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Optimization of collisional Feshbach cooling of an ultracold nondegenerate gas
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We optimize a collision-induced cooling process for ultracold atoms in the nondegenerate regime. It makes use
of a Feshbach resonance, instead of rf radiation in evaporative cooling, to selectively expel hot atoms from a trap.
Using functional minimization we analytically show that for the optimal cooling process the resonance energy
must be tuned such that it linearly follows the temperature. Here, optimal cooling is defined as maximizing the
phase-space density after a fixed cooling duration. The analytical results are confirmed by numerical Monte Carlo
simulations. In order to simulate more realistic experimental conditions, we show that background losses do not
change our conclusions, while additional nonresonant two-body losses make a lower initial resonance energy
with nonlinear dependence on temperature preferable.
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I. INTRODUCTION

The development of advanced cooling techniques has been
of major importance from the beginning of ultracold atom
experiments. In order to observe new quantum collective
phenomena it is often necessary to reach lower temperatures
and higher densities than are available today. Laser cooling
and slowing [1–7] is the most widely used technology to get
from room temperature down to a few micro-Kelvin. It uses
light pressure and the Doppler effect to decelerate the atoms
while simultaneously lowering the temperature. Temperatures
that can be reached with these techniques are limited by the
atom recoil from a single photon and are too high for many
experiments. Hence, it is usually followed by evaporative
cooling [8,9], which selectively removes atoms that carry the
highest kinetic energy. In a magnetic trap this is achieved by
applying rf radiation, and in a dipole trap by lowering the laser
intensity. The remaining atoms will reach a lower temperature
after collisional rethermalization. Quickly lowering the laser
intensity (or quickly changing the rf frequency) results in a
fast cooling process but with low remaining densities. The
opposite case, while promising high densities, is often limited
by other constraints in an experiment. A compromise is then
used.

Advanced methods of laser cooling reaching temperatures
below the recoil limit of a single photon have been reported.
These include velocity selective coherent population trapping
(VSCPT) [10] and subrecoil Raman cooling [11,12], but also
cavity-induced cooling of single [13–18] and multiple [19]
atoms. More recently experiments have shown demagneti-
zation cooling [20–23] and proposals for cooling atoms by
extracting entropy from the system have been made [24–27].
Finally, it has also been demonstrated that it is possible to cool
diatomic [28] and polyatomic [29] molecules. Despite these
efforts to find a more efficient cooling mechanism, evaporative
cooling has remained the most widely used technology in
experiment.

In Ref. [30] we proposed to use a collisional Feshbach
resonance [31,32], whose energy can be controlled with an
external magnetic field, to remove hot atoms as an alternate
to regular evaporative cooling. Feshbach resonances appear in
a scattering process when there is a bound state with energy

Eres in a closed scattering channel near the threshold energy
of an open scattering channel as shown in Fig. 1. In other
words two scattering atoms with relative kinetic energy Er

temporarily form a bound state that then decays back into
the original scattering channel. In cold atom experiments
Feshbach resonances are widely used to tune the scattering
length of colliding atoms. For this purpose it is crucial to not
induce collisional losses and thus have only one open channel.

For the Feshbach cooling process of Ref. [30] a “lossy”
Feshbach resonance with a bound state that can decay into
a second open scattering channel with rate �0 is used (see
Fig. 1). Particles scattering into this second channel are
either untrapped or gain sufficient kinetic energy to be lost
from the trap. Elastic scattering of particles into the initial
channel with rate �(Er) leads to thermalization of the sample.
The conceptual difference between Feshbach and evaporative
cooling is described in Fig. 2. The first cooling process is
selective in the relative kinetic energy removing atoms near
the resonance location Eres, while the second process only
removes atoms near the edge of the cloud and, as the atoms
oscillate in the trap, all hot atoms will be removed eventually.
Tuning the laser intensity or the rf frequency in evaporative
cooling corresponds to changing the resonance energy in
Feshbach cooling.

