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Advanced manufacturing depends on the timely acquisition, distribution, and utilization of information from machines and processes across spatial

boundaries. These activities can improve accuracy and reliability in predicting resource needs and allocation, maintenance scheduling, and remaining

service life of equipment. As an emerging infrastructure, cloud computing provides new opportunities to achieve the goals of advanced manufacturing.

This paper reviews the historical development of prognosis theories and techniques and projects their future growth enabled by the emerging cloud

infrastructure. Techniques for cloud computing are highlighted, as well as the influence of these techniques on the paradigm of cloud-enabled prognosis
for manufacturing. Finally, this paper discusses the envisioned architecture and associated challenges of cloud-enabled prognosis for manufacturing.

Predictive Model, Condition Monitoring, Cloud Manufacturing

1. Introduction

Prognosis refers to forecasting the likely outcome of a situation,
and typically involves two inherently related steps. First,
analytical models are established to summarize the historical
evolution of the situation (e.g, variation in stock price,
deterioration of machine conditions, or spread of infectious
disease) in a quantitative manner. These models are then
modified by updated information to predict the future
development of the situation. The predicted value is associated
with a confidence level, which results from the uncertainty
involved in the prediction process.

Predictive Science
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Fig. 1. Predictive science and its application in manufacturing

Prognosis has been investigated for a wide range of
applications, including disease [1] and epidemiology prediction
[2], weather forecasting [3], and maintenance scheduling [4] (Fig.
1). In the context of manufacturing, prognosis has been used to
identify short-term and long-term actions or decisions to
estimate the remaining useful life (RUL) of a machine or a system
[5-9] based on the conditions monitored and diagnosis obtained

[10-12]. It provides a scientific and technological basis for
maintenance scheduling, asset management, and more reliable
system design [13-14].

1.1. Benefits of prognosis for manufacturing

The operational reliability of industrial machines and assets
significantly influences the sustainability of manufacturing [15]
and competitiveness of the industry. Because the operational
reliability of a machine system decreases as the duration of its
operation progresses, ensuring reliability during the designed
lifecycle of the machine becomes a critical task for maintenance
[16-17]. In traditional time-based maintenance, actions (e.g.,
machine inspections) are performed periodically at preset
intervals independent of a machine’s current operation condition
[8]. Although such an approach is effective in reducing equipment
failures, it generally does not provide information on the RUL of a
machine. Furthermore, time-based maintenance can be a major
expense with the increasing complexity of machines and
equipment in modern manufacturing.

Addressing this challenge, condition-based maintenance (CBM)
has been developed as a maintenance strategy that schedules
activities based on the result of condition measurements without
interrupting normal machine operations [18-19]. Fault (or defect)
diagnosis is a critical part of this process that links the identified
abnormal behaviors in a machine to possible root causes [20-22].
Maintenance actions may then be performed based on the
identified failure type and underlying mechanism [23]. With the
advancement of predictive science, prognosis has been
increasingly recognized as a valuable complement to CBM in
manufacturing. This has led to a more efficient maintenance
approach termed intelligent preventive maintenance (IPM),
which minimizes the machine down time, maintenance cost, and
reliance on human experience for maintenance scheduling.

Failure in a machine progresses through several stages from
failure initiation to functional failure. Predictive techniques can
help determine how quickly a machine’s functional degradation is
expected to progress from its current state to its final failure [24-




25]. An important element in devising a preventive maintenance
strategy is the trade-off analysis [26]. Fig. 2 illustrates the
relationship between maintenance cost and reliability of
machines [13]. Preventive maintenance can specifically [27]:
* Increase system safety, improve operational reliability, and
extend service life of machines
e Increase maintenance effectiveness and optimization of
logistic supply chains
» Reduce maintenance costs created by repair-induced failures
or unnecessary replacement of components.
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Fig. 2. Relationship between RUL, reliability, and maintenance cost,
adapted from [13]

Research on prognostic technologies has grown and provides
the basis for prognosis-centered maintenance. Jardine et al. [8]
summarized technologies for diagnosis and prognosis that
implement CBM. Peng et al. [13] and An et al. [28] reviewed
typical prognostic techniques and presented a strengths-and-
weaknesses analysis of the candidate techniques. Si [29]
discussed statistical approaches. Sikorska et al. [30] compared
different modeling options for RUL estimation, from the
perspective of industry and business applications. Baraldi [31]
investigated the capabilities of prognostic approaches to deal
with various sources of uncertainty in RUL prediction, focusing
on particle filtering (PF) and bootstrap-centered techniques.
Heng et al. [26] and Sun et al. [27] discussed the potential
benefits, challenges, and opportunities associated with rotating
machinery prognosis.
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Fig. 3. Classification of prognosis methods (PHM: Proportional Hazard
Modeling; HMM: Hidden Markov Model).

In past studies, prognosis techniques have been generally
grouped into three categories: data-driven, physics-based, and
hybrid techniques. Such classification does not specify the role of
uncertainty in the outcome of prognosis. To address this
limitation, this paper classifies prevailing prognostic techniques
in two categories (Fig. 3): deterministic and probabilistic. Within
each category, both physics-based and data-driven models are
analyzed, and representative algorithms are comparatively
discussed in terms of the strengths and limitations. Specifically,
physics-based prognostic models in the probabilistic category,

such as Kalman filtering and particle filtering, enable both
predicted values and associated confidence levels, which provides
insight into the uncertainty involved in the prediction process.

1.2. Cloud-enabled prognosis and cloud manufacturing

Motivated by the potential of cloud computing [32-33] and
cloud manufacturing [34-37], cloud-enabled prognosis represents
a new type of service-oriented technology to support multiple
enterprises in deploying and managing prognostic service over
the Internet. The architecture of cloud-enabled prognosis is
illustrated in Fig. 4. First, machine condition monitoring realized
by sensors and data acquisition systems gather data remotely and
dynamically on the shop floor. Based on these measurements,
remote data analysis and degradation root-cause diagnosis and
prognosis are then performed. For this purpose, collaborative
engineering teams can provide expert knowledge in the cloud,
which forms the knowledge base that can be referenced by users
through the Internet. The result of prognostic service and
estimation of time-to-failure form the basis for preventive
maintenance planning, which can be remotely and dynamically
materialized on the factory floor [38].

The advantages of cloud-enabled prognosis include:

* Collaboration and distribution: The cloud enables a new
paradigm where machine prognosis is a remote service
instead of a conventional, centralized approach. Currently,
most prognosis work is still confined to lab research and
study. But, cloud-based information sharing and fusion can
help transfer this work to customers who can use the cloud
to find the appropriate prognostic models and data.

* Accessibility and promotion of robustness: A cloud-enabled
platform as an integrated solution for modular and
configurable prognostic services can increase the
robustness of existing manufacturing processes. Pay-as-
you-go prognostic services and varying maintenance
options can be picked from the cloud when necessary or
applicable.

* Computation efficiency and data storage: Cloud-enabled
computation provides efficient computing cycles for
complex prognosis calculation due to its high speed
(parallel computing) and low communication overhead.
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Fig. 4. Architecture of cloud-enabled prognosis.

Similar to the emergence of cloud-enabled prognosis, there is
an on-going paradigm shift in manufacturing towards global
manufacturing networks, which adopt new computing and
Internet-based technology such as cloud computing (CC), to meet
new challenges. This development leads to the flexible usage of
globally distributed, scalable, and service-oriented manufacturing




resources. Sharing resources, knowledge, and information
between geographically distributed manufacturing entities can
make them more agile and cost-effective with better utilization of
resources. The success of many manufacturing firms relies on the
distribution of manufacturing capacities around the globe [39].

Li et al. [40] provided one of the initial introductions to Cloud
Manufacturing (CM), but the core ideas of the concept originated
with research on Manufacturing-as-a-Service (MaaS) [41]. The
most prominent and promising feature of CM is the seamless and
convenient sharing of a variety of distributed manufacturing
resources, which helps realize MaaS. Cloud manufacturing can be
regarded as an integrated cyber-physical system that can provide
on-demand manufacturing services digitally and physically to
best utilize manufacturing resources. As illustrated in Fig. 5, CM
encompasses the entire manufacturing process within a cloud-
enabled environment, from order placement and product design
to machining and facilities maintenance [34, 42] where cloud
computing represents the core competence of CM. Based on this
concept, more companies in the future may obtain various
manufacturing services through the Internet as conveniently as
obtaining utilities in daily operations.
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Fig. 5. Cloud manufacturing in view of prognosis.

Within the context of CM, prognosis can support the prediction
of resource availability worldwide in addition to predicting
machine status and facility performance, which helps determine
the most effective and efficient means to manufacture a particular
product. Cloud-enabled prognosis shares information from
similar machines at different stages of service and utilizes the
power of cloud computing for effective and efficient decision
making. Challenges in accomplishing this goal include network
bandwidth and data transmission speed, security, privacy,
reliability, and robustness, which are discussed in this paper.

2. Prognostic methods

Prognosis determines the expected progression of degradation
in a machine or its components from its current state to
functional failure, and the confidence associated with the
prediction. The confidence level quantifies the uncertainty that
affects the RUL prediction [43]. In this paper, technologies used
for prognosis are classified into two groups: deterministic and
probabilistic. Model-associated information (e.g., the required
knowledge and data to establish the model or model type)
constructs the differences among various methods (Table 1).

Machine-specific data has an essential role in prognosis. Data
used in various prognostic models can be categorized into
condition monitoring data and event data. Condition monitoring
data refer to the data measured by sensors (e.g., force, vibration
[44], acoustic emission [45], or temperature) that are reflective of
the current health condition or state of the machines [11-12].
Characteristic features can be extracted from the raw data and
used as input to establishing analytical models for RUL

estimation. Event data includes information on what happened
(e.g., installation, breakdown, and overhaul) and what was done
(e.g., component change and preventive maintenance) to the
machine or component.
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Table 1. Classification and theory of prognostic methods.

2.1. Deterministic models

Table 2 introduces the general characteristics of deterministic
models. Deterministic models only provide prediction values for
the next one or few time steps without a confidence evaluation
for the prediction.

Table 2. Strength and weakness of deterministic methods.

Method Strength Weakness
* Accurate prognosis output ¢ Difficulty in modelling
Taylor * Less training dataneeded  stochastic systems
mo<.ie’l and  tpan data-driven methods * Limited application due
Paris’ law to specific training needs
* Nonlinear and complex * Large amount of training
Neural system modelling data required

networks * Prior information not * Prognosis output without
required confidence level
* Modeling in continuous ¢ Fuzzy logic rules
Fuzzy mathematics of fuzzy sets  developed manually
theory * Processes vague and * Lacks learning capability
imprecise input

2.1.1 Physics-based models

Physics-based approaches provide a reliable and accurate
estimate of all modeling options by estimating the RUL using a
mathematical representation of the physical behavior of the
degradation processes. The difficulty is that this process requires
detailed and complete knowledge of the system behavior, which
is not readily available for many manufacturing systems.
Moreover, the majority of coefficients involved in the physical
models need to be determined experimentally, which makes
physical models application specific.

