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Abstract  We report the implementation of a swept-sine 

dynamic force calibration system at NIST. This system is 

designed to perform primary calibration of force transducers 

at frequencies up to 2 kHz and forces up to 2 kN. We 

demonstrate the use of this system to measure the dynamic 

sensitivity of a strain-gauge based force transducer up to 2 

kHz. The current dominant source of uncertainty in the 

system is angular motion of the calibration assembly. 

Keywords: dynamic force, sinusoidal force, harmonic force, 

force calibration. 

1. INTRODUCTION 

Established protocols for force transducer calibration are 

static, whereas many force measurement applications (see 

e.g. [1]) require accurate knowledge of the force sensing 

system’s dynamic response. This has led to efforts at 

national metrology institutes [2, 3, 4] to provide dynamic 

calibration of force transducers, with recent reports [5, 6] of 

traceable sinusoidal calibrations based on accelerated 

masses. In this method a body of known mass is affixed to a 

force transducer to be calibrated, and the two objects are 

accelerated together sinusoidally. The acceleration is 

measured, and the product of this acceleration with the 

known mass gives the force being applied to the transducer. 

We report here the implementation of such a system at the 

National Institute of Standards and Technology (NIST), 

U.S.A., designed for calibration at frequencies up to 2 kHz 

and with forces up to 2 kN. We describe the uncertainty 

components for calibrations performed with this system, and 

show example calibration measurements of a strain-gauge-

based transducer. 

2.  CALIBRATION SYSTEM 

A diagram of the calibration system is provided in Fig. 1. 

The system presented here is the current realization of the 

system previously described in [7]. The transducer under 

test is secured to the table of an electrodynamic shaker, with 

the sensing or “live” end (for transducers that have such a 

distinction) away from the table; to this is attached a 

calibration mass. A sinusoidal signal is provided to an 

amplifier by a signal generator, which in turn drives the 

shaker at a prescribed frequency and amplitude. The 

electrodynamic shaker is capable of producing a maximum 

force of 2 kN over the range of 10 Hz to 4 kHz. 

 

Fig. 1. Schematic diagram of experimental system. 

For the majority of transducers, this applied force gives 

rise to an output voltage, which is the indicator of the force. 

For strain-gauge-based transducers, the measured output 

voltage is produced by a strain gauge resistor bridge circuit, 

which is proportional to the differential change in resistance 

of strain gauges and to the bridge excitation voltage. The 

output of the transducer and the excitation voltage are 

recorded with fast-sampling DC voltmeters (Agilent 

Technologies 3458A and 34411A respectively) [8]. The 

transducer output voltage is sampled simultaneously with 

the position of the calibration mass, which is measured by 

means of laser vibrometry, with two vibrometers 

incorporated in the system. The vibrometers can each be 

configured to make absolute measurements of the top mass 

motion (i.e. motion relative to a stationary reference mirror), 

or measurements of the relative motion between two points 

in the calibration assembly.  

 

3. UNCERTAINTY EVALUATION 

 

Each suspected source of possible significant uncertainty 

is evaluated by measurement or estimated by calculation. 

The results are summarized in Tables 1 and 2. In detail, the 

uncertainty depends on the specific operating point 

(frequency, force, calibration mass) and the properties of the 

transducer under calibration. The largest source of 

uncertainty is angular motion (rocking) of the shaker-

transducer-mass assembly. For low-voltage-output 

transducers, the uncertainty of the voltmeter measurement of 

the transducer output is also significant. 



Table 1. Relative uncertainties for the largest force uncertainty 

components. All listed components are evaluated by type B 

methods. 

Force uncertainty source Standard uncertainty [N/N]  

Angular motion 3.0 × 10-2 - 1.3 × 10-3 

Optical platform 

vibrations 

2.4 × 10-3 - 3.0 × 10-5 

Vibrometer resolution 1.2 × 10-3 - 3.0 × 10-7 

Elastic wave dynamics 1.2 × 10-3 - 1.7 × 10-5 

 

Table 2. Relative uncertainties for largest voltage uncertainty 

components. The first two listed components are type B, while the 

third (anti-aliasing filter gain) is evaluated by a type A method. 