The Feshbach cooling process has not yet been optimized
for reaching the lowest temperature T and highest density n

within a reasonable cooling time. In this paper we determine
the most efficient cooling procedure for a nondegenerate
homogeneous gas. Our calculations are equally valid for both
bosons and fermions. We present analytical results for any
“lossy” narrow Feshbach resonance as well as numerical
results using the 40K p-wave resonance [33], which was used
in Ref. [30] to study cooling of a spin-polarized fermionic gas.

We analytically determine the optimal cooling procedure
in the framework of functional minimization. We find that the
highest final phase-space density � ∝ n/T 3/2 after a fixed
cooling duration is reached when the resonance energy de-
pends linearly on temperature: Eres(t) = (9/2)kBT (t), where
kB is the Boltzmann constant. This result is independent
of the initial density and temperature. We also find that
when maximizing B = na/T b with arbitrary non-negative
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FIG. 1. (Color online) Schematic depiction of the Feshbach cool-
ing process for a p-wave resonance. The figure shows the potentials
of three scattering channels as a function of atomic separation.
Scattering starts in open channel 1. The shaded band indicates the
thermal distribution of the atoms. A semibound state with energy Eres

exists in the closed channel and only atoms colliding with relative
energy Er close to Eres scatter significantly. The colliding atoms
return to channel 1 with rate �(Er) or go to open channel 2 with
energy-independent rate �0. The first process leads to thermalization
of the sample while the second leads to selective loss of hot atoms.

coefficients a and b and fixed cooling duration, the phase-space
density (with a = 1 and b = 3/2) is the only quantity, for
which the optimal choice for the resonance energy, Eres(t) =
(9/2)kBT (t), does not depend on the cooling duration.

We obtain the same results when adding losses due to col-
lisions with room-temperature background molecules. When
including additional nonresonant two-body losses, however,
we find that the optimal resonance energy is nonlinear in
temperature.

The remainder of the paper is organized as follows. In Sec. II
we give the derivation of our analytic optimization procedure
based on the phase-space density. Monte Carlo simulations,
described in Sec. III, confirm the analytical results. In Sec. IV
we optimize with respect to other functions B instead of
the phase-space density. Background loss processes and
nonresonant collisional losses are included in Sec. V. Finally,
we conclude in Sec. VI.

FIG. 2. (Color online) Comparison of the cooling mechanism
using Feshbach resonances (a) and evaporative cooling in a magnetic
trap (b). We sketch an ensemble of atoms in a harmonic trap (orange
line) with the position along the x axis and the relative energy Er

and total energy E of the atoms along the y axis in (a) and (b),
respectively. Atom loss, indicated by black arrows, occurs in the
green shaded regions.

II. OPTIMIZATION PROCEDURE

In this section we derive the optimal time dependence for
the resonance energy Eres(t) in a homogeneous nondegen-
erate gas in order to reach the highest phase-space density
� (n,T ) = (2π�)3n/(2πmkBT )3/2 after a fixed cooling dura-
tion tf . Here n is the density, T is the temperature, m is the
mass of the atoms, and � is the reduced Planck’s constant.

In principle, the cooling process in a nondegenerate gas
is determined by the Boltzmann equation. As in Ref. [30]
we simplify this multidimensional equation by assuming that
thermalization is much faster than the removal of atoms, so that
the system is completely described by a Maxwell-Boltzmann
distribution with a time-dependent n(t) and T (t). Formally,
this corresponds to the case that the loss rate from the resonant
state to the second open channel �0 is much smaller than the
rate to the initial channel �(Er). In fact, both rates need to be
much smaller than the temperature for energies Er significantly
populated by the thermal distribution, i.e., ��0 � ��(Er) �
kBT , in order to selectively remove hot atoms. In this limit the
momentum and spatial degrees of freedom in the Boltzmann
equation can be integrated out and we obtain

∂n

∂t
= −γinn, (1)

∂T

∂t
= −γin

(
Eres

3kBT
− 1

2

)
T , (2)

and

γin = 2
√

2 �0 � (n,T ) exp

(
− Eres

kBT

)
. (3)

To optimize the cooling process, we follow a procedure sim-
ilar to deriving the Euler-Lagrange equations by minimizing
an action under multiple constraints,

S[y] =
∫ tf

0
dt

⎡
⎣L(t,y,ẏ) +

∑
j

λj (t)Gj (t,y,ẏ)

⎤
⎦ , (4)

where L is the Lagrangian of the system and the vector of
functions y is time dependent [34]. The constraints are given by
Gj = 0 and the λj (t) are time-dependent Lagrange multipliers,
where j runs from 1 to the number of constraints.