A common approach for assessing machining performance is
tool life or wear, which directly correlates the tool life to the
applied machining parameters (e.g., cutting speed, temperature,
and feed rate). Among physical models describing tool life, an
important branch is based on Taylor’s tool life equation. As
described in Mills and Redford [46], Taylor’s basic equation
relates tool life to cutting speed in a reverse exponential




relationship, VTr = C, where the exponential coefficient n is
experimentally determined. Hoffman [47] and Niebel et al. [48]
introduced an extended Taylor’s equation by including the effects
of feed rate and cutting depth on tool life. Workpiece hardness
has also been considered in the extended Taylor’s equation [49].

Lau et al. [50] proposed a relationship between tool geometry,
i.e, rake angle and clearance angle, and the Taylor Constant. Also,
experiments by Quinto [51] and Oxley [52] indicated that the
cutting temperature dominates the tool life. It is straightforward
and convenient to predict tool life using Taylor’s basic equation
and its extended version. However, coefficients in these equations
are empirically determined and only work for particular
combinations of tools and workpieces.

Tool wear rate models provide information about wear growth
rate (volume loss per unit contact area/unit time) due to some
wear mechanisms (e.g., abrasive wear, adhesive wear, and
diffusion wear), as shown in Fig. 6 [53]. Different mechanisms can
derive different dominant equations for the same wear type. Usui
et al. [54] derived a wear rate model for carbide tools based on
the adhesive wear and discussed the effect of normal stress,
cutting temperature, and speed on the wear rate. Usui et al.’s [54]
equation is very practical for the implementation of tool wear
estimation using the finite element method (FEM). Choudhury
and Srinivas [55] developed a mathematical model to estimate
the flank wear rate by means of the index of the diffusion
coefficient and other cutting parameters, such as rubbing velocity
and clearance and rake angles.

It has been indicated experimentally that the cutting velocity
and the index of diffusion coefficient have the most significant
effect on tool wear rate [56]. The tool wear rate model can be
seen as a particular type of crack growth model or fatigue spall
progression model. Generally, a crack growth model is
characterized by the stress intensity factor at the tip of a crack K =
f (a, o), where a is the half crack length and ¢ is the nominal
stress. Theoretically, the crack is assumed to not propagate when
K is smaller than a threshold value. After exceeding the value, the
crack growth rate will be governed by a power law, such as Paris’
law da/dN = CAK™, where C and m are material parameters [57].
However, Paris’ law does not account for the mean stress effects
and is only valid under conditions with uniaxial loading and “long
cracks.”.

To improve Paris’ law, Pungo et al. [58] proposed a new
equation generalizing Paris’ law by replacing the intensity factor
with a suitable mean stress called the “fracture quantum” and
obtaining an appropriate threshold value by interpolating
between the Paris and Wahler regimes. Li et al. [59] studied the
rolling element bearing defect growth rate under the existence of
information about instantaneous defect size and material
constants based on Paris’ formula. Aslantas and Tasgetiren [60]
extended Paris’ formula by mixing mode stress intensity factors
to develop an analytical model for two-dimensional rolling sliding
contact situations.
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Fig. 6 Wear mechanism in metal cutting [53]

Significant effort has been devoted to devise accurate models
for crack propagation studies. Newman et al. [61] selected the
crack-tip constraint factors accounting for three-dimensional

state-of-stress effects to correlate long crack growth rate data as a
function of the effective-stress-intensity factor. loannides and
Harris [62] proposed a statistical postulation between the
probability of survival, the fatigue life, and the stress-related
fatigue criterion level for the prediction of fatigue life in rolling
bearings. Kotzalas and Harris [63] established a spall progression
life mathematical model for ball endurance testing by extending
the loannides-Harris fatigue life theory. Choi and Liu [64] defined
a crack resistance index based on loannides-Harris theory and a
wear resistance index based on abrasive wear characteristics to
model the spall progression of rolling contact. Qiu et al. [65]
developed a stiffness-based model to achieve accurate bearing
prognosis considering the bearing system as single-degree-of-
freedom system with its natural frequency related to the system
stiffness. More recently, Fan et al. [66] proposed a mathematical
model for the wear analysis of the slide guideway under cutting
conditions by revealing the inherent interactions between cutting
force, wear, and deformation of the slide guideway, geometric
errors, and final accuracy degradation of machine tools. Similar
researches on determinations on crack propagation models can
be found in [67-69]. Like other physics-based models, these
techniques require the empirical estimation of various model
parameters.

2.1.2 Artificial intelligence-based data-driven models

In this section, artificial neural network and fuzzy logic are
introduced. The common approach for both methods in RUL
estimation is to determine the next measurements or extracted
feature indices based on the values measured at several
preceding time units. A neural network applies historical data to
train a model, which is in turn used for prediction. Fuzzy logic
compares the transformed input to a series of fuzzy rules to
obtain the prediction.

2.1.2.1 Artificial Neural Network

An Artificial Neural Network (ANN) provides an estimated
output result for the remaining useful life of a machine or
component based on measured condition-monitoring data or
event data rather than a physical understanding of the wear or
failure mechanism [1.18]. Because ANN is a purely data-based
method, it is insensitive to linear or nonlinear characteristics of a
studied system and does not require an analytic expression of the
system behavior. Its drawbacks include that: a) it requires a
comprehensive data set to train the model; b) its performance
relies largely on the selected model (network architecture,
activation function, etc.); and c) it provides no uncertainty
quantification on the estimated output.

The basic components of a neural network are nodes and
associated weights, which are connected in the layer format. The
ANN learns an unknown function by adjusting its weights with
observations of input and output. Based on the input source of
each node, the neural network architecture can be classified as a
feed-forward network or dynamic network. The inputs to the
nodes of a feed-forward network, such as multilayer perceptron
(MLP) with back-propagation network (BP) training algorithm,
rely only on the output of the preceding layer under the current
iteration. For a dynamic network, such as recurrent neural
network (RNN), general regression neural network (GRNN), or
time delay network [70], the nodes’ inputs also depend on
information from previous iterations. These networks are
supervised learning algorithms, which require the actual outputs
for training. Conversely, input stimuli can be automatically
clustered without external output information in unsupervised
learning, such as self-organizing map (SOM) [71].
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The common approach of ANN in prognosis is to predict the
next point of a data series in the fault propagation process and
estimate the RUL when the extrapolated data reaches a
predefined final failure value. The network takes types of data
values at the present and previous inspection points as the inputs
and provides values at the next one or several time units as the
outputs. The input data can be condition monitoring data and its
characteristic features (e.g., the time or frequency features of the
vibration and force signal) or mutual information from multiple
features (e.g., output of PCA [72] or ANN). Huang et al.[71]
generated a new feature through SOM as the bearing life
degradation indicator, which was passed to the BP neural
network as the input to estimate the RUL of ball bearings as
shown in Fig. 7. Ghosh et al. [73] adopted a MLP network to fuse
features extracted from a number of machining zone signals to
estimate the average flank wear of the main cutting edge of the
cutting tool. Age and multiple condition monitoring
measurements were fitted for a failure history through a
generalized Weibull-FR function by Tian [74], who then used the
fitted measurement value as the ANN input.

Chen and Huang [75] applied a traditional MLP network to
predict the in-process surface roughness of a cutting tool in end
milling operations. A similar approach was adopted by Mahamad
et al. [76] to obtain a dependable trend of tool wear curves for
optimal utilization of tool life and increase of productivity while
preserving the surface integrity of the machined parts. D’Addona
et al. [77] used a MLP-combined Levenberg-Marquardt (LM)
training algorithm for accurate RUL prediction of bearing failure;
the input of the network was time and fitted measurement
Weibull hazard rates. Similar findings can be tracked back to
Huang and Zhang [78], whose results indicated that the modeling
of RUL of laboratory-tested bearings performed better than
reliability-based approaches.

Pontes et al. [79] presented a study on the applicability of RBF
neural networks for predicting the average roughness in turning
processes while the parameters of the network, such as the
number of radial units, were determined through Taguchi’s
orthogonal arrays. Malhi et al. [70] investigated a modified RNN
approach to improve the long-time prediction accuracy with
application to machine condition monitoring while the dynamic
input to the RNN was pre-processed using competitive learning
rules to cluster the input data for long-term prediction. Herzog et
al. [80] compared the performance between an MLP neural
network trained with a LM algorithm and a GRNN neural network
with the application to RUL prediction of machines and
components. Their results showed that the GRNN had a
comparable result to the MLP approach.

It should be noted that one developed neural network generally
cannot be extended to other neural network architectures, other
kinds of machining operations, or other materials or tools. Also,
most of the described works are still laboratory experiments

without further evaluation from on-site field tests. One drawback
of ANN is its inability to process linguistic and inaccurate input
data. To overcome this problem, past research has focused on
integrating ANN with other methods, such as expert systems [81]
and Bayesian inference [82].

2.1.2.2 Fuzzy system

The fuzzy logic system is a technique for arriving at a definite
conclusion using linguistic rules rather than empirically derived
if-then rules. Compared to traditional expert systems and other
estimation techniques, fuzzy systems enable: 1) modeling system
behavior in continuous mathematics of fuzzy sets rather than
discrete statements (true or false) and offering a reasonable
compromise between rigorous analytical modeling and purely
qualitative simulation; and 2) qualitative and imprecise reasoning
statements to be incorporated with rule bases, which enables
these systems to process vague, imprecise, and noisy inputs.

For system behavior and state forecasting, a fuzzy system
estimates future system states based on the information collected
from previous states. To differentiate the impacts of inputs at
different times on the next step value prediction, information
weights are added to previous states. However, fuzzy logic
systems have major drawbacks: 1) fuzzy rules are always
developed by experts, and so fuzzy logic is not considered when
there is not sufficient knowledge and experience for one problem;
and 2) fuzzy systems lack learning capability, so they need to be
integrated with other techniques, such as ANN.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

< s

Fuzzy Rule 1 Fuzzy Rule 2

X/ = n Wi N Wi 3
\ e W
L ——f
e Bl - Wafs
Y m N P2,
U

B,

Fig. 8. Neuro-Fuzzy system for prediction, adapted from [85]

There are few examples where a fuzzy logic system has been
used as the primary method for RUL prediction. Pan et al. [83]
assessed the bearing performance degradation based on fuzzy c-
means and lifting wavelet packet decomposition, where the latter
provides extracted features as the degradation indicator to the
former. This assumed, though, that all data are projected into only
two states {normal, final failure}. Zhao et al. [84] attempted to
extend the traditional binary state space into a fuzzy state space
based on profuse reliability theory to characterize a gradual
physical degradation. Wang et al. [85] adopted a neuro-fuzzy (NF)
system to develop an on-line machine fault prognosis system; a
typical NF structure is shown in Fig. 8. They also indicated that
once an NF system is properly trained, it performs better than
RNNs in predicting nonlinear and chaotic time series. Liu et al.
[86] developed an adaptive multi-step predictor based on a
weighted recurrent NF paradigm for system state forecasting and
adopted a hybrid training algorithm based on recursive LM and
least square estimates to enhance forecasting convergence and
accommodate time-varying system conditions. For the same
purpose of multi-step ahead prediction of a low methane
compressor, Tran et al. [87] adopted an approach based on an
adaptive neuro-fuzzy inference system (ANFIS) and indicated
that this method was capable of tracking changes in a machine’s
operating conditions with high accuracy. Other works related to
NF-based prognosis have been shown in [88-89].




