
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3519
SPECIAL ISSUE PAPER

The GenApp framework integrated with Airavata for managed
compute resource submissions
Emre H. Brookes1,*,†, Nadeem Anjum2, Joseph E. Curtis3, Suresh Marru4,
Raminder Singh4 and Marlon Pierce4

1Department of Biochemistry, University of Texas Health Science Center, San Antonio TX, USA
2Department of Computer Science and Engineering, IIT Kharagpur, Kharagpur 721302, India

3NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg 20899, Maryland
4Pervasive Technology Institute, Indiana University, Bloomington IN, USA
SUMMARY

A new framework (GenApp) for rapid generation of scientific applications running on a variety of systems
including science gateways has recently been developed. This framework currently builds a GUI and/or
web-based user interface for a variety of target environments on a collection of executable modules. The
method for execution of modules has limited framework restrictions: primarily the requirement of wrapping
the application to accept input and output formatted in JavaScript Object Notation (JSON). Initial implemen-
tation supports direct execution on a user’s workstation, a web server, or a compute resource accessible from
the web server. After a successful initial workshop utilizing the framework to create a web-based user inter-
face wrapping a scientific software suite, it was discovered that long-running jobs would sometimes fail, be-
cause of the loss of a Transmission Control Protocol (TCP) connection. This precipitated an improvement to
the execution method with the bonus of easily allowing multiple web clients to attach to the running job. To
support a diversity of queue managed compute resources, a Google ‘Summer of Code’ project was com-
pleted to integrate the Apache Airavata middleware as an additional execution model within the GenApp
framework. New features of file management, job management with progress, and message box support
are described. Concurrency and Computation: Practice and Experience, 2015.© 2015 Wiley Periodicals, Inc.

Received 23 January 2015; Revised 23 March 2015; Accepted 24 March 2015

KEY WORDS: CASE tools; Science Gateway; middleware; design; human factors; languages
1. INTRODUCTION

The GenApp framework [1] is a product of a joint UK Engineering and Physical Sciences Research
Council and USA National Science Foundation grant entitled ‘CCP-SAS – Collaborative
Computational Project for advanced analysis of structural data in chemical biology and soft
condensed matter’ and is an SI2-CHE cyberinfrastructure project addressing Grand Challenges in
the Chemical Sciences. The CCP’s initial software elements are primarily small-angle scattering
(SAS) software simulation and analysis tools developed by multiple independent laboratories. SAS
can be performed using individual lab X-ray sources but is more frequently performed at high-
energy synchrotrons and/or neutron sources. A collimated beam of X-rays or neutrons with a fixed
*Correspondence to: Emre H. Brookes, Department of Biochemistry, University of Texas Health Science Center, San
Antonio, TX, USA.
†E-mail: emre@biochem.uthscsa.edu

Copyright © 2015 John Wiley & Sons, Ltd.



E. H. BROOKES ET AL.
wavelength are scattered by the sample and are recorded on a two-dimensional detector. For solution
studies, where particles in solution are typically randomly oriented, the two-dimensional data are
radially integrated to produce a one-dimensional scattering curve that contains structural
information. Some computations can be quite trivial such as producing various transformed plot
views, and others can be computationally expensive such as rigid body modeling and expansion
of conformational space utilizing various molecular dynamic and Monte Carlo methods and their
subsequent scattering simulation and screening. The grant includes aims of developing new and
enhanced SAS analysis methods as well as the development and implementation of the
cyberinfrastructure bringing together three preexisting software packages that analyze SAS data
[2–5]. Considerations during the design phase of GenApp were based upon observations and
discussions with developers of existing independently produced scientific software. Common
issues include ease of deployment in an ever-evolving software landscape, support for legacy
codes, and the fact that science research groups cannot typically afford a dedicated software
team. The design employed was to divorce the computational modules from the user interface
and define their inputs and outputs on an easily extensible set of data types. We define
applications as seen by the user on a set of preexisting and user-supplied modules. Separately,
we define an easily extensible set of user interfaces and execution models known as target
languages. Finally, the stage is set to generate working instances Figure 1).