Here, we want to maximize the phase-space density at time
tf , which we rewrite as

�f = � (n(tf ),T (tf )) =
∫ tf

0
dt

d�

dt
. (5)

It is then natural to define the transposed vector yT =
(n,T ,Eres),

L(t,y,ẏ) = −d�

dt
, (6)

and the constraints from Eqs. (1) and (2),(
G1(t,y,ẏ)

G2(t,y,ẏ)

)
=

(
ṅ + γin(y)n

Ṫ + γin(y)
(

Eres
3kBT

− 1
2

)
T

)
, (7)

where we made explicit the functional dependence of the
rate γin. Minimizing the action S[y] by performing a func-
tional variation with respect to y gives the Euler-Lagrange

043626-2



OPTIMIZATION OF COLLISIONAL FESHBACH COOLING . . . PHYSICAL REVIEW A 91, 043626 (2015)

equations,(
d

dt

∂

∂ẏi

− ∂

∂yi

) ⎡
⎣L(t,y,ẏ) +

∑
j

λj (t)Gj (t,y,ẏ)

⎤
⎦ = 0 , (8)

for every i ∈ {1,2,3}.
Our constraints are nonholonomic as they depend on time

derivatives of the function y. (Holonomic constraints do
not depend on these derivatives.) Consequently, the λj are
functions of time rather than constants. Finally, a mathemat-
ically rigorous formulation of Eq. (8) giving all necessary
preconditions, which are indeed fulfilled in our case, can be
found in “Satz 2.7.3” of Ref. [34].

Equation (8) leads to a differential equation for the optimal
Eres(t). First by explicit calculation, one can see

d

dt

(
∂L(t,y,ẏ)

∂ẏi

)
= ∂L(t,y,ẏ)

∂yi

, (9)

as L = −d�/dt is a total time derivative of a function with
no explicit dependence on t,ṅ,Ṫ , and Ėres. Hence, Eq. (8) is
independent of L and using Eq. (7), we obtain

dλ1(t)

dt
= γin(y)

[
2λ1(t) + T

n

(
η

3
− 1

2

)
λ2(t)

]
, (10)

dλ2(t)

dt
= γin(y)

[
n

T

(
η − 3

2

)
λ1(t) +

(
η2

3
− η + 1

4

)
λ2(t)

]
,

(11)

0 = n

T
λ1(t) +

(
η

3
− 5

6

)
λ2(t) , (12)

where we define the dimensionless quantity η = Eres/(kBT ).
We solve Eq. (12) for η, take its time derivative, insert
Eqs. (1), (2), (10), and (11) and find the deceptively simple
differential equation,

dη

dt
= 1

2

(
η − 9

2

)
γin, (13)

for the optimal choice of η(t). Hence, the time dependence of
η(t) decouples from the differential equations for λ1 and λ2.

The first-order differential Eqs. (1), (2), and (13) define
our optimal cooling path. They are uniquely specified by their
initial values n(t = 0) = n0, T (t = 0) = T0, and η(t = 0) =
η0. Within functional minimization, however, such a path is a
necessary but not sufficient condition for optimal cooling. The
remaining task is to find for each pair n0, T0 the value of η0

such that the final phase space �f is maximal.
Before we proceed it is beneficial to express Eqs. (1), (2),

and (13) in terms of the dimensionless density ñ = n/n0,
temperature T̃ = T/T0, initial phase-space density �0 =
� (n0,T0) and time τ = 2

√
2 e−9/2 �0�0 t . This leads to

∂ñ

∂τ
= − ñ2

T̃ 3/2
e−η+9/2, (14)