2.2. Probabilistic models

Probabilistic models assume that system performance
degradation or fault deterioration follow a certain distribution,
such as Gaussian or Gamma distribution. The benefit of this
modeling concept is that both a prediction value and an
associated confidence level are provided. As shown in Fig. 2,
probabilistic models can be further classified into data-driven
(i.e., Wiener and Gamma process, proportional hazard modeling
or PHM, and hidden Markov models or HMM) and physics-based
(i-e., KF and PF based models) techniques. The strengths and
weakness of probabilistic models are summarized in Table 3.

Table 3. Strength and weakness of probabilistic methods.

Method Strength Weakness

. * Accumulative degradation ¢ Limited to Gaussian and
Wiener

rocess modeling linear system
p * Confidence provided for ¢ Difficulty in processing
model h . .
corresponding FPT monotonic degradation
Gamma ¢ Straightforward > Litwized t.o monotonic
. . degradation
process degradation modeling

* Prognosis independent of

model ¢ Monotonic system modelin . ) .
¥ g the historic behavior

* Integration of different data ¢ Times to failures assumed

sources to be mutually independent
PHM P . : :
* Quantification of failure * Comprehensive covariates
probability set required
* Degradation with different * Large amount of training
HMMs stages modeling data required
* Underlying physics not * Application limited to
required Gaussian process
KF- . . * Limited to linear or weak
* Dynamic process modeling .
based High computation efficienc nonlinear system
models 8 p Y« Limited to Gaussian process
PF- * Nonlinear and non-Gaussian * Large amount of particles
based modeling required
models Confidence provided with ¢ High computation effort

prognosis output required

2.2.1 Data-driven (statistics-based) models

All statistics-based methods, including the Wiener process,
Gamma process, proportional hazard models, and hidden Markov
model are essentially regression models that use measurements
or extracted features as the indicators and forecast the
accumulated degradation state given the current state in the
future. Each approach uses different assumptions for the
distribution of noise involved in the model, the distribution from
the current state to the state in the future, and the data type used
in the models.

2.2.2.1 Wiener process

The Wiener process is an advanced stochastic regression model
with random noise that can be used for modeling degradation
processes and RUL prediction. It was first proposed to model the
movement of small particles in fluids and air with small
fluctuations. The Wiener process can be used to model the path of
degradation processes where successive and accumulative
fluctuations in degradation can be observed. A general Wiener
process is defined as:

X(t)=At+0B(1), 1)

where X(t) is condition-monitoring data, A denotes the drift
coefficient, o denotes the diffusion coefficient, and B(t) denotes
the standard Brownian motion representing the stochastic
dynamics of the degradation process. The first term is also the
mean of the estimated degradation path, which implies that the
Wiener process is a linear process. The second term provides the

process covariance o2t, which also represents the uncertainty of
degradation. The RUL can be obtained by estimating the time
when X(t) first passes a predefined threshold w, which is called
the first passage time (FPT), noted as T = inf {t: X(¢) =2 w | xi},
where xiis the observation at time t; and T is estimated based on
xi . The probability distribution of T conditioned on x; is [90]:

_x w—xl.—l(t—z‘i)2
fnx,(f|x,-)=W7x'3€XP —22) : (2)
22(t-1,) 0 2t-t) o

with mean ti+ (w-xi))/A and variance (W-Xi)oz/)\3. It is directly
noted that the RUL is estimated given the current time and tightly
related to the current measurement and the selection of two
parameters A and o in the process.

The Wiener process has the following assumptions or
limitations regarding practical application:

* The estimation of degradation uses only the current
measurement data. This assumption however can introduce
problems as shown in Fig. 9.

*  Wiener process was designed to model the non-monotonic
motion of small particles. Thus, it is inappropriate to
process the monotonic machine degradations.

* The mean representation of modeled degradation, At, is
linear, and thus the application limitation exists when
handling nonlinear situations.

Si et al. [91] attempted to incorporate a Wiener process based
degradation model with historical data to overcome the
limitation shown in Fig. 9 based on a recursive filter. The
recursive filter was used to update the drift coefficient while the
expectation maximization algorithm was adopted to update all
other parameters. Also, the distribution of drift coefficient was
taken into account when updating, which led to uncertainty
reduction in the estimated RUL. Taking the nonlinearity and
product-to-product variability of the degradation into account,
Wang et al. [92] presented an adaptive method of RUL estimation
based on a generalized Wiener process that subsumes several
existing models. Parameters involved in population-based
degradation characteristics were obtained by using maximum
likelihood algorithm and the parameters that describe the specific
degradation model were estimated by using the Markov chain
Monte Carlo method. Wang et al. [93] proposed an additive
Wiener process-based prognostic model for hybrid deteriorating
systems that are made up of both linear and nonlinear parts.
Correspondingly, the additive model included both linear and
nonlinear degradation; the stochastic parameters in both parts of
the model were correlated and estimated by using the condition
monitoring observations based on a Bayesian framework.
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Fig. 9. Different degradation rates at the same current measurement x;
adapted from [119].

2.2.2.1 Gamma process

In contrast to the Wiener process, which is a non-monotonic
process, the Gamma process monotonically models gradual
degradation accumulating over time, such as wear, crack growth,
and corrosion [94]. The Gamma process assumes that the
degradation accumulation follows the Gamma distribution:
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where Ga(-) denotes the Gamma distribution and k and 6 are the
shape and scale parameters, respectively, which describe the
stochastic distribution. For a Gamma process at time ¢, the mean
is kt/6, the variance is k:/62, and the ratio of the variance and the
mean equals 1/6, which is time independent. This also indicates
that the degradation increment at a different time interval is
independent, which can be seen as a Markov assumption. Under
the assumption of modeling the temporal variability in the
deterioration with a Gamma process, the increase in the expected
deterioration over time remains unanswered. In other words, it is
unclear how to estimate the two parameters k and 6 [94]. The
most common method used is the maximum likelihood, which is
applied to estimate the two parameters by maximizing the
logarithm of the likelihood function of the increments.

The major advantage of degradation modeling using a Gamma
process is that mathematical calculation is straightforward.
However, the strict assumptions of the Gamma process limit its
applications: 1) the Gamma process is only appropriate to
characterize a monotonic degradation process; 2) due to its
independent increment property, the estimation of a future state
is independent of the historical behavior, which is similar to the
assumption of a Wiener process; and 3) the noise involved in the
Gamma process that is used to quantify the estimation
uncertainty must follow the Gamma distribution.

Park and Padgett [95] presented an accelerated degradation
model based on the Gamma process for the situation where both
observed failures and degradation measures could be considered
for parametric inference of system lifetime. Here, the maximum
likelihood algorithm is applied to estimate the parameters in the
model. This model is extended to general accelerated test models
with several accelerating variables for inference based on
observed failure values and degradation measurements [96].
Tseng et al. [97] proposed an optimal step-stress accelerated
degradation test for a Gamma degradation process by minimizing
the approximate variance of the estimated mean-time-to-failure
of the lifetime distribution of the product.

2.2.2.3 Proportional hazards modeling

Different from the Wiener process or other regression models,
proportional hazards modeling (PHM) provides a way to estimate
the risk of a machine component or set failing over a certain
amount of time based on both condition monitoring data and
event data. Also, PHM assumes a multiplicative relationship
between the probability of failure and the monitored condition
data rather than an additive relationship as used in other
regression methods:

X (1) = X, (t)exp(rx (1) + 2%, (1) + L +7,%, (1)) 4)

where X(t) denotes the conditional probability of failure at time ¢t
(also called the hazard function); Xo(t) denotes the baseline
hazard function; xi(t), x2(t),:- xp(t) are the covariates, which
denote the measured data (e.g., force or vibration), extracted
features (e.g., RMS or kurtosis), or event data (e.g., minor repair
or major repair); and y1, y2,-- yp denote the corresponding
coefficients to each covariate, which represent the degree of
influence each covariate has on the hazard function.

The PHM expression indicates that the hazard function is
affected by three factors: time or equipment aging, baseline
hazard function, and selected covariates that affect the hazard
rate exponentially. Usually, the baseline hazard function is
assumed to be a Weibull function, and the involved parameters
can be estimated through parametric regression methods. It is
apparent that covariates with high correlation to failure are
assigned high coefficients or weightings and those with little

correlation would be assigned low coefficients. The practical
application of PHM has the following assumptions and
limitations:

* Times to failure are independent, but different failures can
occur at the same time in practice; the occurrence of one
failure can incur or worsen other failures.

» Allinfluential covariates should be taken into account in the
PHM model, but different measurement or features are only
sensitive to few failures in practice. Thus it is difficult to
obtain a comprehensive covariate set.

* Individual covariates are independent. This assumption
sometimes contradicts the second assumption in the
situation where features extracted are tightly correlated.

Jardine et al. [98] demonstrated the value of using PHM to assist
maintenance professionals to interpret condition data by
identifying the key risk factors and their relative influence on the
health of equipment in general and wheel motors in particular.
Gasmi et al. [99] established a statistical model based on Weibull
PHM to capture the potential reduction in failure intensity due to
the switching of operating modes and quantify the impacts of
performing repair actions on the failure intensities. Tran et al.
[100] incorporated a system identification technique, PHM, and a
support vector machine to assess the machine health degradation
and forecast the machine RUL. An extension of PHM is the
proportional intensity model (PIM), which assumes a similar
form to the intensity function of the stochastic process and has
been widely used for optimizing maintenance decisions. Vlok et al.
[101] introduced the use of PIM to estimate residual life for non-
repairable systems, such as bearings, utilizing historic failure data
and corresponding diagnosis measurements.

2.2.1.3 Hidden Markov Models

A hidden Markov model (HMM) is defined as a combination of
two stochastic processes. The underlying stochastic process is a
finite-state homogeneous Markov chain that is not observable (i.e.,
hidden), which affects another stochastic process that produces a
sequence of observations [102]. A HMM is characterized by five
elements: number of model states; number of distinct
observation symbols; an initial state distribution; a state
transition probability distribution; and an observation symbol
probability distribution. These distributions are either mass
functions in the case of discrete observations or specified using a
parametric model family-common Gaussian in the case of
continuous observations [103]. HMM deals with three basic
problems regarding specific applications:

» Computing the probability of an observation sequence given
the specific model

+ Identifying the most likely state sequence that might
produce the observation sequence

* Adjusting the parameters of the model to maximize the
likelihood of the given observation sequence

When conducting RUL estimation, the implementation of HMMs
includes two stages: training and predicting. Generally, a
supervised training scheme is adopted in which measured
observations used for training need to be first labelled. Typically,
each HMM can only represent two states: normal and failed. Thus,
if the entire life of a piece of equipment is segmented into M
distinct sequential ranges, M different HMMs should be trained to
characterize each range. The presentation of temporally ordered
observation sequences from such a process would yield the sorts
of log-likelihood trajectories.
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Fig. 10. Log-likelihood for different HMMs, adapted from [104].

