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Abstract. Securely configured Internet Protocol version 6 networks can
be made resistant to network scanning, forcing attackers to propagate
following existing benign communication paths. We exploit this attacker
limitation in a defensive approach in which heightened security measures
are deployed onto a select group of chokepoint hosts to enhance detec-
tion or deter penetration. Chokepoints are chosen such that, together,
they connect small isolated clusters of the communication graph. Hence,
attackers attempting to propagate are limited to a small set of targets or
have to penetrate one or more chokepoints. Optimal placement of choke-
points requires solving an NP-hard problem and, hence, we approximate
optimal solutions via a suite of heuristics. We test our algorithms on data
from a large operational network and discover that heightened security
measures are only needed on 0.65% of the nodes to restrict unimpeded
attacker propagation to no more than 15% of the network.
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1 Introduction

Consider an attacker stealthily compromising an internal host on an Internet
Protocol version 6 (IPv6) network. Leveraging this vantage point, the attacker
then attacks other internal hosts, using some of them as launching points for
additional attacks. The attacker’s goal is to either find a particular resource or
to simply gain control of as many internal hosts as possible. We further assume
that the attacker will execute attacks at the transport layer and above because
the vast majority of network-based attacks operate at these layers [10].

A securely configured IPv6 network can be made resistant to network scan-
ning [7] and other forms of target acquisition [4], limiting the attacker’s abil-
ity to discover new hosts and subnets. As a consequence, attacker propagation
is mostly limited to existing benign communication pathways. We exploit this
limited attacker movement in a new defensive model by augmenting a set of
hosts with heightened security measures such that they form internal choke-
points for attacker propagation. The attacker will then be required to penetrate
these chokepoints or else be limited to a small set of targets. We thus enable a
novel defense-in-depth layer that complements traditional security approaches.



The heightened security measures at the chokepoints may take many forms,
be detective or preventative, and include a combination of different approaches.
The nodes may be hardened to a similar degree as network perimeter devices,
may have increased monitoring (human or automated), or may have an enhanced
deployment of security software. They may be special purpose servers with lim-
ited functionality (thus reducing the overall attack surface). These chokepoints
then represent a more difficult target than standard network nodes and/or ones
with increased detection capabilities.

We assume that there is budget to place heightened security measures on
up k nodes. The question of interest to us then becomes: how do we assign
these k nodes in order for them to be effective chokepoints? In this paper, we
consider two objective functions: minimizing the number of hosts an attacker
could penetrate without compromising a chokepoint node and maximizing the
number of chokepoints between the attacker and any random goal host.

Optimal assignment of chokepoints requires solving the NP-complete [5] ver-
tex separator problem; for this reason, we developed a suite of four greedy heuris-
tic solutions. Aiding our identification of chokepoints is that our empirical evalu-
ation indicates that transport layer communication graphs have two properties:
(i) there are many nodes of low degree and few nodes of high degree, while (ii)
low degree nodes tend to be connected to high degree nodes and vice versa (i.e.,
the graph of the network is disassortative [18]). The result is that there are many
communication paths that tend to overlap onto a subset of hosts, which helps
in our design of heuristics for choosing the set of k chokepoints.

To evaluate the effectiveness of our approach and proposed algorithms, we
collected transport layer communication data throughout a large operational
network consisting of 15509 nodes. We used the empirical degree sequence of
this data to generate a suite of uniformly distributed random graphs conformant
with the degree distribution within the network. We were thus able to create a
variety of test graphs to broaden our test cases beyond the single monitored
network. Finally, we ran our algorithms on each random graph and evaluated
the performance according to two metrics: (a) the size of the largest cluster and
(b) the average number of chokepoints between a pair of nodes.