∂T̃

∂τ
= −

(
η

3
− 1

2

)
ñ

T̃ 1/2
e−η+9/2, (15)

dη

dτ
= 1

2

(
η − 9

2

)
ñ

T̃ 3/2
e−η+9/2, (16)
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FIG. 3. (Color online) (a) Final phase-space density as a function
of η0 for several dimensionless cooling durations τf . For all τf the
optimal cooling procedure occurs for η0 = 9/2. (b) Dimensionless
density, temperature, and phase-space density as well as scaled
resonance position as a function of dimensionless time τ for the
optimal cooling path Eres = (9/2)kBT . For both panels the quantities
on the vertical axis have been scaled with respect to their initial values.

which we solve from τ = 0 to τ = τf ≡ 2
√

2 e−9/2 �0�0tf
with ñ(τ = 0) = 1, T̃ (τ = 0) = 1, and η(τ = 0) = η0. The
numerical factor e−9/2 has been included in τ for later
convenience.

Figure 3(a) shows the final phase-space density as a function
of η0 for different dimensionless cooling durations τf after
numerically solving the differential equations. For every τf the
highest phase-space density is reached at η0 = 9/2, which is
the only root of Eq. (16) and corresponds to a time-independent
solution η(τ ) = 9/2. In other words the optimal cooling path
does not depend on τf . Moreover, Eqs. (14) and (15) can be
solved analytically and we obtain

ñ(τ ) = T̃ (τ ) = (1 − τ/2)2 and η(t) = 9/2 . (17)

The scaled resonance position Ẽres (τ ) = Eres(τ )/[(9/2)kBT0]
equals T̃ (τ ) and the scaled phase-space density satisfies

� (τ )

�0
= (1 − τ/2)−1 . (18)

Figure 3(b) shows the time evolution of ñ, T̃ , Ẽres, and �

for this case. The equations also show that the phase-space
density diverges at τ = 2. Before we reach this time, however,
we must by necessity have passed the point where � (τ ) has
become larger than one, which is beyond the validity of our
classical kinetic theory with � < 1.

We have analytically verified that η(t) = η0 = 9/2 is
indeed optimal by expanding the solutions of Eqs. (14)–
(16) around the optimal cooling path x(0) = (ñ(0),T̃ (0),η(0))
given in Eq. (17). Formally, we introduce the expansion x =
(ñ,T̃ ,η)T = x(0) + εx(1) + ε2x(2) + · · · with small parameter
ε and solve for x(1) and x(2) by Taylor expanding Eqs. (14)–
(16) up to second order in ε. In fact, we find � (τf ) −
�

(0)
f ∝ (η(0) − 9/2)2 with a negative proportionality constant

independent of η(0).
Finally, we evaluate the cooling time and final phase-space

density for the 40K Feshbach resonance characterized in [33]
with ��0/kB = 0.9 nK. Starting with n0 = 1013 cm−3 and
T0 = 1 μK as in [30] corresponding to initial phase-space

043626-3



MARLON NUSKE, EITE TIESINGA, AND L. MATHEY PHYSICAL REVIEW A 91, 043626 (2015)

density � (t = 0) = 0.2, we reach �f = 1 after a cooling
duration tf = 2.1 s or equivalently τf = 1.6.

III. MONTE CARLO SIMULATIONS

We have verified the results of Sec. II by numerical Monte
Carlo simulations. Our procedure is as follows: We start with
an arbitrary guess for Eres(t) and compute the final phase-space
density �f by solving Eqs. (1) and (2) in our dimensionless
quantities τ , ñ, T̃ , and Ẽres(τ ) = Eres(τ )/[(9/2)kBT0]. The
shape of Ẽres(τ ) is then changed and the differential equations
are solved to find a new final phase-space density � ′

f . The
shape is always accepted if � ′

f > �f or accepted with
probability p(� ′

f − �f ) < 1, if � ′
f < �f . This procedure

is repeated for a fixed number of steps storing the current
optimal cooling trajectory.