If one HMM results in the largest log-likelihood for a given
observation sequence acquired within one duration, then this
HMM can be declared as the best estimate describing the process
during this duration, as shown in Fig 10 [104]. Once parameters
in HMMs are determined, RUL prediction is fulfilled by
forecasting the progression of health states from the current state
(the largest likelihood HMM) to the failure state using transition
probability between states and sojourn time in each state (the
duration of staying in one state) [105].

As an extension of the HMM, a hidden semi-Markov model
(HSMM) assumes that the underlying process is a semi-Markov
chain and each state has a variable duration. An important
difference between HMM and HSMM is that one observation per
state is assumed in HMM, while each state can emit a sequence of
observations in HSMM. The number of observations produced
while in one state is determined by the length of time spent in
this state as shown in Fig 11 [106]. This characteristic makes
HSMM better than HMM for RUL estimation because the
propagation of health state is always a continuous progress and
each stage is a collaboration of continuous values if the whole life
is segmented into several stages corresponding to several
underlying states in HSMM.
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Fig. 11. General HSMM structure [106].

Regular HMMs tend to be limited in their ability to represent
complex systems. More importantly, in the absence of labeled
state and measurement data, the unsupervised training process is
computationally tedious. In addition, regular HMMs do not have
intrinsic transition probabilities between underlying states since
each HMM represents a distinct health state. Hence, they require
additional methods to calculate health-state transition
probabilities to be utilized in RUL estimation [103].

Tobon-Mejia et al. [107] introduced the mixture of Gaussian
HMM as an approach to estimate the RUL and the associated
confidence level of a bearing. This approach using continuous
observations derived from the sensors leads to a better
representation of the bearings’ deterioration. Zaidi et al. [108]
predicted the future state of gear fault severity in DC machines
based on HMMs using time-frequency features as machine health
indicators. They also proposed a way to train HMMs from limited
data. Chinnam et al. [103-104] employed HMMs for both machine
diagnosis and prognosis. The RUL prediction here was simply the

extension of the state identification by adding the forecasting
functionally. Zhou et al. [109] attempted to combine HMM with a
belief-rule base to predict hidden failure when no accurate
mathematical model is available due to changing environmental
factors. The belief rule base is adopted to capture the
relationships between the environmental factors and the
transition probabilities among the hidden states of the system.
Dong and He [110] presented an HSMM-based framework and
methodology for multi-sensor equipment diagnosis and
prognosis. The health states of a component are modeled by the
state transition probability matrix and observation probability.
Based on their previous work [110], Dong [111] took the machine
deterioration into consideration by introducing aging factors
(constant aging factor, multiple aging factors, and exponential
aging factor) into the traditional health-state-transition matrix.

2.2.2 Physics-based (model-based) approach

Probabilistic = physics-based  (model-based) approaches
construct a relationship between measurement and the
underlying physical mechanism by using measurement or
extracted features to infer the machine status based on the
posterior probability density function (PDF) [112-113]. For RUL
prediction, once a conditional reliability function is determined,
the RUL is defined as the conditional expected time to failure,
given the current state. Compared to other approaches, model-
based approaches provide information on all qualification
measurements of the estimation: accuracy, precision, and
confidence (see Fig.12). The accuracy is a measure of how close a
point estimate of failure time is to the actual failure time.
Precision is a measure of narrowness of an interval in which the
remaining life falls. Confidence is the probability of the actual
RUL falling between the bounds defined by the precision [114]. It
is also a measure to quantify the estimation uncertainty.
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Fig. 12. RUL estimation and associated uncertainty quantification.

A general way to estimate and update the posterior PDF is
Bayesian inference based on Bayes’ rule:

P(D/O)P(6)

P(6/D)= D)

(5)

Bayes’ rule converts a priori probability distribution of parameter
6 into a posterior distribution based on the observation D. When
estimating the unknown parameter 6 for the certain
measurement, the usual approach is to find the value that
maximizes the posterior PDF P(6/D). Since the measurement D is
a constant data index, the problem becomes maximizing
P(D/6)P(6). In practical applications, the probability distribution
P(6) of O is assumed as prior information, which turns the
backward PDF estimation problem into a forward estimation of
maximizing P(D/6), which is just the likelihood of the data.

The concerned uncertainty quantification or confidence
calculation in the Bayesian approach is based on the assumption
that the measurements will always be contaminated by noise,
which should generally be random. In this context one no longer
wishes to find an estimate of w, but rather to specify the belief in




its value, namely 6 ~ P(6/D, M), where M represents the choice of
model [115]. Once parameters conditioned on current and
previous measurements are determined, the PDF of the
degradation state of the next-point is estimated based on the
system model [116-117]. The mean of the PDF gives the ‘best’
estimates for the predictions and the covariance provides the
associated confidence levels for estimates.

The whole procedure includes two phases: prediction and
update, which corresponds to the time update and measurement
update respectively. Given a new measurement input z*, the
predicted values are comprehensive calculation results given the
probability of each parameter:

P(x*/2%,D,M) = [P(x*/2%,0,M)P(@ D,M)d0 . (6)

Based on the assumptions of selected models and noise, RUL
prognosis based on Bayesian inference can be implemented by
more advanced estimation techniques, such as Kalman and
particle filtering methods, which will be discussed in the next
subsections. In Fig. 13, various methods for calculating the
posteriori distribution are summarized, under the framework of

Bayesian inference.
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Fig. 13. Overview of methods for calculating posteriori PDF [30].

2.2.2.1 Kalman filter-based model

The Kalman filter (KF) is a computationally efficient recursive
data processing technique used to optimally estimate the
underlying state of a dynamic system given a set of noisy
measurements in the way that minimizes the mean squared error
(MSE) of predictions [118]. The general process of Kalman filter
includes state and covariance prediction and update as shown in
Fig. 14:

It should be noted that the state estimate is just the conditional
expectation and the covariance of the estimation error is actually
the same as the covariance of the state. KF is based on the
Gaussian-Markov process assumption that both process and
measurement noise are zero-mean white stochastic processes.
Meanwhile, the initial state, process, and measurement noise are
assumed to be mutually independent. Under this assumption, the
KF is the optimal minimum MSE state estimator [119]. For an
observable time-invariant system, the state estimation covariance
will be finite and the filter will finally converge to a steady state.
However, this introduces another limitation besides Gaussian-
Markov assumption that the estimation model for time-variant

system degradation can be unstable and its estimations divergent.

The time-variant degradation scenario is common in practice, for
example, the evolution of degradation of a tool can be categorized
into three stages as discussed in Section 2.1.1.
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Fig. 14. General flow of Kalman filter process [119].

The utilization of a single degradation model would result in
inaccurate state estimates and cause RUL prediction to diverge or
fluctuate, depending on whether the degradation estimation is
under or over fitted by the model [120]. A possible solution is to
increase the process noise level to cover the range of the
degradation evolution, but this inversely introduces another
problem that high-level noise can largely decrease estimation
accuracy. Furthermore, it is difficult to determine when the
assumed model can be suitably applied in an online application
where the historical data prior to failure is unknown.

The extended Kalman filter (EKF) is a modification of KF that
attempts to break up the linearity assumption of the state
evolution model and the measurement model. It still conserves
the Gaussian assumption of the process noise and measurement
noise. The basic idea of EKF is to linearize the nonlinear state or
measurement equation through series expansion using partial
derivatives around the current state prediction. However, the
linearization process also transforms the noise, which may or
may not remain Gaussian; this invalidates the original Gaussian
assumption. Also, the covariance calculation based on a series
expansion is not always accurate. Furthermore, it is very time-
consuming to calculate the Jacobians (for the first-order EKF) and
Hessians matrix (for the second-order EKF), which replace the
transformation matrix in both models in basic KF. Bar-Shalom et
al. [119] points out that if the initial error and the noises are not
too large, then the EKF performs well.

The unscented Kalman filter (UKF) is an alternative to the EKF
for nonlinear estimation. The UKF replaces the assumed Gaussian
PDF of the state in the KF and EKF with a probability mass
function (PMF) via moment matching based on an unscented
transform. Unlike EKF, which approximates the nonlinear state
and measurement equations using linearization, UKF uses a set of
carefully chosen sample points (also called sigma points) to
represent the state distribution [121]. These sample points can
completely capture the true mean and covariance of the Gaussian
random variables. They can also capture the posterior PDF or
conditional mean and covariance accurately to the 3rd order
expansion. In other words, the sigma points are symmetric and
their nonlinearly transformed values will not be symmetric,
which yields a better characterization of the transformed random
variable than linearization approach. A simple example
comparing UKF to EKF is shown in Fig. 15 for a 2-dimensional
system [122]. Another advantage of UKF over EKF is that no
explicit calculations of Jacobian or Hessian matrixes are required.
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Another potential solution to the application limitation of KF
and EKF in a practical dynamic system where parameters
involved in the state evolution equations are time-varying is with
multiple models (MM). Models can be in different forms or the
same form with different parameters, e.g., the level of the process
noise (its covariance while mean is always assumed to be zero), a
deterministic input, or other parameters. MM assumes that the
system match one of a bank of models most at each sampling
point. The conditional PDF of the state at a specific time is
obtained using the total probability theorem with respect to the
exhaustive set of models. A typical representative in dynamic MM
is interacting multiple models (IMM) [119], which computes the
state estimate that accounts for each possible current model
using a suitable mixing of the previous model-conditioned
estimates depending on the current model as shown in Fig. 16.
During the switching process, the algorithm undergoes a soft
switching according to the latest updated mode probabilities.
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Fig. 16. Illustration of the IMM estimator [119].

Much work has been performed for system estimation and RUL
prediction based on KF and its variants. Si et al. [123] attempted
to characterize the effect of three sources of variation (temporal,
unit-to-unit, and measurement) contributing to the uncertainty of
the estimated RUL via a general degradation model. The PDF of
the underlying degradation state and random effect parameters
were estimated based on KF. Yang [124] proposed a condition-
based failure prediction scheme, which links KF to a hybrid Petri-
net model coupled with fault-tree analysis for preventive
maintenance. Feng et al. [120] applied EKF and the expectation-
maximization (EM) algorithm to estimate the deterioration state

and the unknown parameters of an age-dependent general
nonlinear deterioration model.

Saurabh and Mahendra [121] employed an adaptive UKF to
track sudden changes of the stiffness and damping coefficients of
structural systems, which can be expanded to track the sudden
change of parameters evolved in other dynamic evolution
equations. Reuben and Mba [125] presented an approach using
the switching KF framework for both diagnosis and prognosis
using condition monitoring data under a single framework. It is
assumed that the deterioration process evolves over time and
multiple filters model the deterioration at different stages. The
switching KF would then infer the most probable filter for RUL
prediction. Zghal et al.[126] introduced the application of
interacting KF on recursively tracking the variations of the model
parameters.