Apache Airavata [6] is open source, open-community distributed system software framework for
supporting the metadata and application execution requirements of both science gateways and
scientific workflows. Airavata consists of the following internal components. The Registry is used
to store, access, and manage descriptions of applications, computing resources, and computational
experiments. The Orchestrator is used to schedule executions of both single applications and
workflows. Generic FACtory (GFAC) is the component that interactions with external resources
and services needed to execute a specific task. The Workflow Interpreter manages steps in
experiments that consist of multiple tasks. The Messenger provides publish–subscribe messaging
for both internal components and external consumers. Airavata has an Apache Thrift-defined API,
which it exposes through the API Service component. The API uses a rich data model, which is
enveloped in an Experiment object. An experiment can be a single-application execution or a
composite application with a sequence defined as a workflow. These components and their
interactions are more fully described in [7]. Airavata is also serving as one of the bases of a hosted
Science Gateway Platform as a service, currently under development. Airavata has supported the
Figure 1. Generating application instances. The generator reads application definitions, module definitions,
and chosen target language information to assemble the application instances. Currently generated target
languages include HTML5/PHP, Qt3, and Qt4. Qt5 is being tested and is planned to be used to generate
iOS and Android apps. *Certain commercial equipment, instruments, materials, suppliers, or software are
identified in this paper to foster understanding. Such identification does not imply recommendation or en-
dorsement by the National Institute of Standards and Technology, nor does it imply that the materials or

equipment identified are necessarily the best available for the purpose.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



THE GENAPP FRAMEWORK INTEGRATED WITH AIRAVATA
execution management of the UltraScan and UltraScan-SOMO [4] gateways, which are precursors of
the current work.
2. FRAMEWORK

The GenApp framework builds complete applications from a collection of executable modules. We
define four roles, the framework (tool) developer who works with the framework generation code, the
module wrapper who wraps executable modules to work within the framework, the application
developer who organizes wrapped modules into an application, and finally the end user who utilizes
the generated application. All framework definition and control files are formatted in JSON [8]. There
are two primary restrictions. The first is that the modules must be modified to accept and produce
specifically formatted JSON inputs and outputs. The second is that the input and output fields must be
valid field types (e.g., integer, float, text, vectors, plot data, and atomic structures). Note that the set of
valid field types are extensible, but under the scope of the framework developer, not the typical
module wrapper or application developer. The module inputs, outputs, executable, and ancillary
information (such as help text and compute resource targeting) are placed in a module-specific
definition file. Selected wrapped modules are organized for the user interface and put into the menu
definition file. General directives such as target languages are placed in the directives definition file.
Once these definition files have been properly created, the GenApp executable is run to produce a
complete application. The GenApp executable is a single command-line program requiring no
arguments that is run by the application developer in the proper directory and produces applications
based upon the definition files. Complete applications are produced currently for GUI-based Qt3/C++
and Qt4/C++ and web-based HTML5/PHP. The code produced is placed in individual subdirectories
specific for each target language. The HTML5/PHP target currently requires an appropriate server
setup, and the Qt-based generation requires compiling, although the design of the framework allows
extensions to include these steps if deemed helpful. A screenshot of a produced example HTML5/PHP
user interface is shown in Figure 2. Further details about the framework can be found in [1].
3. EXECUTION

Prior to this work, code-managing execution in GenApp was generated for direct execution on either
the client computer (for GUI-based target languages) or directly on a web server (for web-based
target languages) or via Secure SHell (SSH) from the web server. To provide support for queuing
cluster and High Performance Computing (HPC) compute resources, Apache Airavata was chosen
to act as middleware. In this section, we will describe the execution model of GenApp and how it
was modified to integrate with Airavata.

3.1. GenApp

User-supplied executable modules are wrapped with JSON definitions of their input and output.
Typically, a driver script is written to wrap execution modules so that minimal or no change to the
underlying scientific execution module is required. The driver script for each module must accept
standard input in JSON and provide standard output as JSON.

