], 
each standard capsule platinum resistance thermometer was 
enclosed in a sealed sleeve to provide the same thermal condi-
tions as the calibration. Then, an enclosed thermometer was 
placed into each of the wells that had been drilled into oppo-
site ends of the cylindrical wall of each resonator (figure 3).  
When data were taken, the differences between the average 
temperatures indicated by each thermometer pair were 
within  ±0.1 mK; this indicates that each resonator was nearly 
isothermal. The difference between the average temperatures 
of the two resonators was no more than  ±0.3 mK. These dif-
ferences are a measure of the temperature inhomogeneity 
inside the pressure vessel. The thermometers were calibrated 
before and after the measurements and they performed as well 
as the thermometers described previously [11]. The difference 
between the averages of the initial and final calibrations of 
each thermometer was less than  ±0.05 mK, which indicates 
the thermometers were stable during the month-long series of 
measurements. The triple point of water (TPW) cell that was 
used for the calibrations was corrected for the isotopic com-
position of the water. As described previously [11], the TPW 
cell had been compared with NIM’s national reference TPW 
cells, which, in turn, had been compared with TPW cells of 
other national metrology institutes.

In this work, we used ‘BIP Plus’ argon taken from the same 
container that supplied the argon for cases I and II during our 
recent measurement of kB, as described previously [11]. The 
same reference provides evidence that the average molar 
mass of this argon was M = 39.947810(10) g mol−1, and we 
used this value of M to compute kB for the present data. In a 
future publication, we will describe extensive, new GC-MS 
(gas chromatography–mass spectroscopy) measurements and 
speed-of-sound ratio measurements that have refined the value 
of M for the argon in this cylinder and reduced its uncertainty. 
However, the small change in M is not significant for evalu-
ating the virtual resonator concept.

We studied the longitudinal acoustic modes of the argon-
filled cavities at 3.8 kHz, 5.8 kHz, and 7.7 kHz. Figure  4 
displays a semi-log plot of the acoustic spectrum measured 
at the detector transducers while both cavities were evacu-
ated. Below 6.1 kHz, both spectra in figure 4 are featureless. 
Therefore, we did not expect the mechanical resonances either 

of the cylinders or of their supports to strongly perturb the 
gas resonances. Above 6.1 kHz, the amplitudes of the gas 
resonances at 550 kPa were 50  ×  larger than the features in 
figure 4; however, at 50 kPa, the amplitudes of the gas reso-
nances were only five-times  ×  larger than the features in 
figure 4. Therefore, we did not expect these features to cause 
problems at the higher pressures, but they could cause prob-
lems at low pressures. (We note that mechanical resonances 
related to joints or other small gaps are usually damped when 
they are filled with gas at high pressure.)

4.  Frequency data and uncertainties

Before measuring the resonance frequencies we filled the 
cavities with argon to either 550 kPa or 500 kPa. As the mea-
surements proceeded, we reduced the pressure in steps of 
100 kPa and ended at 50 kPa while maintaining the tempera-
ture within 0.6 mK of TTPW. On each pressure step, we mea-
sured the frequencies of the longitudinal modes ℓ = 2, 3, and 
4 of the 80 mm resonator and the modes ℓ = 4, 6, and 8 of the 
160 mm resonator repeatedly (4 to 8 times). We repeated the 
isotherm a total of six times. We reduced the repeated fre-
quency measurements to identical temperatures and pressures 
and then computed their averages and standard deviations for 
further processing. Next, we describe how we used the stan-
dard deviations of the repeated measurements to objectively 
weight the sound speed data to fit the pressure dependence. 
If random noise is dominant, then we expect the standard 
deviations of the frequencies and half-widths, σ f  and σg, to be 
approximately equal in value and to be power-law functions 
of the quality factor Q only. The log-log plots in figure 5 show 
σ f  / f and σg / f as a function of Q.