2.2.2.2 Particle filter-based model

An alternative to KF under Bayesian inference models and
without requiring strict modeling hypotheses such as linearity
and Gaussian assumptions, are Particle filters (PF), which is also
known as the Monte Carlo (MC) based method. The PF process
provides a different approach to estimating the posterior PDF via
a set of random samples with associated weights. Similar to KF
and other Bayesian inference methods, the PF process contains
two steps: 1) prediction: updated posterior PDF of the model
parameters at the previous step are used to calculate the system
states at the current time through underlying physical models; 2)
update: predicted model parameters and system states, (i.e,
particles and their weights) are corrected based on the likelihood
function combined with condition monitoring data.

Along the evolution history of PF, sequential importance
sampling (SIS) forms the basis for other variants. If x denotes the
sampled points and w denotes the weights up to time k, the
posterior PDF at time k can be represented as:

N
PXoy | 214) = EW;(‘S(XO:k_ Xox)» (7)
i=1
where the weight update is shown in the following relationship:
W oc ! p(z, \XZ)P(XZ | Xit) (8)
q(x, %)
where g(-) denotes the importance density. The method then
recursively updates the point values and weights as each
measurement is received sequentially. A common problem with
SIS is the degeneracy phenomenon where after a few iterations
all but few particles will have negligible weight. This degeneracy
implies that a large computational effort is devoted to updating
particles whose contribution to the approximation of the
posterior PDF is almost zero [127]. The various versions of PF can
be regarded as special cases of SIS algorithm. These special cases
can be derived from the SIS algorithm by an appropriate choice of
importance sampling density and/or with resampling.

A potential solution to the degeneracy problem derives the
second representative of PF: sequential importance resampling
(SIR). The basic idea is to eliminate particles that have small
weights and to concentrate on particles with large weights as
shown in Fig 17 (b). After the resampling step, the particles are
no longer uniformly generated over the search range, but
concentrate on the positions with relatively large possibilities
[128]. Besides solving the degeneracy problem, this approach can
significantly improve the overall computation efficiency. It is
however important to realize that the resampling process can
result in many repeated particles: those corresponding to the
largest likelihoods. This leads to a loss of diversity among the
particles. This problem is much more severe in the case of small
process noise such that all particles will collapse to a single point
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within a few iterations. An illustration describing the degeneracy
and sample impoverishment problem is shown in Fig. 17 (b).
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Fig. 17. (a) initial sampling by PF; (b) sequential importance resampling
and associated impoverishment problem; (c¢) improved importance
resampling proposed in Ref. [131]

An approach to solving this problem is not to conduct
systematic resampling iteratively, but to first decide whether
there is a need to apply the resampling procedure through a
degeneracy quantification criterion. This introduces another
representative variant of PF: regularized particle filtering (RPF).
The RPF is identical to the SIR filter, except for the resampling
stage. First, it judges the degeneracy degree to determine
whether resampling needs to be applied. Second, RPF resamples
from a continuous approximation of the posterior PDF rather
than a discrete distribution, which reduces the particle collapse
problem in SIR.

Besides RPF, different approaches have been proposed recently
to improve the resampling strategy. Li et al. [129] described
traditional resampling approaches that only consider the weight
information disregarding particle spatial distribution information
and discarding particles in an uncensored way that reduces
diversity. A weight-and-space based resampling method targeting
at the described problem is then proposed. Li et al. [130]
attempted to combine PF with other methods, such as mean-shift
algorithm, artificial intelligence algorithms, and machine learning
techniques, to fight the sample degeneracy and impoverishment
problem. Wang et al. [131] proposed a local search particle filter,
which employs the particles that are intentionally inherited from
previous iteration to explore a wide range of prior distributions
based on the estimation result from last iteration as depicted in
Fig. 17 (c). Hu et al. [138] proposed a particle weight optimization
approach to refine the resampling process. Other variants of PF
based on SIS do not require resampling, such as MC, Gauss-
Hermit, and unscented PF; detailed information can be found in
[132].

Compared to KF, which is mature and established, PF is still fast
evolving in the field. Wang et al. [131, 133] developed a PF-based
framework for precise RUL estimation, which was effective in a
prognosis case study on tool wear and RUL prediction; this
framework is shown in Fig. 18. Similar work can be found for the
fatigue crack dynamic evolution of a mechanical component [134-
135]. Sun et al. [128] adopted PF to estimate latent state and
parameters jointly for RUL with uncertainty estimation. Wang et
al. [136] incorporated regression methods, such as auto

regression and support vector regression, into PF for long-term
prediction when online measurement is not available.
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Fig. 18. RUL prediction and uncertainty estimation by PF, adapted from
[133]

PF has also been adopted as a preference among Bayesian
estimation algorithms. It has also been combined with other
methods for its computational efficiency. Liu et al. [137] proposed
a multi-step ahead prognosis framework of equipment based on
hidden semi-Markov model (HSMM) integrated with the SMC
method when the mathematical model or the statistical models of
equipment are difficult to obtain. The SMC method was adopted
here to decrease the computational and space complexity and
describe the probability relationships between multiple health
states and measurement. Chen et al. [139] and Baraldi et al. [140]
presented an approach based on neuro-fuzzy systems and PF for
machine health condition prognosis. The former was employed as
a prognostic model to predict the evolution of the machine fault
state over time, while PF adopted the predicted data as prior
information in combination with online measurements to update
the degree of belief in the forecasting estimations. Compare and
Zio [141] applied PF to predictive maintenance to identify the
optimal time for carrying out the next maintenance action.

2.3. Comparison and evaluation of prognostic models

The strengths and weaknesses of prognosis methods have been
summarized in Tables 2 and 3 with a focus on the algorithmic
aspect and uncertainty quantification for the prediction results
(i-e., predicted failure trend or remaining useful life). Practically,
evaluation metrics will be needed both quantitatively and
qualitatively for selecting the most appropriate method for a
specific application. Saxena et al. [142-143] summarized metrics
for prognosis performance evaluation in three groups: algorithm
performance, computational performance, and cost benefit.
Under algorithm performance, accuracy, robustness, precision,
and convergence are included; accuracy quantifies the error
between the predicted and true values, and precision describes
the convergence of predicted results. Different methods can be
applied to quantify accuracy, such as a-A accuracy (see Fig. 19)
and relative accuracy. One indicator of computational
performance is the computational complexity, which is especially
important for applications where data needs to be monitored in
real time to make safety-critical decisions. Other indicators are
qualitative in nature, such as robustness within algorithm
performance (e.g, practicability of model requirements,
sensitivity) and cost benefit.
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One major factor that needs to be considered for selecting an
appropriate prognostic method is the required information input
and assumptions for prognostic models. As described in Section
2.1 and 2.2, both deterministic and probabilistic physics-based
prognostic models require good understanding of the physical
principles related to machines and the mechanism of fault
deterioration. However, the characteristics of and relationships
among the various components in a physical system are always
too complicated to be modeled effectively [26]. Furthermore, the
established models can involve large uncertainty depending on
the assumptions used for modeling. For example, even under
well-controlled experimental conditions, the rate of tool wear
propagation and consequently, parameters involved in Paris’ law
for identical physical components can be different. A trade-off
between prognosis accuracy and computational cost needs to be
carefully considered to be practically meaningful and acceptable.

RUL

Al =B

=

b, b,
' tme * EoL

(@)

Fig. 19 a-A accuracy with the accuracy cone shrinking with time on RUL vs.

time plot [142]

Another factor for evaluating the prognostic methods is the
quantification of uncertainty involved in the prognosis process
[144]. The source of this uncertainty can be classified as [31]:

* Modeling error: The failure model that degradation follows
should be first determined for prognosis. Various failure
models have different triggers to initiate failure and to
model failure propagation [145]. Given the complexity of
real world scenarios, no one model completely describes the
actual degradation. This means that uncertainty in physics-
based prognosis approaches comes from assumptions and
simplifications of model structures. Incomplete coverage of
data for training empirical models introduces additional
uncertainty in data-driven approaches [146].

» Data quality: The selection of condition monitoring features
can directly determine the performance of a prognosis
system and affect [147-148], the nonlinear relationship
between features and actual machine health and the
sensitivity of features to operating conditions [26].

* Randomness in future degradation of equipment: Novel
events, such as changes in operational conditions,
maintenance actions, and new failure occurrence, may
change the deterioration and progression modes of existing
failures [149-150].

Most of the existing prognostic techniques predefine a
threshold for the feature to estimate the RUL by assuming the
failure takes place at the instant in time when the increased or
decreased feature reaches the predetermined threshold. Practical
applications of prognosis systems may commonly yield false-
negative and false-positive alarms under the effect of
uncertainties discussed above. This problem, caused by an
insufficient understanding of prognosis, highlights a future
direction for research.

3. Cloud-enabled manufacturing and prognosis

Cloud computing (CC) brings new opportunity in accelerating
the acceptance of advanced manufacturing technologies.
Prognosis, as an integral component of manufacturing, can
benefit significantly from CC.

3.1. Characteristics and service orientation of cloud

The “cloud” refers to the Internet as a communication network,
for distributed storage and delivery of computational services.
Various assets, such as sensor networks, embedded systems,
RFID, and GPS, are integrated in cloud manufacturing where
manufacturing resources (machines, robots, etc.) can be sensed
intelligently and connected to the Internet, as well as monitored,
controlled, and managed remotely. This creates the Internet of
Things (IoT), which is essential to cloud manufacturing.

The development of CM can be seen as a progression from the
sole adoption of CC facilities and functions to the adoption of all
manufacturing resources as services realizing the manufacturing
version of CC [151-153]. As within CC, procedures involved in the
entire manufacturing process, initially from product/machining
parameters design to equipment maintenance can benefit from
cloud-based services.

Condition monitoring, remote data analysis, degradation/fault
root-cause diagnosis, and prognosis all provide supporting
information for maintenance decision making as described in Fig.
4. However, massive data analysis is involved in these processes,
which requires significant computing resources to perform on-
line real-time computation. CC techniques can make these tasks
more efficient by leveraging infrastructure-oriented services in
the cloud for data storage and analysis, while software-oriented
service can be performed in a distributive fashion as web-based
programs for interface with manufacturers and consumers.

Small and medium-sized businesses (SMEs) can especially
benefit from cloud services since these services provide the
ability to use applications and solutions that may be too complex
or expensive or designed for use by larger enterprises. The pay-
as-you-go model with low cost for usage and maintenance
eliminates economic barriers, such as extensive investments in IT
systems and manufacturing equipment that are infrequently used
and rapidly depreciating. CM also provides other features, such as
the best mix and match of resources no matter where they may
be physical located, which helps realize concepts, such as DAMA
(Design Anywhere, Manufacture Anywhere)[154-155].

A variety of descriptions and definitions of CM exist that have
evolved from different perspectives. Many of these definitions
emphasize manufacturing services and resource sharing as
typical properties of CM [40, 151-152, 156]. They describe
collaboration by network-based resources and capability sharing
in the form of services between different cloud users (consumers,
providers, and operators). In light of IoT through machine
connectivity, “cloud manufacturing is an integrated cyber-
physical system that can provide on-demand manufacturing
services both digitally and physically to best utilize
manufacturing resources” [157-158].
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Fig. 20. Comparison of service level and user involvement.