Voltage uncertainty 

source 

Standard uncertainty [V/V] 

DVM uncertainty for 

transducer output voltage 

(0.1 mV – 10 mV) 

 

2.4 × 10-3 - 3.9 × 10-5  

Off-axis loading 2.5 × 10-4 

Anti-aliasing filter gain 2.1 × 10-4 

 

 

3.1 Angular motion 

The largest source of uncertainty in the acceleration (and 

hence the applied force) is due to tilting (rocking) of the 

calibration assembly, and this is in general a function of 

frequency. A tilt angle  causes a relative displacement error 

𝑒𝑎𝑛𝑔̅̅ ̅̅ ̅̅  of 

  𝑒𝑎𝑛𝑔̅̅ ̅̅ ̅̅ ≅  
𝜖0+ 𝛿𝑦

𝛿𝑧
𝛽 +  

𝛿𝑧 − 𝐷

𝛿𝑧
(𝛽2 − 𝛽𝜃)  ,    (1) 

where  𝜖0 is the initial distance of the measurement spot 

from the geometric center of the calibration mass surface, z 

is the axial (intentional) displacement of the calibration 

mass, y is the transverse (undesired) displacement of the 

calibration mass,  D is the path distance from the 

measurement spot to the photodetector, and θ is the 

misalignment of the incident laser beam relative to the 

calibration mass surface normal. The geometry is illustrated 

in Fig. 2. 

 

Fig. 2. Angles and displacements involved in calibration mass 

angular motion. 

The tilt angle  was determined by calibrating the 

variation in interference signal strength with target reflector 

angle, using a finely-adjustable mirror as the target reflector. 

This calibration allowed the tilt angle to be determined in-

situ during calibration measurements by monitoring the 

variation in interference signal strength. However it did not 

allow correction for the effect of tilt, in the first place 

because the values of θ and 𝜖0  are unknown, and in the 

second place because the sign of the first term in (1) relative 

to the true displacement was not determined. For each 

frequency, these three points define a plane and allow the 

maximum angle to be calculated. The angle was found not 

to exceed 7.0 × 10
-5

 rad, varying non-motonically with 

frequency according to the dynamical behavior of the 

calibration stack. 𝜖0 is less than 0.5 mm for calibration 

measurements made so far, and measurement of y/z found 

this ratio to be less than or equal to 0.1. A pinhole used in 

the alignment procedure keeps angle θ below 1.5 × 10
-4

 rad. 

The path length D is 1.4 m and the axial displacement 

amplitude z ranges from 1 mm to 300 nm. 

Thus the dominant terms in (1) are (𝜖0 𝛿𝑧⁄ )𝛽 and 

(𝐷 𝛿𝑧⁄ )𝛽𝜃. The value of β varies with frequency and 

calibration mass, and the maximum values do not occur at 

the highest frequencies (where z is smallest). The resulting 

uncertainty contribution ranges from 1.3 × 10
-3

 to 3.0 × 10
-2

, 

where we have assumed a uniform distribution and thus 

divided the maximal value at each operating point 

(frequency, displacement amplitude, calibration mass) by 

√3 [9] .  

To date we have used variation of the calibration mass to 

get low-uncertainty calibration measurements at all 

frequencies, as  at a given frequency varies with the 

calibration mass. Other means to reduce this uncertainty 

include improving the precision of alignment, i.e. reducing 

the possible size of 𝜖0 and θ, averaging measurements of the 

top mass acceleration made at multiple locations, and 

structural improvements such as bearings to reduce (or 

practically eliminate) tilt.  

 

3.2 Vibration of the Interferometer Platform 

Vertical motion of the interferometer platform affects the 

interferometer measurement arm length in the same way as 

motion of the calibration mass, and so will erroneously be 

interpreted as motion of the calibration mass
1
. A vibration 

isolation system is used to minimize platform vibrations. 

The relative displacement error 𝑒𝑣𝑖𝑏̅̅ ̅̅ ̅ due to interferometer 

platform vibrations is a function of frequency and is given 

by 

 𝑒𝑣𝑖𝑏̅̅ ̅̅ ̅ =  
𝑥𝑏 𝑇𝑝𝑙𝑎𝑡(𝑓)

𝑥𝑐
 ,    (2) 

where xb is the displacement of the shaker table, xc is the 

displacement of the calibration mass, and Tplat(f) is the 

experimentally measured transmission coefficient between 

the shaker table and the optical platform. The transfer 

function from the shaker table to the interferometer platform 

was measured using accelerometers mounted at both 

                                                           
1
 This does not apply to differential measurements between two 

points on the calibration stack. 



locations, for two different transducer-mass combinations. 

For most of the calibration frequency range, the 

transmission coefficient was below 0.1 %. At particular 

frequencies (believed to be resonance frequencies of the 

frame supporting the optical platform), the relative 

amplitude was as large as 0.25%. As there will be some 

dependence of Tplat(f)  on the shaker acceleration amplitude 

and the combined mass of the calibration stack components, 

this is taken to be the 1-sigma width of a Gaussian 

probability distribution. We note that platform vibrations 

could be measured in real time during calibration 

measurements and corrected for, thus greatly reducing this 

uncertainty component. 