The execution models for the modules, prior to Apache Airavata integration, proceed as follows and
as shown in Figure 3. The Qt/C++ GUI target language generates a GUI application where each
module is executed directly on the user’s workstation. The HTML5/PHP target language executes
the module through an Asynchronous Javascript And Xml (AJAX) call to a PHP module that directs
execution of the module.

As part of the CCP-SAS project, a dedicated compute resource was installed at the University of
Tennessee Knoxville to host HTML5/PHP targets for SAS software, initially the SASSIE software
[3]. The server is a Dell cluster running Rocks [9] with two 64-core compute nodes, an eight-
NVIDIA K20m GPU enclosure, and a 12-core head node. The head node is running a virtual
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



Figure 2. An example GenApp HTML5/PHP-generated user interface for one module. The top row contains
the menu controls, the application name, the current project, a file manager, the job manager, and user man-

agement icons.

igure 3. Execution models for target languages HTML5/PHP (top) and Qt/C++ (bottom). The JSON input
and received from the executable will be generated over the same set of fields described in the module

definition file, so the executable can remain unchanged in both cases.

E. H. BROOKES ET AL.
F
to
machine hosting the web server for the HTML5/PHP server. To utilize the compute nodes for
execution, we extended the job submission mechanism to support direct SSH execution of modules.
The globally available resources are defined as name/value pairs in a JSON application
configuration object where global default resource is also defined (Text 1). Each individual module’s
definition file can also provide an overriding module-specific resource or resources. The changes to
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



THE GENAPP FRAMEWORK INTEGRATED WITH AIRAVATA
the GenApp HTML5/PHP target language module execution required an appropriate prefix to the
executed command based upon the called module’s determined target resource. This basic resource
targeting was functional for our first user’s workshop given at the American Conference of Neutron
Scattering in June 2014 [10]. Of course, such a system has limited resources and could become
saturated with user requests. Therefore, the long-term plan is to support queued resources by
integrating with Airavata middleware.

The workshop was successful, but subsequently an issue came to light with respect to long-running
jobs. The HTML5’s AJAX call to PHP was waiting on completion of the job to return the JSON
results. This required the TCP connection to remain open. It did not appear during our testing with
directly connected web clients, nor for general users’ running jobs of less than approximately 1 h,
but users reported failures of long jobs that appeared to be the result of a dropped TCP connection
during the AJAX call. This precipitated a redesign of the HTML5/PHP execution method. In the
updated execution method, the HTML5 initiates an AJAX call, the PHP starts the module execution
under a monitor daemon and returns immediately with a simple acknowledgment JSON object.
Subsequently, the monitor daemon waits on the job completion and messages the HTML5 client via
a pub–sub WebSocket (see Section 4 for messaging details). Once messaged, the HTML5 client
produces another AJAX call to retrieve the results. Additionally, the HTML5 client polls for results
(currently at 16 s intervals) as a fallback for the case of a lost message. The updated execution
model is shown in Figure 4.

An additional benefit of the updated enhanced execution model is that previously executed module
results are easily retrieved and multiple web clients can attach to a running module. These features are
both implemented in the current version of GenApp. A minor downside is that additional storage is
required to hold the results and should be managed and eventually purged by the system administrators.

3.2. Airavata integration

Integration with Apache Airavata middleware provides GenApp an additional execution model. This
execution model supports queuing compute resources. The integration was completed as a Google
Summer of Code 2014 Project [11], providing GenApp the capability to execute long-running,
noninteractive jobs on distributed computing resources, including local clusters, supercomputers,
Figure 4. Two-step HTML5/PHP execution. The first AJAX call is quickly acknowledged (ACK). The
client web browser makes a second AJAX call to retrieve the results once messaged that the module’s
execution has completed. Additionally, there is a 16 s interval poll running on the web browser checks for
results in the case the WebSocket message is for some reason not received. The web server components

coordinate job status via a database (not shown).