Once the chokepoints are chosen, periodic monitoring of the communication
patterns is necessary to detect ongoing changes and their impact on current
chokepoint placement. While the link connectivity remains stable over time (from
empirical observation), operational networks change slowly but continually as
new users and hosts are added. This dynamic aspect to the communication
graph can be accommodated by a mobile defensive technologies (those that can
be repositioned rapidly and with little cost). Without mobile defensive measures
being available, cluster sizes can always be minimized by adding new chokepoint
at an increased cost. With mobile defensive measures, the chokepoints can be
repositioned to near-optimally account for changing communication conditions.
Even if the communication graph remains stable, a moving defense regimen may
be implemented where the chokepoints migrate over time (e.g., between locally



optimal configurations) to prevent attackers from mapping out the defensive
topology or learning of chokepoint placement using out-of-band methods.

The remainder of this paper is structured as follows. Section 2 discusses
our threat model while Sect. 3 describes network configuration requirements.
Section 4 provides our chokepoint approach. Section 5 shows how to minimize
the maximal cluster size. Section 6 illustrates how to maximize the mean of the
minimum number of chokepoints that must be traversed between pairs of nodes.
Section 7 describes our experimental data and Sect. 8 provides empirical results.
Section 9 details related work and Sect. 10 concludes.

2 Threat Model

We assume that an attacker has broken through a network’s, often porous [14],
perimeter security and penetrated an internal host. We also assume that this
penetrated host is equally likely to be any node of the network. From this vantage
point, the attacker attempts to reach the rest of the network. This includes
attacking nodes in order to perform malicious actions directly on those nodes as
well as penetrating the nodes to use them as launching points for other malicious
activities. Because of the security network configuration discussed in the next
section, we model attackers as being limited to propagating through existing or
previous transport layer communication channels (using only network knowledge
available from the set of compromised hosts). With respect to attacks, we assume
that all attacks take place at the ISO transport layer or above. This is where
the vast majority of attacks take place [10] since network devices are usually
not directly penetrable through the Internet Protocol layer. The presumed goal
of the attacker is to either propagate through the network to reach a particular
goal host or simply to gain control of as many hosts as possible.

3 Network Configuration Requirements

We model the defended network as IPv6 only. The actual network may contain
IPv4 hosts and dual stack IPv4/IPv6 hosts, but our defensive approach applies
solely to the IPv6-only subset. This means that as a network slowly migrates to
IPv6, our approach will provide monotonically increasing benefits and may thus
provide further motivation for a full transition.

We further assume that an attacker is only able to discover new hosts to
attack by using the knowledge resident on previously compromised hosts (i.e.,
the neighbor discovery table). We can do this because we will discuss how it
is possible to configure an IPv6 network to mitigate other target acquisition
methodologies.

A primary method for target acquisition in IPv4 is network scanning (sending
out probes to subnet addresses looking for active hosts). However, in IPv6 the
size of a standard subnet is the square of the number of addresses in the entire
IPv4 address space. In a securely configured IPv6 subnet, this makes network
scanning infeasible since the number of addresses to be probed is insurmountable



[7]. Other methods for target acquisition exist [4] but can be mitigated through
a combination of perimeter security and secure configurations.

A method not easily addressed is that of an attacker monitoring layer 2
multicast traffic to “sniff” the addresses of active hosts on a subnet. The primary
hurdle is the native IPv6 Neighbor Discovery (ND) protocol that serves as a
replacement for the IPv4 Address Resolution Protocol (ARP) (and that has
many of the same security weaknesses). However, other layer 2 multicasting
protocols exist such as Apple’s Bonjour [3] that present similar challenges.

The address disclosures inherent in layer 2 multicasting protocols can be
accounted for in our chokepoint approach by incorporating the layer 2 intra-
subnet communication along with the set of monitored transport layer flows.
This has the effect of making each IPv6 subnet a complete sub-graph in our
communication graph because ND will cause all hosts to multicast to all other
hosts in a subnet. This is not a desirable situation with respect to our defensive
solution.

Thus to limit this effect, we propose making the subnets as small as possible
in order to limit the size of these complete sub-graphs. This results in a secu-
rity versus functionality tradeoff. If the subnets are too small, then automated
service discovery protocols (e.g., ND and Apple’s Bonjour) will be unable to
automatically find services, thus requiring a manual setup. If they are too big,
then attackers will gain additional knowledge of network targets.