The top panel in figure 5 displays the Q-dependence of the 
scaled standard deviations of the measured frequencies σ f /f 
and measured half-widths σg/ f for the 3.8 kHz modes of both 
resonators (ℓ = 2 mode of the 80 mm resonator and ℓ = 4 
mode of the 160 mm resonator). The Qs are the quality fac-
tors of the resonances; at low pressures, they are dominated 

Figure 4.  Acoustic spectrum measured while the resonators were 
evacuated. The arrows indicate the approximate frequencies of the 
gas modes studied. The range of amplitudes for the gas modes at 
50 kPa and 550 kPa at 7.7 kHz are shown for comparison.
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by boundary losses that vary as p−1/2. As expected σ f  / f and 
σg/ f are approximately equal at low pressures (corresponding 
to low Q), reaching a value of approximately 4   ×   10−6 at 
50 kPa. As the Qs increase, the values of σ f  / f decrease and 
then level off near (0.2 to 0.3)  ×  10−6. The lower bounds to  
σ f  / f are determined by small changes in the temperature and/
or pressure of the argon. The dashed curves passing through 
the plotted values of σ f  / f have the functional form: σ f  / f = [a2 
+ (bQ−c)2]1/2. We used (2c2σ f  / f )N−1/2, where N is the number 
of repeated measurements, to determine weights when we 
fitted functions of the pressure to the measured values of c2. 
The weights ranged from 40 at the lowest pressure to 2   ×   104 
at the highest pressure. Therefore, the data at 50 kPa had very 
low relative weight.

For each separate run, the values of σ f  / f for the 7.7 kHz 
modes of both resonators were comparable to those of the 

3.8 kHz modes (figure 5(d)). However, the run-to-run varia-
tions of f and g at 7.7 kHz were approximately 10-times larger 
than the values of σ f /f and σg/ f at 3.8 kHz. When the run-to-
run variations were large, the average frequencies measured 
during runs starting at 550 kPa differed from those starting 
at 500 kPa. These differences appear in figure 5(c) as ‘saw-
tooth’ patterns at high Q. For the 5.8 kHz modes of both 
resonators (figure 5(b)), the run-to-run variations of f were 
approximately twice those indicated by the dashed curves 
figure 5(a).

5.  Fitting f (T, p, mode) surface

Before fitting functions of the pressure to the frequency data, 
we corrected the measurements to account for the presence of 
the thermal and viscous boundary layers and the fill duct, and 
for center-of-mass motion. For each resonator, we used the 
resonator’s measured length to determine the speed of sound 
cmeas,ℓ for the mode ℓ from the corrected frequencies at each 
state point. In addition, we used equations (4) and (5) to deter-
mine the speed of sound using the virtual resonator concept. 
This procedure generated three sets of sound speed data: one 
set for the 80 mm resonator, one set for the 160 mm resonator, 
and one set for the virtual resonator. We correlated the mea-
sured speed of sound in each data set with the 8-parameter 
surface

− = + + +ℓ ℓ ℓ −
−c A p A A p A p A pmeas,

2
3

3
0, 1, 2

2
1

1� (7)

by adjusting the coefficients A0,ℓ, A1,ℓ, A2, and A−1, where the 
subscript ‘ℓ’ identifies the mode-dependent parameter, to opti-
mize χ2. Because the maximum pressure was only 550 kPa, we 
fixed the coefficient A3 to the value 1.45   ×   10−18 m2 s−2Pa−3 
[4] to avoid over-fitting the data. We weighted the data by 
N/σ2, using values of σ generated by the smooth curves in 
figure  5. With this weighting, the measurements at 50 kPa 
had a negligible influence on the parameters kB, A1, and A2; in 
most cases, A−1 was insignificant. Because of the run-to-run 
variations, the measurements at 7.7 kHz had much less influ-
ence on the parameters than those at 3.8 kHz and 5.8 kHz.

The parameters obtained from the surface fits are listed 
in table 1, and the differences from reference values are dis-
played in figure 6. The virtual resonator formed by combining 
data from the (2,0,0) mode of the shorter resonator and the 
(4,0,0) mode of the longer resonator yielded a value for kB that 
is, fractionally, only (0.2   ±   1.5)  ×  10−6 larger than the 2010 
CODATA-recommended value of kB, where the estimated 
uncertainty includes correlations with the other 7 param-
eters of the surface fit. (All estimated uncertainties are one 
standard uncertainty corresponding to the 68% confidence 
level.) The same virtual resonator yielded values of the pres-
sure derivatives of the speed of sound c in argon, (∂c2/∂p)T and 
(∂c2/∂p2)T, that are closer to literature values than the values 
of kB, (∂c2/∂p)T, and (∂c2/∂p2)T from either cavity, considered 
separately (figure 6).

