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Abstract—Ultra-wide band (UWB) systems require either
rapidly changing or very high sampling rates. Conventional
analog-to-digital devices have limited dynamic range. We investi-
gate UWB signal processing via a basis projection method and a
basis system designed for UWB signals. The method first windows
the signal and then decomposes the signal into a basis via a
continuous-time inner product operation, computing the basis
coefficients in parallel. The windowing systems are key, and we
develop systems that have variable partitioning length, variable
roll-off and variable smoothness. These include systems developed
to preserve orthogonality of any orthonormal systems between
adjacent blocks and almost orthogonal windowing systems that are
more computable/constructible than the orthogonality preserving
systems, built using B-splines. We construct the basis projection
method, developing the method with a modified Gegenbauer
system designed specifically for UWB signals.

I. INTRODUCTION

An ultra-wide band (UWB) communication system is a
large bandwidth system based on the transmission of very
short pulses with relatively low energy. These systems operate
by running as signaling waveforms, baseband pulses of very
short duration, rather than the traditional method using a sinu-
soidal carrier. The UWB technique has a fine time resolution
which makes it a technology appropriate for accurate ranging.
The large bandwidth of an UWB system is dominated by
its pulse shape and duration. This large system bandwidth
relative to the information bandwidth allows UWB systems
to operate with a low power spectral density. Such a low
power spectral density implies that the UWB signal may be
kept near or below the noise floor of detection devices. So,
UWB technology has many potential advantages, such as high
data rate, low probability of interception and detection, system
simplicity, low cost, reduced average power consumption,
weak sensitivity to the near-far problem and immunity to
interference.

UWB systems present challenges to current methods of
signal processing. Despite extensive advances, wideband prob-
lems continue to hit barriers in sampling architectures and
analog-to-digital conversion (ADC). ADC signal-to-noise and
distortion ratio (the effective number of resolution bits) de-
clines with sampling rate due to timing jitter, circuit imper-
fections, and electronic noise. ADC performance (speed and
total integrated noise) can be improved to some extent, e.g., by

cooling. However, the energy cost may be significant, and this
presents a major hurdle for implementation in miniaturized
devices. Digital circuitry has provided dramatically enhanced
digital signal processing (DSP) operation speeds, but there has
not been a corresponding dramatic energy capacity increase in
batteries to operate these circuits. Moore’s Law for chips is
slowing down, and there is no Moore’s Law for batteries or
ADCs.

A growing number of applications face this challenge,
such as miniature and hand-held devices for communications,
robotics, and micro aerial vehicles (MAVs). Very wideband
sensor bandwidths are desired for dynamic spectrum ac-
cess and cognitive radio, radar, and UWB systems. Multi-
channel and multi-sensor systems compound the issue, such as
multiple-input and multiple-output (MIMO), array processing
and beamforming, multi-spectral imaging, and vision systems.
All of these rely on analog sensing and a digital interface,
perhaps with feedback. This motivates mixed-signal circuit
designs that tightly couple the analog and digital portions,
and operate with parallel reduced bandwidth paths to relax
ADC requirements. The goal of such wideband integrated
circuit designs is to achieve good tradeoffs in dynamic range,
bandwidth, and parallelization, while maintaining low energy
consumption [7], [8].

From a signal processing perspective, we can approach this
problem by implementing an appropriate signal decomposition
in the analog portion that provides parallel outputs for inte-
grated digital conversion and processing [3]. This naturally
leads to an architecture with windowed time segmentation
and parallel analog basis expansion. The method represents
a change of view in sampling, from that of a stationary
view of a signal used in classical sampling to an “short-time
windowed stationary” view. This viewpoint gives that the time
and frequency space “tile” occupied by the signal is processed
quickly. The windows give us the tools to partition time-
frequency so that the UWB signal can be partitioned uniformly
but also quickly and efficiently. With the blocks, the signal can
be sampled in parallel [3]. In this paper we view this from
the sampling theory perspective, including segmentation and
window design, achieving orthogonality between segments,
basis expansion and choice of basis, signal filtering, and recon-
struction. In particular, we develop the method for modified
Gegenbauer bases designed for UWB signals. Mathematical978-1-4673-7353-1/15/$31.00 c©2015 IEEE
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definitions and computations for the paper follow those given
in Benedetto [1].