The inclusion of CC as a core enabling technology is one of the
major differences between CM and other advanced networked
manufacturing systems. It makes it possible to provision
manufacturing activities as services in a distributed environment
and towards service orientation. A cloud service is differentiated
from traditional hosting by three distinct characteristics: it is sold
on demand (typically by usage time or subscription); it is elastic
(a user can decide how much of a service she wants at any given
time); and the provider fully manages the service (the user only
needs a computer and access to the Internet). The most common
services of CC are defined as: Infrastructure-as-a-Service (laaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)
[159]. Fig. 20 compares the services against typical standalone
computing applications at service level.

Table 4. Characteristics and benefits of cloud manufacturing

Diversity All activities in the product lifecycle can be encapsulated
as services and be provided to customers as needed.

Dynamic Services can be changed (add new services or delete
obsolete services) according to users’ requirements.

Virtualization |Physical resources are virtualized and services are
based on these virtual resources.

Elastic Services can be scaled up and down quickly based on

users’ demand.

Services and available resources are accessible from
anywhere at any time.

Degree of replication including geo-replication provides
fault tolerance with high service availability.

Pay only for what is consumed. Economies of scale allow
cost reduction.

Broad access

Fault tolerant

Cost effective

Similarly, manufacturing resources and capabilities along the
entire product development lifecycle can be realized and offered
in the cloud as [aaS, PaaS or SaaS, e.g., Design-as-a-Service (DaaS),
Assembly-as-a-Service (AaaS), Monitoring-as-a-Service (MaaS) or
Testing-as-a-Service (TaaS). Compared to CC that mainly deals
with IT infrastructures and software, implementing and realizing
CM is much more demanding since it includes an array of physical
manufacturing equipment to be accessible via the cloud. Table 4
summarizes the main characteristics and key benefits of cloud
manufacturing from the end users’ perspective.

3.2. Supporting technologies, architecture and platforms

The supporting technologies to implement CM or cloud-enabled
prognosis successfully include:

* Internet of Things (IoT) - The IoT integrates and connects
physical assets (e.g. machines, sensors) into an information
network, which enables device interoperability and
universal manufacturing resource availability and
accessibility [160-161]. The IoT is quickly growing with
RFID [151] and sensor technologies, which promotes
interconnection between things.

* Embedded Systems Technology - The rapid development
of embedded systems technology with the IoT enables

convenient access to manufacturing resources for status
retrieval and control [162].

* Semantic Web - The semantic web facilitates knowledge-
based intelligent computation and enables users to search
and share data and information easily by allowing data
from different sources to be processed directly by
machines [163-164]. It provides a common framework for
data to be represented and reused across applications and
promotes the use of different common formats for data
exchange.

*  MTConnect - An open and non-proprietary communication
standard for machine-to-machine communications and
interoperability between existing technologies [165].

Many attempts have been made and reported in the literature
to define CM system architecture [39-40, 151, 156, 166-171].
Some proposed architectures have 3-4 layers, while more
detailed architectures have up to 12 layers. The naming and
content of these layers also differ between architectures. Fig. 21
presents a typical conceptual CM architecture that consists of
three layers [168]:

* Manufacturing capability layer: This layer contains the core
manufacturing services (computer-aided process planning
or CAPP, computer-aided manufacturing or CAM, computer-
numerical control or CNC, etc.) in a service application
cloud. The services and user data can be safely stored in a
storage cloud. Physical manufacturing resources are
connected to this layer for on-demand access and service
realization.

* Virtual service layer: A central server is placed in this layer
for cloud management. Virtual services are matched and
mapped to the real services and physical resources based
on their availability and capability.

* Application layer: This layer mainly concerns the end users
(business users and private users) of the cloud services.
Comprehensive user interfaces and convenient access to the
cloud is the key. User friendliness, thin-client user interface
design and timely information presentation are dealt with
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Despite the difference in architectures, there is an agreement
that a CM system has three types of participants:

* Consumer (or end user): Purchases and consumes available
manufacturing services in the cloud from providers after
supplying engineering requirements to the cloud operator.

* Provider: Provides and sells manufacturing resources and
capabilities as services to consumers for their product
development. Services supporting the whole lifecycle of the
manufacturing processes can be provided.

* Operator: Responsible for the operation and management of
a CM system as well as for finding, combining, controlling
and coordinating the required services for fulfilling
consumer requirements.

The interest of the cloud manufacturing concept and its
potential effects is rapidly increasing. Many research initiatives
are active among academic and industrial participants in local,
national, and international projects of varying size and scope.
Some of these initiatives and platforms are summarized below:

* CMfg

CMfg represents an application model of CM that describes CM
platform activities in the propagation from user requests to the
return of a solution [40, 167]. It utilizes a 5-layer CM architecture
design: physical layer, virtualized resource layer, service layer,
application layer, and user layer. To demonstrate the feasibility of
the CMfg concept, a cloud-based application called Cloud
Simulation based on the Cloud Simulation Platform (COSIM-CSP)
has been developed where the collaborative work of a virtual
flight vehicle prototype is simulated [156] . Related platforms
from the same research initiative include: SME-oriented Cloud
Manufacturing Service Platform (SME-CMfgSP) with a 12-layer
architecture [170] and MfgCloud [172].

* Interoperable Cloud-based Manufacturing System (ICMS)

ICMS [168, 173] adopts a three-layer architecture as shown in
Fig. 21. The three layers are associated with the manufacturing
cloud at manufacturing capability layer, user cloud at application
layer, and smart cloud manager at virtual service layer. A
distinction is made between customer users (CUs) and enterprise
user (EUs): CUs are defined as customers requesting a self-
contained production task, while EUs are organizations or
enterprises seeking additional capabilities and support to fulfill
bigger and more demanding production tasks in collaboration
with temporary partners and their services.

* Cloud-based Design and Manufacturing (CBDM)

CBDM is a prototype system that builds on the concepts of CC
with manufacturing resources being available as different
services [174]. For the implementation of CBDM, a Distributed
Infrastructure with Centralized Interfacing System (DICIS) model
was proposed. The centralized interfacing system enables the
system to function as a whole. Workflow for distributed and
collaborative design and manufacturing in a local and distant user
scenario is described, where engineers are able to simultaneously
cooperate with each other using computer-aided design (CAD)
software in a SaaS mode.

¢ ManuCloud

ManuCloud is a project funded by the European Commission
(EC) [175-176]. The objective of ManuCloud is the development
of a service-oriented IT environment to support the transition
from mass production to personalized, customer-oriented, and
eco-efficient manufacturing. A conceptual architecture with a
front-end system and Maas infrastructure to support cloud-based
manufacturing of customized products was proposed. Using
Manufacturing Service Descriptions (MSDs), the concept has been

proven in some business cases, one with distributed production
and customer specification of small series, high-value products.

¢ CAPP-4-SMEs

CAPP-4-SMEs is another EC-funded project on Collaborative
and Adaptive Process Planning [177]. The prototype system
extends the distributed process-planning (DPP) [178] concept
and a two-stage generic-specific planning method [179]. For
better connectivity between the cloud and machines, function
blocks [180] are used to bring a process plan to a chosen machine
for execution while monitoring its status at the same time. Since
machine availability and capability can be monitored in real time
through the cloud, resource virtualization has been eliminated.

When implementing a CM system, security is a major concern.
Corporate information often contains sensitive data about
customers, employees, trade secrets, and intellectual property
[181-183]. Securing sensitive data and the ubiquitous availability
of requested applications in the cloud are a must for potential
users of cloud services. Manifestations of these concerns
regularly appear in many existing CC services as a profound
unwillingness and anxiety in letting sensitive and important data
escape outside the boundaries of the physical company premises
[184]. The service models (IasS, PaaS, and SaaS) require different
levels of security in a cloud environment. [aaS is the base of all CC
and CM services, with PaaS built upon it and SaaS$ in turn built
upon PaaS. Just as capabilities are inherited, so are the cloud
security issues and risks [151]. Today, most SaaS business and
manufacturing applications that vendors offer are hosted in ISO
27001 and Statement on Auditing (SAS) 70 Type II certified data-
centers with service-level agreements offered for applications of
99% and above [185]. More information about CC and CM can be
found in [184, 186-189].

3.3. Crowdsourcing for effective prognosis services

Crowdsourcing refers to the outsourcing of functions
performed by actors within an organization to an undefined
network of people outside of the organization [190-191]. It is
used primarily for complex or expensive problems that may be
solved efficiently by dividing tasks between different participants
who each have a different set of resources or expertise.
Crowdsourcing is also used typically to solicit ideas from a large
network to leverage multiple perspectives for innovation. These
capabilities address an important goal of cloud manufacturing to
use a shared pool of resources or knowledge to enable
collaboration across all participants in the cloud [40, 151-152,
156,167-168,192-193].

Figure 22 highlights some of the potential CM applications
enabled by crowdsourcing. Crowdsourcing for CM has typically
been suggested to connect service providers to customers for
sourcing, resource allocation, and scheduling support [151, 156,
167-168, 190, 192-193]. Similarly, crowdsourcing in conjunction
with the supporting technologies described in Section 3.2 (e.g,
IoT, embedded systems) may be used to share the computational
effort needed for different prognostic models and approaches. It
is also especially useful for manufacturing prognosis since
knowledge (and by extension the information and data used to
generate it) may be shared in the cloud [194]. By leveraging this
collective intelligence, crowdsourcing allows for the sharing of
experiences that helps identify and implement best practices.
These advantages are particularly beneficial in prognosis where
vast knowledge holistically collected across a manufacturing
system is needed to reach robust, reliable decisions, especially for
SMEs who often lack such resources.

One specific application of crowdsourcing for prognosis is in
improving data collection and synthesis efforts. For example,
there is a need to better correlate machine condition with process
and inspection data to provide the context needed to differentiate
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between process and machine degradation [195]. The difficulty is
that diagnostic and prognostic models generally require
significant amounts of historical condition monitoring and event
data [195-197]. As this data becomes more extensive, the
uncertainty of these models decreases [195]. Crowdsourcing can
generate  extensive, representative historical condition
monitoring and event data sets by synthesizing smaller data sets
available in the cloud. The appropriate means to synthesize data
in this way remains an open research question. Furthermore,
there may be intellectual property (IP) concerns involving the
ownership of any collectively generated knowledge, information,
or data [193].
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Fig. 22 Potential applications of crowdsourcing in the context of cloud

manufacturing.