For a practical implementation we choose Ẽres(τ ) to be a
piecewise-constant function on L equal time intervals between
τ = 0 and τf . Here, we take L = 8 and set τf = 1.58 such that
we can still significantly increase � , while simultaneously
staying within the classical limit �f < 1, where our theory
is valid. Furthermore, we start with an initial Ẽres equal to
1.1, run for 107 steps, and at each step allow random changes
according to a Gaussian distribution with standard deviation
0.004. Finally, we use p(x) = exp(500x) for x < 0.

The results of our Monte Carlo simulation are shown
in Fig. 4. It can be observed that the resonance energy
Eres(t) converges towards the analytically determined optimal
value, which is given by (9/2)kBT (t). Additional numerical
calculations assuming a polynomial function for Eres(t) and
optimizing its coefficients with the Monte Carlo procedure
match well with the above results.

IV. IMPORTANCE OF THE PHASE-SPACE DENSITY

A high value of the phase-space density � is necessary
for the observation of many quantum phenomena, such as the
Bose-Einstein phase transition at � = 2.612. To examine the
importance of the phase-space density in the Feshbach cooling
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FIG. 4. (Color online) Three cooling paths as a function of
τ (blue, green, and black) as obtained during the Monte Carlo
procedure. The simulation assumes a piecewise-constant function for
Eres(τ ). The red curve shows the optimal cooling path as obtained
by functional minimization. For each cooling path we give the
normalized final phase-space density to the right of the figure.
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B = ñ T̃−1

B = ñ T̃−3/2

B = ñ T̃−2
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FIG. 5. (Color online) (a) Dimensionless inverse temperature as
a function of η0 for several dimensionless cooling times τf . For each
τf a marker indicates the optimal η0. (b) Initial value η0 maximizing
the final value of the function B as a function of cooling duration
τf . Different curves correspond to different choices of the parameters
a and b, as indicated in the legend. The markers on the curve for
B = T̃ −1 correspond to those in (a).

process we set aside our goal of maximizing the final phase-
space density �f and instead maximize a functionB = na/T b,
with arbitrary coefficients a and b, after a fixed dimensionless
cooling duration τf . As we will show the phase-space density
is the only function of this type where the optimal cooling path
does not depend on τf .

First note that Eq. (9) holds for the Lagrangian L =
−dB(n,T ,Eres)/dt since B has no explicit dependence on
t , ṅ, Ṫ , and Ėres. As L then cancels out of the calculation,
Eqs. (14)–(16) remain valid.

Although we obtain the same set of differential equations,
which uniquely specify the optimal cooling path once η0 has
been determined, the maximal value of B does not occur at
η0 = 9/2 as can be seen in Fig. 5(a) for the case that a = 0
and b = 1, corresponding to the inverse temperature 1/T̃ . In
fact, the position of the maximum B depends on the cooling
duration τf . This is further illustrated in Fig. 5(b) where for
each τf we plot the value of η0 leading to the highest B for
several choices of a and b. We see that for all values of the
parameters a and b, except for those corresponding to � , the
optimal value of η0 does depend on τf .

V. COOLING WITH ADDITIONAL LOSS PROCESSES

Processes that lead to undesired loss of atoms from the
trap are always present in experiments. These losses do not
contribute to cooling and may even be heating the sample.
One typical loss mechanism encountered in cold atomic gas
experiments are collisions with atoms or molecules in the
room-temperature background gas. Although operating under
high vacuum conditions, background loss rates γbg may still
be large enough to induce significant loss of atoms. They can
be included in our theory by modifying Eq. (1) to

∂n

∂t
= −γinn − γbgn. (19)

In the functional minimization procedure optimizing the
phase-space density the extra term −γbgn drops out and once
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FIG. 6. (Color online) (a) Final phase-space density, including
atom losses due to collisions with background atoms or molecules
with rate γbg = 0.2 s−1, as a function of the initial value of η for
several dimensionless cooling durations τf . For all τf optimal cooling
occurs for η0 = 9/2. (b) Dimensionless density, temperature, and
phase-space density as well as scaled resonance position as a function
of dimensionless time τ for the optimal cooling path Eres = (9/2)kBT

and γbg = 0.2 s−1. For both panels the quantities on the vertical axis
have been scaled with respect to their initial values. The value of γbg is
a typical experimental value and the cooling procedure has noticeable
loss due to collisions with background atoms and molecules, while
still showing significant cooling.