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



E. H. BROOKES ET AL.
national grids, and academic and commercial clouds. The integration has been achieved for both
the HTML5/PHP and C++/Qt target languages. The overview of the integration can be seen in
Figure 5.
Figure 5. Overview of GenApp–Airavata integration. GenApp (top) produces applications (middle) that call
the appropriate Airavata (bottom) client as part of their execution of modules. The Airavata API provides

managed submission to a diverse set of computational resources.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



THE GENAPP FRAMEWORK INTEGRATED WITH AIRAVATA
Airavata requires applications to be registered in a catalog before they can be executed. Using a
simple utility, Register Applications, all GenApp executable modules can now be registered with the
Airavata Server automatically. This registration step is a one-time task and can be achieved with a
single command to execute the registration utility. Once the registration utility has been executed,
job submissions can be redirected to Airavata.

GenApp executes short jobs locally and only uses Airavata for long-running jobs, and a
configuration option has been provided based on a variable setting in the input JSON file to enable
or disable job submission to Airavata. There is a global default for resources defined, that is, local,
Airavata or SSH, along with a module-specific override. This provides one the option to execute the
required modules on the required resource for maximum resource optimization.

Jobs are submitted to Airavata through Apache Thrift-based [12] Airavata clients written in PHP and C
++, which make calls to the Airavata API. The execution steps include creating an Airavata project,
creating an experiment (Airavata’s terminology for a specific instance of a module execution) within the
project, launching the experiment, checking its status, and retrieving the output(s). The experiment
creation step includes specifying the relevant GenApp module, which had been registered by the
‘Register Applications’ utility, as the executable and the user inputs retrieved in JSON format as the
input. Airavata’s Orchestrator creates a process for the experiment. If the experiment requires it,
multiple processes are created. GenApp may request to submit the application to multiple resources
concurrently and use the fastest available one. A failed process is retried on the same or alternative
resource. A failed process can also be retried using alternative protocols (e.g., Globus Resource
Allocation Manager (GRAM), Uniform Interface to Computing Resources (UNICORE), or SSH).
Further, scheduling of computational resources is performed at this step. A process is then handed off to
Airavata’s GFAC, which breaks down the process into set of tasks required to accomplish by a
combination of GFAC input handlers, output handlers, and a provider. Each task might have a lower-
level implementation like Job, Data Movement, Data Analysis, which have their own invocation
identifiers. After launching the experiment, the status is checked for completion. The experiment ends
with either ‘COMPLETED’ state or ‘FAILED’ state. On successful completion, the output(s) are
retrieved and displayed to the user. In case the experiment fails, the appropriate error message is
retrieved and displayed to the user. Status updates through the system are rolled up from the lowest-
level Data Movement, Job Submission, and Data Analytics. The Task states are inferred based on the
associated task, and Process status is inferred based on all the tasks forked. Finally, Experiment Status
is inferred based on all the processes. Extensive error handling mechanisms have been implemented to
notify the user in case of any exceptions in any step of the execution. The overview of the two-step
HTML5/PHP submission mechanism with Airavata managed execution can be seen in Figure 6.
Figure 6. Two-step Airavata-managed HTML5/PHP execution. The module’s execution is launched on the
first AJAX call from the client which receives an acknowledgment (ACK) and monitored via a ‘Check Sta-

tus’ poll. Airavata manages the submission of the module’s execution on remote compute resources.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



E. H. BROOKES ET AL.
4. MESSAGING

Messaging facilities provide the executing module a mechanism to update the user interface with
intermediate results, progress, and message box information. To enable messaging, appropriate code
must be explicitly added to the module’s driver script or within the module’s executable depending
on the granularity of messaging desired. Messaging is not mandatory, but does improve the end user
experience by providing timely information during execution. All messaging consists of JSON-
formatted information, and the full set of the module’s output field definitions are available along
with additional attributes specific to progress and message boxes. Messaging facilities are currently
only supported in the HTML5/PHP target language.
4.1. WebSocket