 

3.3 Vibrometer Resolution 

The specified displacement resolution of vibrometer 1 

(Agilent Technologies 5517DL + 10715A + N1231B) is 

0.15 nm. The resolution of vibrometer 2 (custom-assembled) 

was measured to be below 1 nm/Hz
1/2

 throughout the 

calibration range of the apparatus, with the largest values at 

low frequencies where the calibration mass displacements 

are also large. This measurement was done by reorienting an 

aiming mirror that normally directs the target beam towards 

the shaker table, so that the beam is instead reflected straight 

back to the interferometer beamsplitter. This measurement 

captures all sources of interferometer noise except refractive 

index fluctuations in the section of the target beampath 

between the aiming mirror and the calibration mass top 

surface, and any changes in the mechanical vibration of the 

aiming mirror caused by its reorientation. The relative 

uncertainty due to vibrometer resolution is maximum at any 

frequency for small displacements or accelerations. In Table 

1 we assume a minimum acceleration of 1 m/s
2
 and a one-

second measurement time. We model the uncertainty as 

uniformly distributed up to the measured or specified 

resolution. 

 

3.4 Elastic Wave Dynamics 

The acceleration of the calibration mass is not exactly 

uniform throughout the calibration mass, with the variation 

increasing with drive frequency.  The actual force F is 

proportional to a body-averaged acceleration 

 𝐹 =  𝜌 ∫ 𝒂(𝒓)
body

𝑑3𝒓 ,                (3) 

where a is the acceleration vector at position r and we have 

assumed the density ρ is uniform. However the acceleration 

is measured at one point on the calibration mass surface 

with a laser vibrometer, and thus the measured acceleration 

differs from the body-average. A correction factor to 

account for the internal dynamics of the calibration mass 

was determined using finite-element analysis (the details of 

the analysis will be reported elsewhere) and was found to lie 

between 0.3 % and 2 % at the maximum calibration 

frequency of 2 kHz, for the range of calibration masses used 

(1 kg to 10 kg). The uncertainty is near 10 % of the 

correction factor, dominated by uncertainty in the 

calibration mass material properties, which were taken from 

tabulated data. A uniform distribution is assumed for this 

uncertainty component at each operating point (frequency, 

calibration mass). 

 

3.5 Voltmeter Uncertainty 

The uncertainty in the DVM voltage measurement is a 

function of the signal amplitude, sampling frequency, 

sample aperture, averaging time and additional DVM 

settings. For the settings used for the calibration 

measurements reported in the next section, the 

manufacturer-specified relative uncertainty is 6.8 × 10
−5

 for 

a 10 mV signal and 4.2 × 10
−3

 for a 0.1 mV signal. These 

are taken as maximal values of a uniform distribution. 

 

3.6 Additional Sources of Uncertainty 

Static and dynamic misalignment combine with the 

transducer’s sensitivity to moments and transverse forces to 

cause error; in our system this results in an uncertainty up to 

2.5 parts in 10
4
 for transducers with transverse force 

sensitivity ≤ 0.25 % of the axial sensitivity and a moment 

sensitivity (relative to the axial sensitivity) ≤ 0.01 %/mm. 

Repeatability in the measured stability of the gain of the 

anti-aliasing filter used was within 2.1 parts in 10
4
. Other 

sources of uncertainty evaluated, and found to be below 1 

part in 10
4
 included mass measurement uncertainty, 

aerodynamic drag, static alignment effects on the measured 

acceleration, and uncertainty of the excitation voltage 

measurement. In a calibration of a transducer’s response, 

repeatability of the transducer’s behavior (including 

mounting effects) is an additional uncertainty component to 

be measured and combined with the calibration 

measurement uncertainty. 

4.  EXAMPLE CALIBRATION  

4.1 Calibration Measurements 

The performance of the system is demonstrated by 

example calibration measurements on a strain-gauge-based 

transducer of 1.3 kN capacity. The static sensitivity of the 

transducer used is 2.098 mV/V, with a static nonlinearity of 

0.026 % in tension and -0.004 % in compression. A 10-Volt 

DC bridge excitation voltage was used. Calibration 

measurements were performed spanning the range 100 Hz to  

 

 

Fig. 3. Measured sensitivity amplitude of 1.3 kN strain-gauge force 

transducer. 