In evaluating our approach, we assume a high security implementation for the
network where administrators are willing to sacrifice automated service discovery
to achieve enhanced security. Hence, we model the enterprise taking the secu-
rity/functionality tradeoff to its limit, using an IPv6/126 subnet for each host.
This approach eliminates all layer 2 information leakage by restricting subnets
to covering a single host and its related switch port. We then randomly assign
these mini-subnets within the larger network address space to preserve network
scanning resistance. By doing this, we essentially force layer 2 routing up to layer
3 and gain security advantages by doing so (while giving up some functionality
in the form of automatic neighbor discovery and service configuration).

Given this security configuration, an attacker is limited to propagating using
only the target address knowledge resident on the previously compromised hosts
(i.e., existing benign communication paths). Our work then is to counter an
attacker using this knowledge to expand their influence within a network.

4 Chokepoint Approach and Metrics

Our approach is to leverage limited attacker propagation in securely configured
IPv6 enterprise networks to inhibit attacker movement or enhance detection by
setting up security ‘chokepoints’. A chokepoint is a preexisting host that is given
heightened security measures where the security measures can be protective,
detective, or a combination of both. The nodes not chosen to be chokepoints are
referred to as ‘ordinary’. The primary thrust of our work is then in determining
how to best choose the chokepoints.



Our goal is to place the chokepoints so that attackers are maximally restricted
in their ability to propagate through the network. We do this by modeling the
layer 4 network communication as a graph with the nodes being hosts. We then
choose the chokepoints in such a way that the graph is broken into isolated
clusters when the chokepoints are removed. Each cluster represents an island
of available targets to an attacker. To reach nodes in other clusters, however,
the attacker needs to penetrate one or more chokepoint nodes. The heightened
security at a checkpoint may impede attacker propagation, increase the chance of
detecting an attacker, or both (depending upon the type of heightened security
deployed).

We consider two metrics to optimize with our choice of chokepoints: (i) min-
imizing the maximal cluster size and (ii) maximizing the mean of the minimum
number of chokepoints that lie between pairs of nodes. The former metric aims
to constrain the attacker to as small a cluster as possible, and the second seeks
to maximize the number of chokepoints that an attacker must penetrate on av-
erage while seeking a particular network target. The next two sections describe
algorithms designed to achieve these goals.

Notations: We assume that the network is represented as an un-weighted
undirected graph G = (V,E), where V is the set of nodes and E is the set of
edges, with |V | = n and |E| = m. E is the set of observed benign communication
links in the network (not the permissible links). We further assume that there is a
budget to deploy enhanced security at up to k nodes. We use S to denote the set
of (at most) k designated chokepoint nodes. With a little abuse of notation, we let
G\S represent G with the nodes in S removed along with edges incident to them.
This graph may be disconnected into a set of isolated clusters or components.

5 Minimizing the Maximum Cluster Size

Our primary goal is to choose the chokepoints in such a way that they maximally
bound attacker propagation (either providing impedance points or enhanced
detection points). To do this, the communication graph should break into clusters
upon removal of the chokepoints. Note that the removal of chokepoint nodes and
creation of isolated clusters is solely to model the optimization problem. It does
not reflect actual removal of hosts or imply that the chokepoints themselves are
invulnerable.

Within the same cluster, any node can attack any other node without en-
countering a chokepoint. The size of the maximum cluster is hence the largest
set of nodes that could potentially be accessed by an attacker without being
impeded or detected by a chokepoint. The first goal of chokepoint placement
is to minimize the size of this maximal cluster. Unfortunately, this problem is
an instance of the vertex separator problem which is known to be NP-hard [5]
and has only received little attention in the literature. In this paper, we con-
sider four heuristic algorithms to find approximate solutions to the problem.
The algorithms are iterative in nature and exploit well-known features of the
network.