Figure 7 displays the differences between the values of c2 
determined using the virtual resonator 3.8 kHz and the values 
of c2 from the literature [1, 4]. The results are surprisingly 

Figure 5.  (a)–(c) Plotted points: standard deviation of frequency 
and half-width measurements over six runs as a function of the 
quality factor Q of the resonances. During each run, the frequency 
was measured four to eight times. The smooth dashed curves were 
used to calculate weights when fitting the frequency measurements 
to functions of the pressure. (d) Plotted points: standard deviation 
of the frequency for mode 8 in the 160 mm resonator for 
individual runs. Solid curve without symbols: standard deviation 
of the combined data for the six runs from panel (c) shown for 
comparison.
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good. In contrast, the values of kB, A1, and A2 (hence the 
values of c2) obtained from the 5.8 kHz and 7.7 kHz virtual 
resonators are much worse (figure 6).

6.  Half-width data

Figure 8 shows the differences Δg/ f   ≡  (gmeas–gcalc)/ f between 
the measured and calculated values of g/ f for the individual 
modes in the 80 mm and 160 mm resonators and for the vir-
tual resonator modes as a function of pressure. Our model for 
acoustic resonators predicts g/ f based on known energy loss 
mechanisms, including the contribution to g due to the pres-
ence of the fill duct and, for second-order, thermal conduction 
and viscous drag effects that occur in the volume of gas and 
near the wall of the resonator [16]. For the virtual resonator, 
we plot the difference between equation  (6) evaluated with 
the measured half-widths and equation (6) evaluated with the 
calculated half-widths. The bottom panel of figure  8 shows 
that Δg/ f for the 3.8 kHz virtual resonator (labeled 2,4) is less 
than Δg/ f for mode 2 in the 80 mm resonator and mode 4 in 
the 160 mm resonator at all pressures. In contrast, Δg/ f for the 
5.8 kHz virtual resonator (labeled 3,6) is lower than Δg/ f for 
modes 3 and 6 in the individual resonators at high pressures 
but not at low pressures. The values of Δg/ f for the virtual 

Table 1.  Fitted parameters and derived quantities.

80 mm 160 mm Virtual

UnitParameter Value Parameter Value Parameter Value

A0,2 94 755.42(13) A0,4 94 755.76(6) A0,2,4 94 756.09(14) m2 s−2

A0,3 94 755.31(14) A0,6 94 756.72(6) A0,3,6 94 758.12(14) m2 s−2

A0,4 94 755.57(15) A0,8 94 757.14(11) A0,4,8 94 758.82(20) m2 s−2

104 A1,2 2.0325(52) 104 A1,4 2.1402(25) 104 A1,2,4 2.2481(54) m2 s−2 Pa−1

104 A1,3 2.0613(53) 104 A1,6 2.1277(25) 104 A1,3,6 2.1938(54) m2 s−2 Pa−1

104 A1,4 1.9412(55) 104 A1,8 2.0883(35) 104 A1,4,8 2.2336(66) m2 s−2 Pa−1

1011 A2 5.041(60) 1011 A2 5.126(29) 1011 A2 5.212(60) m2 s−2 Pa−2

10−2A−1 314(98) 10−2A−1 185(46) 10−2A−1   −  0.91   ±   110 m2 s−2 Pa
χ2/ν 2.2 χ2/ν 1.6 χ2/ν 0.8

Derived quantities

104 〈A1〉 2.012(63) 104 〈A1〉 2.119(27) 104 〈A1〉 2.225(28) m2 s−2 Pa−1

〈A0〉 94 755.43(13) 〈A0〉 94 756.54(71) 〈A0〉 94 757.68(142) m2 s−2

1023 〈kB〉 1.380 639 5(18) 1023 〈kB〉 1.380 655 7(103) 1023 〈kB〉 1.380 672 3(207) J K−2

Figure 6.  Results from surface fits of the data for each resonator 
separately and from the virtual-resonator analysis. The uncertainty 
bars on the plotted points include only type-A uncertainties 
from fitting. The horizontal axis labels ‘2’, ‘3’, ... indicate the 
(2,0,0), (3,0,0), ... modes. Top panel: baseline for kB comes 
from CODATA-2010 [1]. The baselines for the middle panel 
[A1  ≡  (∂c2/∂p)T] and for the lower panel [A2  ≡  (∂c2/∂p2)T] come 
from another publication [4]. The gray widths of the baselines 
represent their uncertainties as given elsewhere [1,4].