2 kHz at a constant nominal calibration mass acceleration 

amplitude of 50 m/s
2
 (except below 200 Hz where the 

acceleration amplitude was 10 m/s
2
) and with varying 

calibration mass values. The complex sensitivity at each 

frequency is determined as the ratio of the Fourier 

transforms of the transducer output voltage waveform and 

the applied force waveform. The measured sensitivity 

amplitude is shown in Fig. 3. In general the sensitivity is 

expected to be a function of the external mass connected to 

the transducer; this is due to the inertial force offset due to 

acceleration of internal mass in the transducer. As the 

connected external mass is increased, the sensitivity 

approaches a limiting curve. The sensitivity as f  0 in the 

high-calibration-mass limit agreed with the static sensitivity. 

The overall expanded uncertainty (k = 2) for the measured 

sensitivity amplitude at each calibration frequency is  

Table 3. Expanded relative uncertainties (k = 2) for sensitivity 

measurements on a 1.3 kN strain-gauge force transducer using 

different calibration masses. Points with uncertainty ≥ 1 % are 

indicated in boldface. 

Frequency 

[Hz] 

1.5 kg mass 3 kg mass 5 kg mass 

100 0.0046 0.0053 0.0032 

150 0.0051 0.0039 0.0037 

200 0.0042 0.0038 0.0038 

250 0.0044 0.0044 0.0044 

300 0.0049 0.0050 0.0047 

350 0.0128 0.0106 0.0079 

400 0.0125 0.0098 0.0068 

450  0.0073 0.0066 

500 0.0070 0.0069 0.0073 

550 0.0074 0.0073 0.0073 

600 0.0079 0.0076 0.0082 

650 0.0145 0.0093 0.0299 

700 0.0080 0.0081 0.0088 

750 0.0082 0.0085 0.0123 

800 0.0083 0.0094 0.0113 

850 0.0084 0.0178 0.0129 

900 0.0086 0.0166 0.0090 

950 0.0087 0.0120 0.0148 

1000 0.0091 0.0165 0.0286 

1050 0.0099 0.0178 0.0307 

1100 0.0102 0.0188 0.0326 

1150 0.0125 0.0172 0.0283 

1200 0.0102 0.0151 0.0226 

1250 0.0109 0.0179 0.0284 

1300 0.0124 0.0221 0.0357 

1350 0.0117 0.0187 0.0276 

1400 0.0105 0.0149 0.0187 

1450 0.0111 0.0169 0.0224 

1500 0.0116 0.0194 0.0270 

1550 0.0124 0.0225 0.0330 

1600 0.0135 0.0269 0.0405 

1650 0.0139 0.0263 0.0388 

1700 0.0134 0.0270 0.0375 

1750 0.0127 0.0241 0.0284 

1800 0.0116 0.0247 0.0230 

1850 0.0125 0.0292 0.0248 

1900 0.0131 0.0341 0.0312 

1950 0.0147 0.0343 0.0264 

2000 0.0145 0.0340 0.0246 

provided in Table 3. The dominant contributor to 

uncertainties above 1 % is off-axis motions of the 

calibration assembly. As shown in the table, by using two or 

more calibration masses the transducer is calibrated over the 

full frequency range with an expanded uncertainty of 1.5 % 

or less at each frequency. For a given transducer and 

calibration mass, frequencies with large off-axis motion can 

be checked in a pre-calibration frequency sweep. 

 

4.2 Transducer Model Parameters 

A force transducer can be modeled as two lumped 

masses connected by a linear spring and damper, as depicted 

in Fig. 4. Values of the model parameters ms, ks and cs can 

be deduced from the observed dynamic behavior of the 

transducer. The masses mp and ms are accelerated together, 

and thus the internal force applied to the transducer spring 

and damper is related to the external force 𝑓𝑒𝑥𝑡 =  𝑚𝑝𝑥̈𝑝 by  

  𝑓𝑖𝑛𝑡 =  −(𝑘𝑠𝑧 + 𝑐𝑠𝑧̇) = 𝑓𝑒𝑥𝑡
𝑚𝑝+ 𝑚𝑠

𝑚𝑝
 ,        (4) 

or in the frequency domain 

 𝑓𝑖𝑛𝑡 =  −(𝑘𝑠 + 𝑖 𝜔 𝑐𝑠)𝑍 = 𝑓𝑒𝑥𝑡
𝑚𝑝+ 𝑚𝑠

𝑚𝑝
 .      (5) 