1. Iterative removal of maximal degree node (DEG): This approach is motivated
by the observation that engineered networks, such as the Internet, are very
sensitive to attacks that target nodes with largest degrees [9]. In our DEG
algorithm, we iteratively remove (i.e., choose as chokepoint) the node with
the maximum degree in the remaining graph as well as all edges that are
incident to it. After each iteration, we re-compute the degree of all nodes
and recall the routine until k nodes are removed.

2. Iterative removal of maximal betweenness node (BET): This approach is
inspired by the observation that in communication networks there are many
low degree nodes that tend to talk to a few high degree ’hub’ nodes while
the few hub nodes talk to the many low degree nodes. As a consequence,
most paths go through the hubs nodes. The fraction of shortest paths from
all vertices to all others that pass through a given node is defined as its
“betweenness centrality”. Our BET algorithm is similar to DEG, but here
we remove nodes with largest betweenness centrality.

3. Iterative greedy removal (GRD): In this approach, as in previous heuristics,
nodes are removed one-by-one. However, instead of removing the node with
the largest degree/betweenness, at each step we remove the node that mini-
mizes the size of the current largest cluster. After each iteration, we update
the graph and iterate until k nodes are removed.

4. Iterative Vertex Bisection (IVB): In this approach, we attempt to iteratively
bisect the largest remaining cluster until all k nodes are removed. For each
bisection attempt, we randomly choose pairs of nodes and iteratively grow
two non-overlapping trees until we can no longer do so. We take the pair of
trees that best optimizes the objective and then compare them against the
output of the DEG algorithm (limited to the number of nodes removed in
the tree bisection), with the best result being chosen.

In general, we have observed that IVB and GRD provided slightly better results,
but not uniformly. While not immediately apparent, DEG can be implemented
in O(n + m) linear time and is reasonably effective overall. BET is the slowest
among all algorithms but can occasionally produce the best answer. For our
analysis, we run all four algorithms for each data points and simply choose the
best one (i.e., has the minimum size of maximum cluster) as approximation to
the problem.

6 Maximizing Chokepoint Traversal

Our secondary goal is to maximize the mean of the minimum number of choke-
points that an attacker must traverse to reach any given target node. The mo-
tivation for this is the observation that each traversed chokepoint increases the
chance of impeding or detecting the attacker.

For the analysis, we assume that the attack propagates from some initial
node s to some target node t (s, t ∈ V ) by following the path containing the
smallest number of chokepoints (which corresponds to the best case from the
attacker’s point of view). In practice, the attack propagation path is determined



by the attacker’s mode of operation, which we often do not know. However, the
aforementioned path with the minimum number of chokepoints offers a universal
lower bound to the actual number of traversed chokepoints.

We say that an s− t path is “minimal” if it contains a minimum number of
chokepoints amongst all s − t paths. For a given chokepoint assignment S, we
ask the following question: what is the empirical distribution of the number of
chokepoints in the minimal s− t paths (i.e., the fraction of minimal s− t paths
containing 0, 1, 2, 3, . . . chokepoints)? With this distribution, we can compute
the average length of a minimal s− t path. Our goal is to choose the chokepoint
so as to maximize this average length of s− t path.

To calculate any minimal s− t path, we would like to use standard shortest
path algorithms. However, they do not directly apply because there are both
ordinary and chokepoint nodes in the graph whereas our distance metric is only
concerned with the number of chokepoints along the paths. To enable the use of
standard shortest path algorithms, we need a graph transformation such that,
in the transformed graph, all nodes (except s and t) are chokepoint nodes and it
retains the connectivity relations of the original communication graph. To this
end, we propose the following three-step transformation:

Transformation 1 - (Collapsed Clusters): For each cluster in G\S (clus-
ters may be single nodes), we create a single node in a new graph G2. For each
node in S, we create a node in G2. For each edge e ∈ G, we create a correspond-
ing edge in G2 if e is incident to at least one node in S. If one of the incident
nodes is not in S, then we use the node in G2 that corresponds to the appro-
priate cluster in G. Finally, we replace any multi-edges in G2 with single edges.
From its construction, in G2 no two ordinary nodes will have an edge between
them. The chokepoints may have edges to both other chokepoints and ordinary
nodes.