Figure 7.  Deviations of c2 from the CODATA value of A0 for 
the virtual resonator at 3.8 kHz resulting from the surface fit 
corresponding to the right-most panels in figure 6. The dashed line 
is the baseline for the mode from the surface fit. The error bars are 
(2σ/ f )/N1/2 from the average of the repeated measurements.
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resonator at 7.7 kHz (labeled 4,8) and for modes 4 and 8 in the 
individual resonators alternate between high and low values 
that were obtained from different runs.

7.  Discussion of puzzling results

7.1.  Bad values of c0
2 at 5.8 kHz and 7.7 kHz

Figure 9 displays the deviations of the speed of sound deter-
mined using the 7.7 kHz virtual resonator (with no adjusted 
parameters) from literature values. At low pressures, the 
deviation curves converge to the run-independent value 
( −c c/ 10

2
ref
2 )  ≈  25   ×   10−6. When inspecting the figure, it is 

useful to ignore the lightly weighted, noisy data at 50 kPa. 
This large discrepancy (25   ×   10−6) cannot be attributed to 
impurities in the argon, nor to an unexpected change in the 
length of one of the resonators because the 3.8 kHz virtual res-
onator operating at the same time with the same gas yielded 
the expected values of kB and c0

2 in the low-pressure limit: 
(kB/kB,ref  −  1) = (0.2   ±   1.5)  ×  10−6. Furthermore, the discrep-
ancy of 25   ×   10−6 cannot be attributed to a perturbation of 
the acoustic (gas) oscillations by the resonators’ compliance. 
Such perturbations generate frequency-dependent deviations 
that are proportional to (ρc2)gas and vanish in the limit of zero 
pressure [12]. (Here, ρ is the mass density of the gas.)

7.2.  Excess half-widths at low pressures

The top and middle panels of figure 8 show that Δg/ f increases 
as the pressure is reduced below 200 kPa for all the modes that 
we studied in both resonators. We do not have an explanation 
for this behavior. We expect that the energy loss from un-mod-
eled interactions between the acoustic waves in the gas and 
the solid structures diminishes as (ρc2)gas  ∝  p  →  0. The value 
of Δg/ f for the 3.8 kHz virtual resonator at the lowest pressure 
is approximately half of Δg/ f for the individual resonators 
at the same pressure, which suggests that some of the extra 
energy loss at this frequency in both resonators may have a 
common origin. However, Δg/ f for the 5.8 kHz and 7.7 kHz 
virtual resonators is larger than Δg/ f for the individual reso-
nators at low pressure, which suggests there is a significant 
difference in the origin of the energy loss at these frequencies 
in the individual resonators at low pressure. Furthermore, the 
bottom panel of figure 9 shows that the excess half-widths (or 
unexplained energy losses) for the 7.7 kHz virtual resonator 
are run-dependent (with no adjusted parameters) and converge 
to a non-zero value at zero pressure.

7.3.  Run-dependent values of A1 and A2

The top panel of figure 9 reveals that both A1 (the slope of the 
deviations) and A2 (the curvature of the deviations) differ from 

Figure 8.  Excess half-widths for modes 2, 3, and 4 in the 80 mm 
resonator (top), modes 4, 6, and 8 in the 160 mm resonator (middle), 
and the virtual resonator from equation (6) (bottom).

Figure 9.  Run-dependent performance of the 7.7 kHz virtual 
resonator; no adjusted parameters. (top) Deviations of c2 determined 
using equation (4) from reference values [4]. (bottom) Δg/ f 
determined using equation (6). In both plots, the dashed lines show 
the result of averaging over all six runs.
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their expected values in a run-dependent manner. Because we 
did not detect a similar run dependence in the data from the 
3.8 kHz virtual resonator, the run dependences of A1 and A2 
cannot be attributed to changes in composition of the gas.

