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Background 
• Example of DMLS process on EOS M270 machine 

– 200 W laser, 100 µm spot diameter   

– ≈ 0.8 m/s scan speed 

– ≈ 30 µm metal powder particles, ≈ 20 µm layer thickness 

 



Background 
• What are the challenges?* 

– Residual stress, distortion, surface finish, defects… 

– Lack of sensors for monitoring and control 

– Fundamental understanding of DMLS physics 

• Temperature is a key signature of the physical 
processes 

• Simulations will be key to understanding process and 
predicting 
 

• How can we compare thermal measurements with 
simulations in an accurate, scientifically sound way?  

 

 

 

*-Energetics Inc. for National Institute of Standards and Technology (2013).  
Measurement science roadmap for metal-based additive manufacturing. 



Background 
• Process modeling and simulation 

 

 

Khairallah et al. (JMPT 2014) 
Hussein et al. (M&D 2013) 

Gockel and Beuth  
(SFF 2014) 



Background 
• PBF Temperature Measurement: 

 
 
 
 
 
 

• Why thermography? 
– Non-contact, multi-point… 

– Spatial and temporal variation in temperature 

• Why not? Data intensive, speed limited, inaccurate…but still useful. 
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Background 
• State of art: Melt pool monitoring of 

DMLS or SLM 
• Krauss et al. (SFF 2012) 

– EOS M270, 50 fps, 5-15 ms int. time 

• Bayle et al. (SPIE 2008) 
– Phenix PM100 

– MIR camera, 136x64 pixels, 2031 fps, 
0.05 ms int.time 

 

 

 

– Only paper found with high speed, high mag 
thermal imaging of commercial SLM process 

 
(Krauss et al., SFF 2012) 

(Bayle and Doubenskaia SPIE 2008) 



Objectives 
• Our objectives for thermography of DMLS: 

– Provide data to improve and verify process simulations 

– Investigate relationship between input parameters – process signatures to guide 
future development of sensing methods for feedback control 

• Objectives for simulation: 
– Achieve results comparable to experiment measurements (temperature, structure, 

metallurgy, …) 

– Sensitivity analysis of process parameters and /or simulation parameters 

– Incorporate metallurgical phase and residual stress predictive modeling based on 
temperature history of part 

• Provide well characterized, quantitative measurements and results 
• “…when you cannot express it in numbers, your knowledge is of a 

meager and unsatisfactory kind…” - William Thompson – First Baron 
Kelvin 
 



Objectives 
• Note on our objectives: 

– Thermal video is not a measurand: one is defined and extracted from the thermal 
video (see Annex D of GUM guide) 

• Temperature value of a pixel?  Real surface temperature? Rate of change of temperature? 

– Must weigh accuracy, feasibility, and utility of results in designing experiment (and 
selecting/defining a measurand)  

– ‘Holy Grail’ measurand commonly cited is the ‘melt pool size’ and ‘melt pool 
temperature’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Hussein et al. M&D 2013) 



ABAQUS 
One layer multiple hatch scanning simulation 
Two cases 

• Scan on solid specimen 
• Scan on one layer of powder on the solid substrate 

Material:  EOS PH1 (Stainless Steel 15-5) 

Laser source: Gaussian 
Laser power: 195 W 
Scan speed:  800 mm/s 
Spot size diameter: 100 µm 
Hatch spacing: 100 µm 

FE Simulation 

Powder bed thickness

Fine hexahedral element mesh for 
the laser scanned region (12.5 µm)

Powder layer thickness

Model dimension:
X = 6 mm
Y = 1.4 mm
Z =  0.6 mm

Surface convection 
Surface radiation

mm 

mm 
mm 



FE Simulation 
 
 

 

Two limiting cases of solidification behavior: 
• Lever: complete diffusion, all phases are assumed to be in thermodynamic 

equilibrium at each T during solidification 
• Scheil: diffusion in the solid is forbidden  

AM Thermal modeling needs to include the data from 
thermodynamics calculation 

Enthalpy Prediction from Thermodynamics Calculation (CALPHAD)  

Courtesy of William Boettinger, NIST Fellow, MML 



Comparison of temperature after the 1st 
track scan (a) on one layer of powder on 
the solid substrate and (b) on solid 
substrate 