Transformation 2 - (Collapsed Leaves): Collapse all leaves surrounding
each chokepoint into a single leaf node to form a second graph CG from G2.

Transformation 3 - (Ordinary Node Substitution): The previous two
transformations can be done once on the entire graph regardless of the location
of s and t. To compute the number of chokepoint in a minimal s − t path, we
now construct a final graph, HG, as follow: Make a copy of CG and, for each
ordinary node x (except for s and t), add edges connecting x’s neighbors (forming
complete subgraphs) and remove x. Duplicate edges are removed.

This construction provides us with a graph containing s and t in which all
other nodes are chokepoints. The edges in the graph represent the connectivity
of the original graph G and thus we can use shortest path algorithms on the final
graph HG to determine the minimal number of chokepoints between s and t in
G. We now compute all minimal paths from each pair of points in the graph. Our
work can be substantially reduced by realizing the all nodes in a single cluster
in G can be computed as a single node in CG and HG (since they will all have
the same path length to any target node). By computing these values for each
(s, t) pair in the collapsed graph CG and making the appropriate updates after
each run, we derive the empirical distribution of minimal s− t paths containing



l ( l = 0, 1, . . . , n − 1) chokepoints. Note that using this procedure, we have
considerably reduced the number of (s, t) pairs to consider. Also, the shortest
path algorithm is now run on a much small graph (HG) which has only k + 2
nodes.

7 Experimental Data

For our experiments, we generate random graphs that conform to the degree
sequence we obtained by observing the transport layer communication between
nodes in a large operational network of 15509 nodes. Unlike typical flow monitor-
ing done on the network perimeter, we monitored flows internal to the network
in order to obtain a complete view of the transport layer connectivity.

Note that the monitored network was an IPv4 network while our study per-
tains to IPv6 networks. However, the flow data represents communications above
the IP layer and thus would be similar (if not the same) on an IPv6 substrate.

We monitor the network for 11 days and use all observed links and nodes to
construct its connectivity graph. Figure 1a shows the number of nodes observed
over time and Fig. 1b shows the number of observed links. By hour 116, almost
all of the nodes and links have been observed. This indicates that most of the
nodes can be seen communicating with other nodes within 4.83 days. The latter 6
days add only 0.72% of the total observed nodes and 5.83% of the total observed
links. This indicates that the cumulative data obtained at hour 264 is an accurate
description of the real network.

(a) Number of nodes. (b) Number of edges.

Fig. 1: Evolution over time.

We use the cumulative degree distribution of the built connectivity graph to
generate random graphs that are “uniformly” sampled from the set of possible
graphs with the given distribution. We do so by using to the following two-step
algorithm:

– First, we build an initial random realization of a network according to the
given degree sequence using the known Havel-Hakimi algorithm [12, 13].



– Second, we use this initial realization to create a random graph by performing
a series of random double edge swaps as follows: randomly choose two edges
(u, v) and (x, y), where (u, x) and (v, y) are not already in the graph, remove
the chosen edges from the graph, and add new edges (ux) and (v, y).

These edge swaps preserve the degree distribution of the graph, and generates
a Markov chain that is ergodic over the space of all random graphs with the
same degree distribution. Individual samples from this chain at steady state–
assuming that the samples are separated by sufficiently large intervals–can then
be treated as graphs sampled uniformly at random from the set of all graphs
having the same degree distribution. Although the best known upper bound to
the convergence rate is very large (≈ n24) [11], it has been observed that in
practice, the algorithm converges very quickly. In fact, the bound is conjectured
to be O(mlog(m)), but it still remains an open question [11].