II. WINDOWING VIA B-SPLINES

The first type of system we develop preserves orthogonality
of any orthonormal (ON) system between adjacent blocks. The
construction here uses any orthonormal basis for L2(R) and is
created by solving a Hermite interpolation problem with con-
straints. These ON preserving window systems were the moti-
vation for the methods in this paper. They allow us to create a
method of time-frequency analysis for a wide class of signals.
The second type of system we develop uses the concept of
almost orthogonality developed by Cotlar, Knapp and Stein
[6]. It employs B-spline techniques to create almost orthogonal
windowing systems that are more computable/constructible
than the orthogonality preserving systems. Preserving orthog-
onality requires that the (ON) windowing systems {Wk(t)}
satisfy

∑
k [Wk(t)]2 ≡ 1 . The almost orthogonal systems

require that there exists a δ, 0 ≤ δ ≤ 1/2 such that for all k

1− δ ≤ [Ak(t)]2 + [Ak+1(t)]2 ≤ 1 + δ

for t ∈ [kT, (k + 1)T ].

A. Orthogonality Preserving Systems

Our first system of signal segmentation uses sine, cosine and
linear functions. This was created because it is relatively easy
to implement, cuts down on frequency error and preserves
orthogonality. Consider a signal block of length T + 2r
centered at the origin. Let 0 < r � T . Ideally, we would
like to make r as small as possible. Define Cap(t) as follows:

0 |t| ≥ T
2 + r ,

1 |t| ≤ T
2 − r ,

sin(π/(4r)(t + (T/2 + r))) −T
2 − r < t < −T

2 + r ,

cos(π/(4r)(t− (T/2− r))) T
2 − r < t < T

2 + r .
(1)

Given Cap(t), we form a tiling system {Capk(t)} such that
supp(Capk(t)) ⊆ [kT − r, (k + 1)T + r] for all k. Note that
the Cap window has a continuous roll-off at the endpoints,
windows the signal in [−T

2 − r, T
2 + r] and is identically 1 on

[−T
2 + r, T

2 − r]. It has a 1/ω2 decay in frequency space, and
also has the property that for all t ∈ R

[Capk(t)]2 + [Capk+1(t)]
2 = 1 .

If we had a signal f with an absolutely convergent Fourier
series, then

(f · Cap)k̂[n] =
∑
m

f [n−m]Cap̂[m] = f̂ ∗ Cap̂[n] .

The Fourier transform of Cap is a linear combination of sinc ω
and sinω functions and has an asymptotic 1/ω2 decay.

The theory of splines gives us the tools to generalize this
system. The idea is to cut up the time domain into perfectly
aligned segments so that there is no loss of information.
We also want the systems to be smooth, so as to provide
control over decay in frequency, and adaptive, so as to adjust

accordingly to changes in frequency band. Finally, we develop
our systems so that the orthogonality of bases in adjacent and
possible overlapping blocks is preserved.

Definition 1 (ON Window System): An ON Window Sys-
tem is a set of functions {Wk(t)} such that for all k ∈ Z

(i.) supp(Wk(t)) ⊆ [kT − r, (k + 1)T + r] ,
(ii.) Wk(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,
(iii.) Wk is symmetric about its midpoint ,

(iv.)
∑

[Wk(t)]2 ≡ 1 ,

(v.) {Ŵk
◦[n]} ∈ l1 . (2)

Conditions (i.) and (ii.) are partition properties, in that
they give an exact snapshot of the input function f on
[kT + r, (k + 1)T − r] with smooth roll-off at the edges.
Conditions (iii.) and (iv.) are needed to preserve orthogonal-
ity between adjacent blocks. Condition (v.) is needed for the
computation of Fourier coefficients. We generate our systems
by translations and dilations of a given window WI , where
supp(WI) = [−T/2− r, T/2 + r]. Our next proposition
shows the need for the condition (v.). Let I = T +2r and let
PWΩ denote the Paley-Wiener space for bandlimit Ω.