Messaging in the HTML5/PHP target is shown in Figure 7. The executable sends a JSON output to a
User Datagram Protocol (UDP) server to provide status updates. UDP was chosen for these messages
to not delay the executable’s progress, which may be running on an expensive cluster compute
resource (‘fire and forget’). Reliable TCP-based messaging can be implemented utilizing the same
mechanism. The UDP server writes to a ZeroMQ [13] socket, which is running a Ratchet-based [14]
server. The Ratchet server runs a subscribe/publish message relay on a WebSocket [15]. When the
HTML5 web client ‘submits’ to run a module’s executable, it produces a unique ID defining the
‘topic’ for the subscription, which is passed in JSON to the executable and also registered with the
WebSocket server. The executable sends this ‘topic’ as part of the JSON output to the UDP server.
When the client receives the final output from the executable, it unsubscribes from the ‘topic’ on the
WebSocket. This mechanism provides live updates to the client. The Rachet server additionally
writes the last message received from an executable to a Mongo [16] database for last message
refresh to a reattaching client (Section 6).
4.2. Progress

An executing module can provide the framework with an overall progress indication by including a top
level name/value pair of ‘_progress’ assigned a decimal value between 0 and 1 to each UDP message
sent. The ‘_progress’ attribute will be stored in the database keyed with the assigned GUID assigned to
each submission and is thus accessible to the job manager.
Figure 7. Messaging in the HTML5/PHP target language. Messages are sent from the executable via UDP to
allow the executable to continue and are received by the client web browser via WebSockets (WS). ZMQ is

a ZeroMQ socket interface.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



THE GENAPP FRAMEWORK INTEGRATED WITH AIRAVATA
4.3. Message boxes

An executing module can direct the client to produce a message box by including a name/object pair of
‘_messagebox’ and the object must contain two name/value pairs of ‘icon’ and ‘text’. Default icons of
‘information’, ‘warning’, ‘skull’, and ‘toast’ are currently provided by the framework, but the
framework user can supply their own icons. The ‘icon’ supports any HTML5-compatible image file,
and the ‘text’ is the text that will appear in the message box. An example is shown in Figure 8.
5. FILES AND PROJECTS

The preferred mechanism for data input and output within the framework is formatted in JSON. This is
not always practical for possibly large binary data. When a module execution is submitted, a unique
run directory is created for its execution. Files associated with the submission are placed in this
directory and made available to the executing module. These files come from the local file system
for the Qt/C++ GUI-generated code and from the clients’ machine via an AJAX POST for the
HTML5/PHP-generated code. Execution run on an SSH-accessible resource is currently available
via a shared file system, but if a shared file system is not available, an additional transfer of
files could be required. Airavata submissions do require an additional transfer to the destination
compute resource.

Existing and legacy applications may require specific locations of certain input files and place output
in files. These could be handled with custom wrappers, but one of the goals of this framework is to
simplify usage for the application developer. Specifically, the existing SASSIE [3] code has cases
where outputs from a previously executed module are expected to be available to a subsequent one.
Therefore, we created a mechanism to utilize project names to assign fixed directories. Projects are
only available to logged-in users. Sharing of a project directory among module execution opens up
the possibility of multiple modules executing simultaneously; therefore, we serialize access to these
directories for execution via a lock stored in the database preventing further submissions to the
project. A message box warning (section 4.3) is produced if a project is locked when an end user
attempts to submit. Projects locked for a user can be identified and managed in the job management
interface (Section 6). The module definition JSON has an optional attribute to override the project
directory and give each submission a unique directory as well as an option to ignore locking.

Collections of files in project directories can be downloaded via the file manager interface
individually via links or in variously compressed tar or zip archives. An example of the
HTML5/PHP file manager interface is shown in Figure 9.
Figure 8. Message box test message in the HTML5/PHP target language. The JSON inset is added to the
UDP messaging or final output JSON to trigger the client to display the message box.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



Figure 9. File manager interface. Each project directory is listed and expandable as a tree. Branches and in-
dividual files can be selected and then downloaded in various formats as shown. The ‘none’ compression

type provides a list of file links for individual download.