8 Empirical Results

We first examine the degree distribution of the operational network, and compare
it to a power law distribution fit to the same data. We use the above algorithm
to generate 10000 random graphs with the same degree sequence as the real
operational network, and examine the effect of the sampling on the assortativity
of the graph. We evaluate the effectiveness of our chokepoint placement proce-
dure by varying the number of chokepoints k. We use the heuristic algorithms
described earlier to select the chokepoint nodes and examine the two aforemen-
tioned metrics for chokepoint placement. First, we analyze the size of the single
largest connected component in the graph formed by removing all nodes desig-
nated as chokepoints. Next, we consider the average minimum (again, worst-case
for the defender) number of chokepoint nodes that an attacker would have to
pass through to target a specific node given a random entry node. For this, we
use the graph transformations and algorithm that we describe above in Sect. 6.
Our analysis shows that the heuristic node selection method we describe above
produces good results for both metrics simultaneously.

8.1 Degree Distribution

We first analyze the degree distribution of the operational network to test
whether the network is scale-free [8] or not. We test both the size–rank relation-
ship, as well as the frequency–size relationship proposed respectively in [15] and
[8] to check for scale-freeness. Figure 2a shows a log-log plot of the values of the
node degrees as a function of their ranks (in reversed order, i.e., highest degree
value has lowest rank). Figure 2b shows a log-log plot of the (non-normalized)
empirical complementary cumulative distribution function (CCDF) (i.e., for a
given degree d, y(d) is the number of nodes with degree strictly larger than
d). Notice that these two plots are related–the former produced by ranking the
degrees and the latter produced by looking at the proportion of each degree [1].



Both plots show a linear trend in the log-log plot indicating that the degree
distribution of the network follows an approximate power law. In both cases,
the exponent of the fitted power law is close to 2. This conforms to the widely
observed phenomenon that many engineered networks have a power law distri-
bution (which many authors refer to as scale-free networks).

(a) Rank distribution (b) CCDF

Fig. 2: Log-log plots of (a) the degrees as function of the rank in reverse order.
(Slope) s = −1.05 =⇒ (Exponent) α = 1.951(1 + 1/|s|). (b) the CCDF of the
degree sequence as function of the degree. s = −0.992 =⇒ α = 1.992(1 + |s|).

8.2 Assortativity

Figure 3 shows the empirical cumulative distribution function of the assortativity
coefficient of the sampled networks. All sampled graphs had an assortativity
coefficient less than zero. This is consistent with previous studies that show that
engineered networks such as the Internet, the World Wide Web, the power grid,
and many other communication networks are disassortative [18]. Indeed, in this
network, on average 51% of the links are between a low-degree node and a hub.
Only 7% of the edges join low-degree nodes and connections between large hubs
are 1% of the links. A degree is said to be low if it is in the bottom 15% (i.e.,
less or equal to 23) and it is said to be high if it is in the top 15% (i.e., greater or
equal to 753). Notice that the assortativity of the operation network falls close
to the center of the CDF indicating that our sampling procedure approximates
a uniform sampling.

8.3 Size of Maximum Cluster

In this section, we analyze the size of the largest set of nodes that an at-
tacker could potentially have access to–upon compromising some arbitrary (non-
chokepoint) host–without encountering a chokepoint. This corresponds to the
size of the maximum cluster after the chokepoints are removed from the graph.



Fig. 3: Empirical distribution of the assortativity coefficient.

We place the chokepoints using the heuristics described earlier. We consider dif-
ferent values of the parameter k. Figure 4a shows the empirical distribution of
the fraction of nodes in the largest cluster for different values of k.

As we can see from the figure, the fraction of nodes in the largest component
is less than 40% of the total number of nodes for all values of k considered in
this study. As expected, this fraction of nodes in the maximum cluster decreases
as k increases, from around 40% k = 20 to less than 15% for the maximum
value of k = 200. It can be observed visually that there is a point of diminishing
returns for values of k greater than or equal to roughly 100, beyond which the
empirical distribution does not change drastically. This indicates that, for the
network under consideration, deploying enhanced security measures to only 100
nodes (0.65% ) of the network is sufficient to reduce the size of the maximum
cluster to about 15% of the total number of nodes, while the use of additional
resources produces a relatively minor benefit.