The transducer output signal is modelled as being 

proportional to the force applied to the spring, 𝑘𝑠𝑍, so as ω 

 0, the sensitivity is proportional to 𝑓𝑒𝑥𝑡
𝑚𝑝+ 𝑚𝑠

𝑚𝑝
. This 

variation in sensitivity with calibration mass is evident in 

fig. 3. From such data we can determine ms such that the 

corrected sensitivity as ω  0 is independent of mp. For the 

transducer used in this example calibration, ms is determined 

to be 0.015 ± 0.0042 kg (k = 1). The equation of motion for 

the combined top mass mp + ms can be written as 

  (𝑚𝑝 + 𝑚𝑠)𝑥̈𝑝 + 𝑐𝑠(𝑥̇𝑝 − 𝑥̇𝑏) + 𝑘𝑠(𝑥𝑝 − 𝑥𝑏) = 0, (6) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Single-degree-of-freedom model of the force transducer in 

the calibration assembly. mp is the calibration mass, ms is the top 

mass of the transducer, mb is the bottom mass of the transducer, ks 

is the stiffness of the transducer and cs is the damping constant of 

the transducer. The transducer output voltage is proportional to the 

extension of spring ks (and thus to the force applied to this spring). 

Vout 



 

Fig. 5. Observed calibration stack mechanical response for 

different calibration mass values. 

or in the frequency domain as 

 
𝑋𝑝

𝑋𝑏
=

𝑘𝑠+𝑖𝑐𝑠𝜔

−(𝑚𝑝+𝑚𝑠)𝜔2+𝑖𝑐𝑠𝜔+𝑘𝑠
  (7) 

       =  
𝜔𝑛

2 +𝑖2 𝜔𝑛𝜔

𝜔𝑛
2 −𝜔2+𝑖2 𝜔𝑛𝜔

 ,  (8) 

        |
𝑋𝑝

𝑋𝑏
|  = [

𝜔𝑛
4 +(2 𝜔𝑛𝜔)2

(𝜔𝑛
2 − 𝜔2)

2
+(2 𝜔𝑛𝜔)2

]
1/2

,       (9) 

Where 𝜔𝑛 = √𝑘𝑠 (𝑚𝑝 + 𝑚𝑠)⁄  and  =  𝑐𝑠 2(𝑚𝑝 + 𝑚𝑠)𝜔𝑛⁄ . 

In Fig. 5 we plot the measured mechanical response of the 

stack for three different calibration mass values mp. In Table 

4 we list resonant frequencies and damping ratios 

determined by least-squares fitting (9) to these plots. From 

these we in turn determine the stiffness ks and damping 

coefficient cs according to 

   𝑘𝑠 = (𝑚𝑝 + 𝑚𝑠)𝜔𝑛
2 ≅ (𝑚𝑝 + 𝑚𝑠)

𝜔𝑟𝑒𝑠
2

1−2 ,     (10) 

  𝑐𝑠 = 2(𝑚𝑝 + 𝑚𝑠)𝜔𝑛 ≅  2(𝑚𝑝 + 𝑚𝑠)
𝜔𝑟𝑒𝑠

√1−2
 .  (11) 

These values are given in Table 4. The relatively large 

variation in the determined damping coefficient cs suggests 

that the damping model used (linear damping with a  

Table 4. Fitted resonant frequencies and damping ratios to the 

frequency response functions plotted in Fig. 4, and corresponding 

transducer model parameter values. Uncertainties represent 1 

standard deviation. 

Calibration 

mass  

mp 

[kg] 

Resonant 

frequency 

ωres/2 

[Hz] 

Damping 

ratio ζ 

× 104 

Stiffness 

ks  

× 10-7 

[N/m] 

Damping 

constant 

cs 

[ kg/s ] 

1.43476 ± 

4.2 × 10-5 

856.76  

± 0.10 

0.02  

± 46.65 

4.201 

± 0.012 

0.03 

± 77.0 

2.95243 ± 

8.7 × 10-5 

599.35 

 ± 0.11 

9.53  

± 2.55  

4.208 

± 0.060 

21.3 

± 5.7 

5.02395 ± 

1.48×10-4 

459.74  

± 0.13 

9.35  

± 2.27 

4.205 

± 0.039 

27.2 

± 6.6 

 

frequency-independent damping coefficient) is probably 

insufficient.  

5. CONCLUSION 

We have described the sinusoidal force calibration system 

presently implemented in the force calibration labs at NIST, 

and reported calibration measurements demonstrating the 

capability of the system to perform dynamic calibration of 

force transducers. Work is presently underway to reduce the 

largest uncertainty components in the system and thereby 

improve the calibration accuracy. 
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