E. H. BROOKES ET AL.
6. JOB MANAGEMENT

The job manager allows the end user to monitor the execution and retrieve results of running and
previously executed modules. When a module is executed, a GUID is assigned and is used as a key
to store job status information in the database. Job statistics currently recorded include GUID,
module name, menu entry, project name, user name, working directory, executable name, compute
resource, start and end times, and an array of status (such as ‘started’, ‘running’, ‘finished’, and
‘failed’) with timestamps. Although all job statistics are recorded, only jobs submitted when a user
is logged in will be visible via this job manager interface. The user is presented with a table of jobs
previously submitted. The table includes the name of the module, the project, the start and end
times, the duration of the job, the remote IP used to submit the job, and the execution resource. A
screenshot of the job manager is shown in Figure 10, which shows the first four columns of data
Figure 10. Job management interface. Each module submission is presented on a row of the table. In addi-
tion to the shown columns are duration of the job, the remote IP used to submit the job, and the execution
resource. The project marked in red is locked (in this case because it is running). The project marked in yel-
low is also locked because another job is running under the project. By selecting a job or jobs, one can clear

an existing lock, remove a job, or reattach to a running or completed job.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



THE GENAPP FRAMEWORK INTEGRATED WITH AIRAVATA
(the remaining columns are accessible via scrolling). The project in red is locked and running, the
project shown in yellow is locked also but not running. Running jobs that provide progress
updates (Section 4.2) will display the ‘_progress’ attribute value from the database as a percentage
in the ‘End’ column. Options are provided in the job manager to ‘Cancel’, ‘Clear lock’, ‘Remove
jobs’, and to ‘Reattach’ to a job. ‘Reattaching’ can be performed from multiple clients on various
devices simultaneously to running or completed jobs.
7. FUTURE

GenApp currently generates HTML/PHP, Qt3/C++, and Qt4/C++ applications. Qt5/C++ is generated
but has not yet been fully tested. Qt5/Android and Qt5/iOS and possibly JAVA are planned. New
features are currently added on an as-needed basis as we build up our initial library of executable
modules, initially in the SAS field. The user interface is based upon collections of typed fields as
defined in the module definition file. We believe that advanced user interface capability definition is
possible in the module definition file without requiring changes to the underlying module’s code,
and these will be added as required. We are currently working on improvements to the file
management capabilities. We envision an advanced input widget to allow selection of files from a
combination of staged files and those present on the client workstation and possibly other URL
documents. The Airavata integration is being updated to the current releases of Airavata and
GenApp. These will then be tested with a recent eXtreme Science and Engineering Discovery
Environment (XSEDE) allocation (TG-MCB140255). We also have a requirement to run on
Department of Energy (DOE) resources and are looking at Airavata and Simple API for Grid
Applications (SAGA) [17] as options.
8. CONCLUSIONS

The GenApp framework produces user interfaces for JSON wrapped modules generating GUI-based
and web-based applications. A key feature of GenApp is the fact that GenApp is designed to be
easily extended and adaptable to new target languages and environments without requiring
modification of the wrapped executable module’s code. Although there are other frameworks to
generate user interfaces, we are unaware of any that are designed to generate them in arbitrary target
languages and execution environments. If an interesting future ‘target language’ or environment
appears, we believe this framework is capable of generating code for it. The initial community
consists of chemical and chemical biology researchers involved in SAS studies. The framework could
easily extend to other scientific disciplines. GenApp’s web-based execution has been improved with
better handling of AJAX calls and the ability to have multiple instances attach to running or view
results from previously run jobs. New progress and message box support provide an improved user
experience. The integration of Airavata provides access to a diverse set of computational resources.
In addition to the intellectual contributions, the work described is a good demonstration of bringing
computational science and open-source software experience to next-generation students.
9. RESOURCES