again we obtain Eq. (13). By numerically solving Eqs. (2), (13),
and (19) in the same dimensionless units as in Sec. II and
calculating the final phase-space density for different η0

we find that optimal cooling is again obtained for constant
η(t) = η0 = 9/2 independent of the cooling duration but also
the loss rate due to background collisions. An example of such
calculations is shown in Fig. 6(a). In fact, we find that the
density and temperature are then explicitly given by

exp(γbgτ )ñ(τ ) = T̃ (τ ) =
(

1 + exp(−γbgτ ) − 1

2γbg

)2

. (20)

Figure 6(b) displays the corresponding optimal cooling path
for one value of γbg. The additional loss process makes the
dimensionless density decrease faster than the dimensionless
temperature in contrast to the original case shown in Fig. 3(b).
The scaled resonance position Ẽres is still equal to T̃ .

Nonresonant two-body losses are a second important loss
process present in cold atom experiments. They are taken into
account by replacing Eq. (1) with

∂n

∂t
= −γinn − γ2n

2, (21)

where γ2 is the nonresonant loss rate coefficient. For this case
the functional minimization procedure yields

dη

dt
= 1

2

(
η − 9

2

)
γin +

(
η − 5

2

)
γ2n, (22)

instead of Eq. (13). We can then numerically solve
Eqs. (2), (13), and (21) in the dimensionless units from
Sec. II. Figure 7(a) shows that optimal cooling occurs at
different η0 for different cooling durations. In order to compete
with the additional loss process a lower initial resonance
energy, corresponding to η0 < 9/2, is preferable in all cases.
Furthermore, Fig. 7(b) shows that for every τf η(τ ) rises slowly
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FIG. 7. (Color online) (a) Final phase-space density, including
effects due to nonresonant collisions with n0γ2 = 0.2 s−1 as shown
in Eq. (21), as a function of η0 for several dimensionless cooling
durations τf . In order to highlight the differences between the
curves we have normalized the phase-space density with respect
to the maximal value �max for each τf . Optimal cooling occurs at
smaller values of η0 for longer τf . (b) Time dependence of η(τ ) for
several dimensionless cooling durations τf and n0γ2 = 0.2 s−1 with
η0 chosen such that the phase-space density is maximized. Each curve
is only plotted up to the corresponding τf .

up to a final value of η(τf ) ≈ 4.5. This accounts for the fact
that the term corresponding to nonresonant collisional losses
has a quadratic dependence on density and thus, as density
decreases in the cooling process, it becomes less important in
comparison to γinn.

In summary, the optimal choice for the resonance energy
does not depend on the strength of collisions with background
atoms and molecules, but has to be changed noticeably, if
nonresonant losses are present.

VI. CONCLUSIONS

We have analytically determined the optimal Feshbach
cooling procedure using functional minimization. Keeping
the resonance energy proportional to temperature Eres(t) =
(9/2)kBT (t) leads to the highest phase-space density after
a fixed cooling duration. We have demonstrated that the
choice for the resonance energy leading to optimal cooling
is independent of the initial conditions such as initial density
and temperature of the atoms. Furthermore the result Eres(t) =
(9/2)kBT (t) is not altered when taking into account loss of
atoms due to collisions with room-temperature background
atoms. When adding two body collisions, however, it is optimal
to choose a resonance energy that is no longer linear in
temperature. Our analytically obtained results match well with
our numerical calculations.
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[15] V. Vuletić, H. W. Chan, and A. T. Black, Phys. Rev. A 64, 033405

(2001).
[16] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse,

and G. Rempe, Nat. Phys. 428, 50 (2004).
[17] S. Zippilli and G. Morigi, Phys. Rev. Lett. 95, 143001 (2005).
[18] D. R. Leibrandt, J. Labaziewicz, V. Vuletić, and I. L. Chuang,
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