Another way to see this is to plot the size of the largest component as a
function of the number of chokepoints, as shown in Fig. 4b. We can see that
there is a sharp decrease in the size of the maximum cluster when the number
of chokepoints increases from 20 to 80. However, once again diminishing returns
can be observed after more than 100 chokepoints.

8.4 Number of Traversed Chokepoints

With the chokepoint defense architecture, an attack may be contained to a small
set of nodes (those nodes that share the same cluster) with high probability
before being detected. In order to infect other nodes in the network, the attacker
needs to traverse one or more chokepoints. In this section, we study the empirical
distribution of the minimum number of chokepoints an attacker needs to go
through to infect other nodes. In Sect. 6, we have discussed how the minimum



(a) Empirical CDF.

(b) Size of the maximum.

Fig. 4: Characteristics of the size of the maximum cluster. (a) Empirical cumu-
lative distribution of the fraction of nodes in the largest cluster for a varying k.
(b) Size of maximum cluster as a function of k.

number of chokepoints between a pair of nodes is computed. Figure 5a shows
the cumulative distribution function for different values of the parameter k.
Figure 5b is an alternative representation where we plot the fraction of minimal
paths with a varying number of chokepoints as a function of the number of
deployed chokepoints.

First, notice that, an attacker only needs to traverse two chokepoints to reach
any node. Recall that this is a lower bound to the actual number of traversed
chokepoints. Also, this number is not the shortest path in the network. In fact,
an attacker might need to traverse some clusters between the chokepoints and,
within each cluster; the attacker might traverse many nodes before reaching a
chokepoint (both of these cases are ignored when we compute the minimum
number of traversed chokepoints.

Second, observe (Fig. 5a) that the distribution of the number of chokepoints
in minimal paths does not change significantly for k > 100. This can also be seen
in Fig. 5b where the plots become “flat” for the values of k greater than 100.
This implies that, similarly to the maximum cluster size metric, approximately
100 hubs (0.65%) are sufficient to achieve a significant improvement in security.

The fraction of pairs with zero chokepoints between them represents the
fraction of attacks that are undetectable or unpreventable by the chokepoint
approach. Figure 5a and Fig. 5b both demonstrate that this fraction decreases
as the number of placed chokepoints increases, indicating that placement of
chokepoints according to our approach can significantly reduce the mobility of
attackers.

The figures also show that most of the minimal paths (around 72% for k >
100) traverse only one chokepoint, suggesting that most nodes in the network



(a) Empirical distribution.

(b) Fraction of s− t paths contain-
ing X = 0, 1, 2 chokepoints.

Fig. 5: Characteristics of the minimum number of chokepoints that a node needs
to traverse to infect another node.

are separated by only one chokepoint. This is consistent with (and could be
explained by) the observation that about 71% of the nodes are leaves. Indeed,
two leaves are only separated by their common hub.

Finally, we see that the number of minimal paths with one or two chokepoints
increases as the number of deployed chokepoints increases (while the fraction of
minimal paths with zero chokepoint decreases). At the same time, we never
observe the appearance of minimal paths with three or more chokepoints. This
suggests that, for this data and this range of values for k, the partially collapsed
graph (G2) has a diameter of at most 4.

9 Related Work

The problem of placement of monitors for network intrusion detection has been
evaluated in a number of other contexts. The recent work by Talele et al. [26,
25] addresses a similar problem: that of finding a minimal set of IDS placements
that will obtain a given graph property. Their work, however, requires knowledge
of information flows which we do not consider.