There are other challenges when implementing crowdsourcing
for prognosis. Cybersecurity is perhaps the most significant
challenge and refers to protecting intellectual property (IP),
sensitive information (e.g, customer information or export
control) and the security of devices and assets networked in the
[oT [198]. Manufacturing has focused typically on protecting IP
and sensitive information [151, 156, 198], which should be the
more immediate concern when using crowdsourcing for
prognosis since crowdsourcing requires sharing knowledge,
information, and data. (The security of networked devices is a
more general concern of cloud manufacturing that is discussed in
Section 5.) Section 3.2 describes different options to address IP
concerns (e.g., 1SO027001 and SAS 70 Type II certified data
centers). Other options include firewalls, compression,
encryption, and virtual local-area networks (LANs) [151]. Test
encryption schemas, scheduled backup, service-level agreements,
and quantitative analysis of vulnerabilities are all important in
ensuring the reliability of many of these protection options [151,
190, 199]. Furthermore, the extent to which the cloud is
integrated into an organization’s operations can also address IP
concerns. For example, Tao et al. [156] suggest using a different
cloud manufacturing platform - public, private, community, or
hybrid - depending on the types of services and interaction that
are desired by the cloud participants.

An alternative approach to address IP concerns is to focus on
the knowledge, information, and data being shared in the cloud.
Anonymizing sensitive information not needed for useful analysis
would help encourage the further development of crowdsourcing
for prognosis [151, 192]. Otherwise, the fear is that the data could
result in negative publicity and/or inform key competitors of an
organization’s operations. A major challenge of anonymization
efforts, though, is determining what aspects of knowledge,
information, or data are needed by the cloud so that
crowdsourcing provides positive benefit. In addition, the secure
elimination of data is not trivial.

Interoperability is another significant challenge for
crowdsourcing [19, 168]. This is especially true in diagnosis and
prognosis where sensor fusion is important in providing a holistic

perspective of the state of a manufacturing system [196]. Data
and information flows from manufacturing systems can appear in
a variety of formats, at a variety of sampling rates, and from a
variety of sources (see Fig. 23) [19, 200]. There are few standard
interfaces and rules that allow for seamless communication of
this data and information. This can make aggregating information
flows from several data streams that are appropriately
contextualized with the manufacturing system an extremely
complicated process. Data interoperability standards that bridge
multiple levels of the manufacturing hierarchy (i.e., process to
enterprise), data and information types, equipment types, and
product life cycle stages are critical enablers for data and
information synthesis in the cloud [196, 200]. MTConnect is an
example standard that can enable crowdsourcing for prognosis.
Vogl et al. [197] provide a good summary of the standards
landscape for manufacturing prognosis, especially related to
health management.
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Fig. 23. Potential sources of data on the shop floor.

4. Application Highlights

4.1. Prognosis of machine components, tools, and processes

Tool wear prognosis and remaining tool life prediction are the
two most important issues and common applications in
manufacturing oriented condition monitoring [201-202]. As
described in Section 2.1.1, an important technique to describe
tool wear or tool life is physics-based models, namely
deterministic equations. Two types of parameters are included in
these physical models: measurement parameters (e.g., cutting
speed in Taylor’s equation) and unknown coefficients (e.g.,
exponential coefficient in Taylor’s equation); the latter is usually
determined through a quantity of experiments. For example, Fig.
24 demonstrates a striking difference in wear pattern on the rake
face of PCD tools at two different cutting speeds [203], which
proves the reverse relationship between cutting speed and tool
life as described in Taylor’s equation.

91m/min
Fig. 24 Tool wear at different cutting speed [203]

There is inherent uncertainty in the empirical constants since
they vary with factors, such as tool material, workpiece material,




and manufacturing conditions. Hence, tool life is generally
considered to be a stochastic process, and the types of estimate
methods introduced in Section 2 often estimate unknown
parameters. Karandikar et al. [204] applied Bayesian inference to
estimate parameters in a Taylor tool life model for milling
operations. They extended their work to include cutting feed as
well as cutting speed into the Taylor’s equation for turning
operations and applied the metropolis-Hastings algorithm of the
Markov chain Monte Carlo to estimate the parameters in the
model [205]. Similar research can be found in [136, 206].
Common approaches for performance degradation assessment
and RUL prediction for other machine components have been
introduced in Section 2, such as fuzzy theory [87], support vector
machine [207], Bayesian inference [139], and particle filters [88].

4.2. Remote monitoring, diagnosis, and prognosis

The IoT essential for cloud manufacturing allows for the
collection of real-time information and data from devices and
assets networked across the manufacturing enterprise. This
information and data provides opportunities for remote
monitoring, diagnosis, and prognosis by providing a holistic
perspective of the historical and current state of manufacturing
equipment and processes on the shop floor. But, the potentially
large variety of data types and formats as well as the potentially
large amount of data available through the IoT necessitates
effective solutions to collect data in context with process-related
information to identify physical reasons driving any observed
variations in the manufacturing system. This can be accomplished
by using open standards for manufacturing data interoperability
when collecting sensor and process data.

MTConnect supports data integration (not transmission or use)
and is defined to emulate the hierarchy of a conventional machine
tool. It enables plug-in architectures that allow for application-
focused development by standardizing interfaces between
various data sources. It is also extensible and lightweight and
supports both legacy and new technologies. To further ease
factory integration, subsequent research has focused on
incorporating MTConnect with other standards for sensor
networks (e.g., IEEE 1451) to address data transmission and use
[208].

Figure 25 shows a typical MTConnect architecture deployed on
the shop floor for remote monitoring. Using this architecture,
data from the machine tool controller (e.g., actual position, actual
and commanded feed, actual and commanded speed) and a
variety of sensors (e.g, power meters, thermocouples,
accelerometers) can be combined for many different remote
monitoring, diagnosis, and prognosis applications, such as
preventive maintenance [192], process planning verification
[200], accurate cycle time estimation, tool position verification
[209], and energy monitoring [210] and prediction [211].
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Fig. 25 MTConnect architecture highlighting application for remote, web-
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Applications of remote monitoring, diagnosis, and prognosis
that utilize an infrastructure provided in the cloud can also be
found deployed in industry. Teti et al. [19] provided an extensive
list of different industrial efforts for remote monitoring and
diagnosis. DMG Mori Seiki offers MORI NET for remote
monitoring of machine tool status through the internet, including
remote alarm support, transmission of alarm information,
machine operating status check, and periodic reports [212].
Similarly, Mazak provides Cyber Production Center, which
monitors machine operation and job status, tooling data, and
machine work load via the internet [213]. Both of these solutions
are integrated within specific machine tool systems. Alternatively,
third party vendors are offering general software tools, such as
VIMANA Core from System Insights, which monitors real-time
shop floor data to help organizations manage the productivity of
their machine tools [214].

4.3. Event-driven, condition-based maintenance
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Fig. 26 Condition-based maintenance based on data fusion and reliability-
centered maintenance, introduced in [215]

Decision-level
fusion

The most important two attributes for maintenance are cost-
effectiveness and accuracy, which is a comprehensive factor that
includes reliability and probability. As described in Section 1, a
significant advantage of prognosis-enabled CBM or preventive
maintenance over traditional scheduled maintenance is its
effectiveness in reducing maintenance cost. Niu et al. [215]
proposed a condition-based maintenance system that employed a
reliability-centered maintenance mechanism to optimize
maintenance cost, as shown in Fig. 26. However, preventive
maintenance requires a better understanding of the nature of
maintenance policies in a mathematical way and incorporation of
diagnosis and prognosis results into maintenance rules (i.e., the
adaption of maintenance polices). The overall objective of
formulating or selecting maintenance rules is to minimize the
total maintenance cost, including the hidden cost of risk and
reliability.

For preventive maintenance, the maintenance decision rules
should be incorporated with the information obtained from
online measurement, data processing (diagnosis and prognosis),
or data fusion, which makes sense especially when equipment
works in a complex situation and undergoes a different
deterioration rate. An adaptive maintenance model for a
gradually deteriorating system is proposed in [216] where the
deterioration rate is considered a time-dependent function. The
maintenance rules should be adapted after the change points
where the transitions of mode of system deterioration are
assumed to occur. Grall et al. [217] proposed a maintenance
strategy with sequential inspection times taking into account the
current system state for the choice of the next inspection, as
shown in Fig. 27. The system deterioration is modeled as a
Gamma process, and the system is considered failed if its
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condition jumps above a pre-set failure level. They extended this
method to a two-unit series system to obtain an optimized
inspection/replacement strategy by minimizing the long-run
maintenance cost of the system [218]. To avoid unnecessary
investment in CBM equipment, a reliability-centered maintenance
enabled CBM model is proposed in [215] by taking the functions
of components and their importance into consideration to
maximize results with regard to system reliability and outage cost
reduction. Also, data fusion techniques at the signal, feature, and
decision levels are applied to increase maintenance accuracy.
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Fig. 27 CBM-based decision making of inspection time adapted from [217]
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4.4. Integration of prognosis with cloud for adaptive decision-
making

Prognostic models developed based on the deterministic and
probabilistic methods described in Section 2 are often application
specific and vary with different manufacturing operation
conditions, maintenance polices, or environmental conditions. To
achieve cloud-enabled prognosis, crowdsourcing is employed as
described in Section 3.3 to fully utilize not only parallel
computing capability but also the shared information obtained
from previous condition monitoring or maintenance experience.
To fulfill crowdsourcing, a knowledge sharing method called
case-based reasoning (CBR) can be applied. The CBR system
continuously adds past experience as cases to the case base. The
processes to perform problem solving using CBR involve
retrieving similar cases by comparing measurement or post-
processed data to cases in the case base, reusing the information
in the retrieved cases, revising the suggested solution according
to specific conditions in target domain, and retaining a new
experience to the case base, as described in Fig. 28 [219].

A new CBR system has been developed in [220] to model
infrastructure deterioration satisfying special requirements and
to provide government agencies with practical, accurate, and
versatile deterioration models. An intelligent CBR with petri-
nets-based system has been proposed in [221] for machine fault
diagnosis; the petri nets improved the retrieval, addition,
deletion, and revision of previous experience-based cases in CBR.
Similar studies can be found in [222] - a recommended fault type
generated by a classification tool for a specific sensor signal,
where the recommendation is based on previously classified
cases in a case library. A problem-oriented multi-agent-based e-
service system (POMAESS) has been developed in [223] for
remote maintenance decision making. The decision-making
process in POMAESS seeks technical support from informational
exchanges between customers and suppliers as well as
cooperation and negotiation based on the sharing of different
complementary and contradictory knowledge.

Two problems that need to be addressed when applying CBR to
condition monitoring, prognosis or maintenance are efficiency
decrease due to incremental cases and feature matching between
sensor data and existing cases. As reasoning improves with time,
the retrieval speed and efficiency decreases., so case management
is important to the overall performance of a CBR system. An

adaptation-guided case-base maintenance strategy is proposed to
compact a case base by dynamically generating new adaption
knowledge to fuse cases [224]. It is inevitable that there is
inconsistency  between features extracted from new
measurements and existing information in the case base, which
requires a CBR system to have versatility and extensibility of case
and knowledge representation; and fuzziness of retrieval
knowledge [220]. To solve this problem, rough set theory is
applied to reducing the effect of assigning weights to the case
feature attributes [225].
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Fig. 28. Architecture of CBR, adapted from [219]

5. Challenges and Limitations

5.1. Bandwidth, speed, distributed storage, and computation

One of the most important characteristics of data processing in
manufacturing is that it is real time with three issues involved in
this process: data transmission, data storage, and data analysis.
Real-time data measured on shop floor are expected to be
transmitted to a cloud server over the Internet in a timely
fashion, followed by effective data analysis and transmission of
the result back to the machine site for operation/process control
and/or maintenance. Unlike traditional architectures, a cloud
server is an aggregation of distributed computing resources,
which may split data files uploaded from clients into several
portions to be stored in distributed servers. This poses a
challenge for data consistency.