Temperature as a function of x distance 
at top surface at three scanning time   
 

Temperature as a function of time at three 
surface node 
 

FE Simulation 

(a) On one layer of powder 

(b) On the solid substrate (surrounding material is powder)  



Experiment Setup 
• EOS door 

– Objective: get the camera as close as possible (for highest magnification) 

– Custom built door for EOS machine 

Solidworks model of EOS build chamber + custom viewport 
Build Plate 

Recoater Arm 

View Port 

≈ 3 mm 
clearance 

Checking clearance of the viewport 

Thermal camera looking into the viewport 



Results – Test 11 ‘Intensity’  

Camera Parameters: 
iFoV: 36 µm/pixel  
FoV: 128 pixel x 360 pixel 
  (4.61 mm x 12.96 mm)   
Frame Rate: 1800 fps 
Integration time:  Test 11: 0.05 ms 
    Test 15: 0.02 ms 
Spectral range: 1640 nm to 2400 nm 
 

• What are we looking at? 
 

 Build Parameters: 
Material: EOS PH1 Stainless Steel 
Mean Particle Size: 35 µm   
Hatch Spacing: 100 µm 
Hatch Width: 5 mm 
Laser Power: 195 W 
Scan Speed: 800 mm/s 
 



Results – Test 11 ‘Intensity’  

Note: Video should only be used for qualitative analysis.  Inference of temperature, 
radiance, or other quantitative measurements from this video is not endorsed by NIST. 



Results – Test 15 ‘Intensity’  

Note: Video should only be used for qualitative analysis.  Inference of temperature, 
radiance, or other quantitative measurements from this video is not endorsed by NIST. 



Calibration 
• Why? Relate signal to 

temperature 
• Signal is proportional* to 

spectrally integrated 
Planck’s law (radiant 
flux) 

• Calibration objective: 
Evaluate a function F 
that maps camera signal 
Sbb to blackbody 
temperature Tbb 

 
 
 
 

 

bbbb STF ↔:

Planck’s Law of Blackbody Radiation 

Signal proportional to spectrally integrated Planck’s law 



Results: Test 11 Apparent Temperature 

Tapp, oC 

Note: Video should only be used for qualitative analysis.  Inference of temperature, 
radiance, or other quantitative measurements from this video is not endorsed by NIST. 



Results: Test 15 Apparent Temperature 

 
 

Note: Video should only be used for qualitative analysis.  Inference of temperature, 
radiance, or other quantitative measurements from this video is not endorsed by NIST. 



Discussion: Potential Measurands 

• What is ‘apparent’ temperature? 
 

• Claiming Tapp is ‘minimum temperature’  
– 1.) Blurring reduces Tapp:  Tapp < Ttrue 

– 2.) A real emissivity <1:     Tapp < Ttrue 

 

– If every effect decreased Tapp,                         
then Tapp is a ‘minimum temperature’  
 

– 3.) Reflections cause         Tapp > Ttrue 

– Reflections may affect ‘minimum temperature’ 
claim 

( )totalappapptotal SFTTFS 1)( −==



Discussion: Potential Measurands 
• Example measurand: isotherm size 

 
 
 
 
 
 
 
 
 
 
 

• Motion blur? Optical blur? Effect of emissivity? Was the slice taken at 
the center of melt pool?  Uncertainties need to be studied… 
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Frame 246
Frame 247
Frame 248
Frame 249
Frame 250

Example statement: 
“Everything within this 
isotherm is greater than 
800 °C and less than 
24 pixels, or 0.86 mm 
in length”  
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Discussion: Potential Measurands 
• Example measurand: Energy loss from spatter  

– Advection of discrete particles 

– Not accounted for in most PBF models 

• Potentially measurable: 
–  ri = radius of particle i 

–  Ti = temperature of particle i 

–  ∆t = time interval 
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These are initial thoughts, but this is apparently a significant heat/energy transfer process 



Conclusions 

• Current efforts in AM simulation + validation at NIST 
• Simulations: 

– Material thermodynamics calculation through Calphad 

– Sensitivity analyses of process parameters + simulation 
parameters 

– Future: alloy phase and residual stress calculation 

• Thermography: 
– Measurement system constructed, able to take images 

– Measurand definition /  image analysis underway 
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