Noel and Jajodia [20] describe the combination of attack graphs with network
maps and other security information such as firewalls and known vulnerabilities
to construct a topological vulnerability analysis for a network. Sawilla and Ou
[22] use attack graphs with a ranking method as a tool for monitor placement,
explicitly invoking minimal graph cuts as a method for selecting remediation or
focused monitoring. While exploring a closely related problem space to the one
we consider, both works makes use of significant side information in the form of
attack graphs and the result of vulnerability scans and analysis that we do not
consider.



Anjum et al. [2] investigates the placement of costly “tamper resistant sen-
sor” nodes within a sensor network that may be under attack by an adversary
attempting to compromise the ‘sink’ node responsible for collecting the sensor
data. This work is specialized to the sensor network case, in which all data flows
to a single sink node. We consider a different problem where any node can be
the source/target of an attack.

The work by Shaikh et al. [24] is the only work to explicitly model cost, mod-
eling a value function for the deployment of intrusion detection sensors within a
network. Each sensor location is characterized by its value, and sensors are then
deployed in order of descending location value up to the available budget. Unlike
our work, they do not incorporate any topological data regarding the network
(although some related cost metrics are likely to be influenced by topological
considerations).

Mell and Harang [17] examine the use of flow-based analysis (such as we con-
sider here) to perform a triage operation on a network following a compromise.
In contrast to the pre-emptive analysis of static graphs that we consider here,
[17] focuses on identification of critical nodes (“hubs”) for examination follow-
ing the discovery of an intruder, in such a way that these hubs separate some
minimal set of nodes containing the intruder’s entry point from the rest of the
network.

A very related problem is that of immunization where the goal is to find
a set of ‘agents’ to immunize in order to suppress the spreading of a disease
under various propagation models. Those nodes can be viewed as chokepoints as
they impede the propagation of a disease. Tong et al. [27] has proposed a greedy
algorithm that iteratively selects the current node with highest eigen-drop as the
one to be immunized next. However, this algorithm was designed for a different
metric and a quick test has shown that it performs poorly in our framework.
In [19] Nian and Wang propose a high-risk immunization approach that targets
susceptible nodes whose neighbors have been infected. This requires knowing
all infected nodes in advance making it inapplicable to our problem. A greedy
approach based on immunizing the most connected nodes has been proposed by
several authors [21, 16]. In this paper, we have implemented a version of such
an approach (Iterative removal of nodes with largest degree-DEG) that runs
in linear time. Our BET algorithm is also very similar to the immunization
approach in [23].

Finally, the work by Chen and Hero [6] considers the same problem of remov-
ing a set of nodes to minimize the size the maximum cluster in the remaining
graph (although for a different purpose). They relate the optimization problem
to the spectrum of the graph and propose a heuristic approximation algorithm.
Their algorithm has similar performance as DEG in a small test algorithm of
300 nodes. Unfortunately, it involves solving a eigenvalue problem which makes
it computationally very expensive for large graphs. For this reason we did not
include Chen-Hero’s heuristic algorithm in our suite of heuristic approximations.
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Properly configured IPv6 networks are resistant to scanning and other forms of
target acquisitions. Attackers attempting to propagate through the network are
hence limited to existing benign communication paths. We leverage this limi-
tation of attacker movement to propose a chokepoint-based defensive approach
that maximally bounds attacker propagation. With this approach, attackers are
forced to limit their propagation to a small set of nodes or have to penetrate
one or more chokepoints. We have considered two optimization criteria to choose
the chokepoints: (1) minimizing the maximum number of nodes an attacker can
compromise without encountering a chokepoint and (2) maximizing the average
number of chokepoints an attacker has to traverse to attack a random target.
Optimal placement of these chokepoints is a NP-hard problem and, as a conse-
quence, we have used a set of heuristics to approximate the solution. We have
tested our approach and algorithms using data from a large operation network
of over 15500 nodes. Our experiments have shown that enhanced security solu-
tions have to be deployed to only 0.65% of the nodes to limit the propagation
of a random attack to less 15% if the nodes of the network. Our approach thus
enables a novel defense-in-depth approach that complements traditional security
approaches.
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