The perturbation of the acoustic oscillations by the reso-
nators’ compliance predicts that A1 is frequency-dependent 
(or, equivalently, mode-dependent). Pitre et al [5] argued that 
A2 also would be mode-dependent if an acoustic mode hap-
pened to be close to a resonance of the shell. Figure 4, which 
shows numerous shell resonances above 6.1 kHz, supports 
that argument. To account for run dependence, however, we 
would have to argue that the process of emptying and refilling 
the pressure vessel shifted resonance frequency of the shell 
relative to the resonance frequencies of the gas. Even if 
run-dependent gas–shell interactions caused the anomalous 
pressure dependence at 7.7 kHz, we remind the reader that 
gas–shell interactions do not explain the erroneous values of 
c0

2 discussed in section 7.1.
However, figure 10 shows that the run-dependent values of 

A1 measured at 7.7 kHz with the 80 mm resonator are highly 
correlated with the values measured with the 160 mm reso-
nator. (The correlation coefficient is 0.8.) This suggests that 
a run-dependent phenomenon is coupled to both resonators.

Figure 11 compares the half-widths of the (8,0,0) mode 
of the 160 mm resonator and the (4,0,0) mode of the 80 mm 
resonator to the difference between the frequencies of these 
two modes: f 8,160mm– f 4,80mm. The frequency difference is 
1/5 of the combined half-widths at 550 kPa and decreases 
to 1/9 of the combined half-widths at 100 kPa. Thus, the two 
modes overlap. If, for example, the acoustic detector on the 
80 mm resonator had some weak response to acoustic oscil-
lations within the 160 mm resonator, then this would have 
generated a small distortion of the resonance line shape that 
might not have been detected. Such a coupling could affect 
the fitted resonance frequencies and half-widths in unpre-
dictable ways.

8.  Conclusion

We showed that the virtual resonator at 3.8 kHz, formed 
from the (2,0,0) mode of the 80 mm resonator and the (4,0,0) 
mode of the 160 mm resonator, gave a value for kB that was 
only (0.2   ±   1.5)  ×  10−6 larger than the 2010 CODATA-
recommended value. Furthermore, the values for A1 and A2 
from the virtual resonator were nearly consistent with litera-
ture values when the values from the individual resonators 
were not. The results at 3.8 kHz demonstrate success of the 
virtual resonator at reducing the systematic errors that are 
present in the individual resonators.

In contrast, the virtual resonator at 5.8 kHz, formed from 
the (3,0,0) mode of the 80 mm resonator and the (6,0,0) mode 
of the 160 mm resonator, and the virtual resonator at 7.7 kHz, 
formed from the (4,0,0) mode of the 80 mm resonator and the 
(8,0,0) mode of the 160 mm resonator, gave surprisingly poor 
values of kB. We show that the data at 5.8 kHz and 7.7 kHz 
exhibited pathological behaviors that were not removed by the 
virtual resonator analysis and were not present in the data at 
3.8 kHz.

We speculate that the two resonators were weakly coupled 
to each other, either electrically or mechanically, and that the 
coupling was lossy. Therefore, their resonance frequencies 
were determined, in part, by the coupling, much like the text-
book problem of coupled pendula [21].3,4 This hypothetical 
lossy coupling had to be present, even when the pressure in 
the common pressure vessel was quite low, to explain the erro-
neous values of c0

2 that we obtained at 5.8 kHz and 7.7 kHz and 
to explain the large excess half-widths. Such a coupling, if it 
exists, may be eliminated either by measuring the frequencies 
and half-widths on the isotherm with only one resonator in the 
pressure vessel at a time or by using resonators whose lengths 
differ from a factor of two by enough that the frequencies do 
not overlap. We plan to pursue one or both of these strategies.

Figure 10.  Correlation of the run-dependent values of A1 measured 
at 7.7 kHz with the 80 mm resonator and the 160 mm resonator.

Figure 11.  Half-widths of the 7.7 kHz modes of the 80 mm 
(squares) and 160 mm (triangles) resonators are much larger than 
the frequency differences between these two modes (circles).

3 See, for example [21].
4 For a more advanced discussion of coupled oscillators, see [21].
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