Sensors (e.g., force, vibration) monitoring manufacturing
processes that work at high sampling rates can generate a large
amount of data within a short time period. The specific
application requires high quality cloud service, especially with
respect to network and computational performance. Network
performance in the environment of CC is determined and affected
by the input/output (I/0) virtualization - resources of network
links and bandwidth are shared by multiple virtual machines
(VMs). Recent research has indicated that the most important
issue affecting /0 virtualization performance is communication
between VMs and virtual machine monitor (VMM), which is
responsible for assigning storage/computational resources and
managing transmitted data. When a data packet arrives, the
server must determine the VM to which the file should be
delivered by analyzing its header and employed protocol and
referencing a bridging table. Barham et al. [226] pointed out that
30-40% of execution time for a network to transmit or receive an
operation was spent in VMM to remap addresses contained in the
transmitted data package. This problem worsens in the context of
increased line rate and workloads. It has been demonstrated that
the overhead of central processing units (CPUs) and latency
increase with the transmitted package rate due to increased
communication between the server (VMM) and client (VMs)
domains [227].

Various studies and experiments have been conducted on
performance measurement and analysis of network I/0

17



applications. For /0 virtualization performed on VMs
instantiated on a single physical machine, VM throughput is
almost ten times lower than the throughput in the server domain
likely because of the costly communication between the server
domain and VMs in the client domain [228]. Especially when
dealing with small packets but high packet rate, the throughput is
even lower since the software stack does not have enough CPU
resources to process [229]. For multiple VMs running on
multicore platforms, experimental results indicated that the
latency for write/read operation does not change much as the
number of VMs increases, but does increase exponentially with
the package size due to bandwidth saturation. It is considered
that, as the link becomes saturated with increased package size,
the average bandwidth attained by each VM decreases [230].

The data storage type in the context of CC is known as a
distributed file system; Hadoop distributed file system (HDFS)
[231] and Google file system (GFS) [232] are representative
examples. A significant characteristic of both systems is the
partitioning of data and computation across many servers. HDPF
stores the file system metadata in NameNode and application
data in DataNode separately; NameNode represents files and
directories, and record attributes (e.g. permissions, modifications,
access times) [231]. An important challenge associated with this
kind of file system is the failover of NameNode/hypervisor, which
keeps all the namespace and data file locations in memory. The
limited size of memory can restrict the capability of NameNode,
and easily cause its shutdown. Another challenge in the
application scenario of real-time, large-volume data storage and
analysis is inefficient execution due to multiple replications of
data files because of the need for data locality in maintaining
performance.

Similar to the effect of I/0 virtualization on network
performance, computational capability in CC is affected by the
sharing of computing resources, such as CPU, memory, and cache
line. When executing multi-tasks based on scientific computing,
experiments have indicated that the floating point and double-
precision float operations are six to eight times slower than the
theoretical maximum, due to the overrun or thrashing of the
memory caches [233]. Similar work is found in [234-235]. In
[234], several benchmarks have been executed on both native
and virtualized systems, and the results showed that the
performance overhead for CPU and memory virtualization were
up to 5% and 40%, respectively, mainly caused by memory
allocation. Kousiouris et al. [235] investigated the effect of a
number of critical parameters, such as real-time scheduling
decisions, and co-placement of VMs, on the performance of VMs.
The performance overhead posed by these parameters has been
confirmed to be up to 150%.

An important issue determining the virtualization performance
and consequent network and computation performance is
dynamic resource management. The most popular option for
resource allocation among current cloud-oriented services is to
seek trade-off execution quality by the assigned resources via a
load balancing mechanism or high availability mechanism.
Relevant research has been conducted, such as game theory [236]
or k-means clustering [237]. These efforts only address the
scaling problem of one resource or a single tier.

5.2. Autonomous communication, security

An important goal of the IoT in cloud manufacturing is to
leverage machine-to-machine (M2M) communication to collect
and contextualize data from sources across the manufacturing
enterprise [200, 208]. Data analytics may then be used to assess
the data and generate information to support different goals, such
as prognosis [200]. The difficulty is that M2M communication in a

manufacturing environment can be challenging due to
considerations related to interoperability and cybersecurity.
Section 3.3 highlights significant data integration issues in M2M
communication, but these issues are only one set of
interoperability considerations in manufacturing. Data collection
is also a significant challenge because manufacturing equipment
is usually old and low in computational power. Many facilities
also use a variety of machine-tool types and each may require an
interface to communicate with other machines (see Fig. 29) [238].
Every networked device relies on one of several communications
protocols (e.g., Modbus, Fieldbus, or Profibus). These interfaces
and protocols can grow rapidly without the appropriate
standards that allow for “out-of-the-box” communication [208,
238]. The lack of commonly adopted interfaces and protocols
increases the knowledge and resources needed for
implementation, which can be substantial given the significant
training and setup time required even if expertise is available [20,
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Fig.29 Example of the different communications interfaces and protocols
that can be found in a typical manufacturing facility.

The architecture needed for M2M communication must also
enable data and information exchange within one and across
several levels of the manufacturing hierarchy (i.e., process to
enterprise) [210]. It should be scalable for large data volumes and
capable of dealing with the time scales (microseconds to days)
present in manufacturing data and decision making. While these
characteristics increase the complexity of data collection and
analysis, they enable automated monitoring that can support
autonomous manufacturing systems where machines identify
patterns or disturbances using a cumulated set of knowledge and
experiences. These machines can then work with other machines
to respond to the disturbance and ensure the continued
performance of the manufacturing system.

Cybersecurity remains a significant concern hindering cloud
manufacturing applications and services. Section 3.3 highlights
some of the issues related to the protection of IP and sensitive
information, but the threat to the security of networked devices
and assets may be the more important concern for cloud
manufacturing [198]. Existing infrastructure, such as supervisory
control and data acquisition (SCADA) networks, can be a
significant vulnerability given its designed function. Stuxnet is
one example of a cyberattack that exploited SCADA networks.
Developed to target Iranian efforts to enrich uranium, Stuxnet
exploits the SCADA’s dynamic-link library (DLL), through which
SCADA receives information about the system being controlled
[240]. Through the DLL, Stuxnet reprograms the programmable
logic controller (PLC) so that the system (i.e., Iranian enrichment
reactors) operates as the attacker intends.

Through M2M communication, opportunities exist to target any
part of the product lifecycle and supply chain if these machines
are connected through the cloud [198]. Potential attacks could
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include altering design files, toolpaths, or quality control.
Furthermore, the safety of operators and consumers may also be
threatened if an attacker can control these systems. Ultimately,
the risks must first be understood and acknowledged so that
technologies can be developed to address them. Research is
ongoing in this area, such as, Thames [241] who has proposed a
distributed, collaborative, and automated infrastructure for the
cybersecurity of cloud manufacturing systems. This
infrastructure is designed to provide real-time, dynamic, and
preemptive protection by using cyberthreat information
exchanges, such as the Trusted Automated Exchange of Indicator
Information (TAXII) [242], Structured Threat Information
Expression (STIX) [243], and CYBEX [244]. Standards are also
being developed to support these information exchanges [241].

6. Conclusions

6.1. Summary of state of technology

Cloud-enabled prognosis can leverage advanced manufacturing
by using data and information from across the manufacturing
hierarchy to improve efficiency, productivity, and profitability.
Recent advances in cloud manufacturing have increased the
accessibility to many technologies, such as M2M communications,
IoT, and semantic web, and now provide an opportunity to
transfer prognosis models and techniques from the research lab
to industry. Much of the current technological development has
focused on providing the infrastructure and architecture to
implement prognosis models and techniques. For example, a
variety of cloud initiatives and platforms have been suggested to
offer different services (e.g., [aaS, PaaS$, or SaaS) to manufacturers,
and interoperability standards have been proposed for data
integration, such as MTConnect. Hardware and software vendors
have also started to provide cloud-enabled diagnosis and
prognosis solutions to their customers, such as remote
monitoring and diagnosis of machine tools and shop floor
equipment.

The key challenges for cloud-enabled prognosis will be in data
collection and management. Standards will be needed for data
interfaces, collection, transmission, and interoperability. Methods
to anonymize and remove sensitive information from data and to
synthesize data streams from multiple and varied sources will be
critical in dealing with the large data volume that may be
collected from across the manufacturing hierarchy. Finally,
cybersecurity must protect IP sensitive information and the
security of networked devices and assets to deploy much of this
technology in industry. If these issues are resolved, the potential
exists to exploit many aspects of the cloud, such as
crowdsourcing, to improve manufacturing efficiently and
effectively by providing knowledge and value to actors
throughout the product lifecycle, which would drive innovation
beyond manufacturing.

6.2. Continued evolution, future research direction

Currently, most of the research activities related to prognosis
are confined within controlled laboratory conditions. This is
largely due to the fact that prognosis models are application
specific. For example, the parameters involved in the Paris’
formula for tool wear prediction vary with the type of tools used.
Crowdsourcing, if integrated with cloud-based techniques,
presents an opportunity for prognosis in an industrial setting. A
challenge, as well as an opportunity, in crowdsourcing is the
feasibility and interoperability of data for the purpose of fusion
given the variety of data (e.g, condition monitoring data and
features). Establishing guidelines for designing a prognosis
system in a cloud environment, including sensor selection, data

transmission, database creation, prognostic method selection,
and cooperative, and intelligent decisions, would have a
significant impact on advancing the state of prognosis in the
context of cloud.

As with cloud-enabled prognosis and its advanced computing
capability, dynamic resource allocation can be another research
direction, especially in the context of big data analysis. Typically
sensor outputs, after preprocessing by local agents, are
transmitted to computing resources in the cloud. Challenges and
opportunities lie in how to allocate efficiently these data and fuse
analysis results to ensure remote yet on-line and real-time
manufacturing process and equipment monitoring and prognosis.
Also of interest is effective and efficient M2M communication,
including data collection, sharing, and transmission, to minimize
the bottleneck of current cloud-based techniques and maximize
cloud resource utilization.

Cloud-enabled prognosis benefits from both advanced
computing capability and information sharing for intelligent
decision making. Cloud-enabled prognosis, as well as cloud-
enabled design and manufacturing services allocation, is part of
cloud manufacturing, which requires an association of distributed
industries or manufacturing service providers for information
and resource sharing. Significant challenges exist in the creation
of mechanisms or standards for information and resource
sharing, to maximize the benefit and minimize the potential
hazards for industries. Another challenge 1is effective
communication between clients and encapsulated service
providers. It is expected that specific service requirements can be
intelligently and automatically assigned to one or several
industries associated with the cloud with minimal human
intervention. Overcoming these challenges will make cloud-
enabled prognosis an effective tool for the widespread adoption
of cloud-based manufacturing.
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