The software is currently stored on a subversion-integrated Trac Wiki (http://trac.edgewall.org) hosted
on an Indiana University Quarry node http://gw105.iu.xsede.org:8000/genapp. A separate virtual
machine containing multiple HTML5 application instances is hosted on another Quarry node. A
128-core, 256-GB-ram, 8-T K20m GPU cluster is installed at the University of Tennessee Knoxville
dedicated to computations running under this tool. The Alamo cluster at the University of Texas
Health Science Center in San Antonio will also make cycles available callable via Airavata. When
usage demands, we will submit an XSEDE proposal for additional cycles to support the Science
Gateways developed utilizing this tool.
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

http://gw105.iu.xsede.org:8000/genapp


E. H. BROOKES ET AL.
ACKNOWLEDGEMENTS

This work was supported by NSF grant CHE-1265817 and XSEDE allocation TG-MCB140255 to E.H.
Brookes and Google Summer of Code funding to N. Anjum. This work benefited from CCP-SAS software
developed through a joint EPSRC (EP/K039121/1) and NSF (CHE-1265821) grant. J. E. Curtis acknowl-
edges support from NIST. We thank the reviewers for their helpful comments.

REFERENCES

1. Brookes EH. An open extensible multi-target application generation tool for simple rapid deployment of multi-scale
scientific codes. XSEDE‘14. ACM. 2014. DOI: 10.1145/2616498.2616560

2. Perkins S, (Available from: http://www.ucl.ac.uk/smb/perkins).
3. Curtis JE, Raghunandan S, Nanda H, Krueger S. SASSIE: a program to study intrinsically disordered biological mol-

ecules and macromolecular ensembles using experimental restraints. Computer Physics Communication. 2012; 183,
382–389. (Available from: http://www.smallangles.net/sassie).

4. Brookes EH.US-SOMO. (Available from: http://somo.uthscsa.edu).
5. Brookes EH, Singh R, Pierce M, Marru S, Demeler S, Rocco M 2012. UltraScan solution modeler: integrated hydro-

dynamic parameter and small angle scattering computation and fitting tools. XSEDE ‘12. ACM. DOI: 10.1145/
2335755.2335839.

6. Marru S, Gunathilake L et al. 2011. Apache Airavata: a framework for distributed applications and computational
workflows. Proc. Workshop Gateway Computing Environments. ACM.

7. Pierce M, Suresh Marru LG, Raminderjeet Singh DKW, Wimalasena C, C C. Apache Airavata: design and directions
of a science gateway framework in Proceedings of the International Workshop on Science Gateways, Dublin, IE,
June 3-5, 2014.

8. Standard ECMA-404. 2013 The JSON data interchange format. Geneva.
9. Papadopoulos PM, Katz MJ, Bruno G. 2001. NPACI rocks clusters: tools for easily deploying and maintaining man-

ageable high-performance Linux clusters. In Proceedings of the 8th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface, Y Cotronis, J Dongarra (Eds).
Springer-Verlag, London, UK, 10–11.

10. Zhang H. Simulation of neutron data of intrinsically disordered proteins and nucleic acids: part II. ACNS 2014,
Jun 1-5, 2014. Knoxville, USA. WORKSHOP.

11. Anjum N 2014. GSoC: GenApp integration with Apache Airavata. (Available from: http://www.google-melange.
com/gsoc/proposal /public/google/gsoc2014/nadeemanjum/5632763709358080).

12. Apache Software Foundation, Thrift, (Available from: http://thrift.apache.org/).
13. ZeroMQ. (Available from: http://zeromq.org).
14. Ratchet. (Available from: http://socketo.me).
15. WebSocket. (Available from: http://www.websocket.org).
16. MongoDB. (Available from: https://www.mongodb.org).
17. Merzky A, Weidner A, Jha S, SAGA: A Standardized Access Layer to Distributed Computing Infrastructure,

Software X, Elsevier: Cambridge, Mass, USA (accepted) 2015. DOI: 10.1016/j.softx.2015.03.001
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe

http://www.ucl.ac.uk/smb/perkins
http://somo.uthscsa.edu
http://www.google-melange.com/gsoc/proposal
http://www.google-melange.com/gsoc/proposal
http://thrift.apache.org
http://zeromq.org
http://socketo.me
http://www.websocket.org
https://www.mongodb.org