Proposition 1: Let f ∈ PWΩ and let {Wk(t)} be an ON
window system with generating window WI . Then

1
I

∫ T/2−r

−T/2−r

[f ·WI ]◦(t) exp(−2πint/[I]) dt = f̂ ∗ŴI [n] . (3)

Our general window function WI is k-times differentiable,
has supp(WI) = [−T/2− r, T/2 + r] and has values

WI =

 0 |t| ≥ T/2 + r
1 |t| ≤ T/2− r

ρ(±t) T/2− r < |t| < T/2 + r.
(4)

We solve for ρ(t) by solving the Hermite interpolation problem
(a.) ρ(T/2− r) = 1
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . , k
(c.) ρ(n)(T/2 + r) = 0 , n = 0, 1, 2, . . . , k ,

with the conditions that ρ ∈ Ck and

[ρ(t)]2 + [ρ(−t)]2 = 1 for t ∈ [±(
T

2
− r),±(

T

2
+ r)] . (5)

The constraint (5) directs us to get solutions expressed in
terms of sin t and cos t. Solving for ρ so that the window is
in C1, we get that ρ(t) equals

√[
1− 1

2

[
1− sin( π

2r (T
2 − t))

]2]
T
2 − r ≤ t ≤ T

2

1√
2

[
1− sin( π

2r (t− T
2 ))

]
T
2 ≤ t ≤ T

2 + r .

(6)
With each degree of smoothness, we get an additional degree
of decay in frequency.

We designed the ON window systems {Wk(t)} so that they
would preserve orthogonality of basis element of overlapping
blocks. Because of the partition properties of these systems,

2015 International Conference on Sampling Theory and Applications (SampTA)

12Authorized licensed use limited to: NIST Virtual Library (NVL). Downloaded on October 02,2020 at 16:25:58 UTC from IEEE Xplore.  Restrictions apply. 



we need only check the orthogonality of adjacent overlapping
blocks. The best way to think about the construction is to
visualize how one would do the extension for a system of
sines and cosines. We would extend the odd reflections about
the left endpoint and the even reflections about the right. Let
{ϕj(t)} be an ON basis for L2[−T/2, T/2]. Define

ϕ̃j(t) =


0 |t| ≥ T/2 + r

ϕj(t) |t| ≤ T/2− r
−ϕj(−T − t) −T/2− r < t < −T/2

ϕj(T − t) T/2 < t < T/2 + r .
(7)

Theorem 1: {Ψk,j} = {Wkϕ̃j} is an ON basis for L2(R).
Proof : See [3]. �

B. Almost Orthogonal Systems
We approximate the Cap system with splines. We get

windowing systems that nearly preserve orthogonality. Each
added degree of smoothness in time adds to the degree of
decay in frequency. We use B-splines as our cardinal functions.
Let 0 < α � β and consider χ

[−α,α]. We want the n-fold
convolution of χ

[−α,α] to fit in the interval [−β, β]. Then we
choose α so that 0 < nα < β and let

Ψ(t) = χ
[−α,α] ∗ χ

[−α,α] ∗ · · · ∗ χ
[−α,α](t)︸ ︷︷ ︸

n−times

.

The β-periodic continuation of this function, Ψ◦(t) has the
Fourier series expansion∑

k 6=0

α

nβ

[
sin(πkα/nβ)

2πkα/nβ

]n

exp(πikt/β) .

Cotlar, Knapp and Stein introduced almost orthogonality
via operator inequalities [6]. The concept allows us to create
windowing systems that are more computable/constructible
using B-splines.

Definition 2 (Almost ON System): Let 0 < r � T . An
Almost ON System for adaptive and UWB sampling is a set
of functions {Ak(t)} for which there exists δ, 0 ≤ δ < 1/2,
such that

(i.) supp(Ak(t)) ⊆ [kT − r, (k + 1)T + r] ,
(ii.) Ak(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,
(iii.) Ak((kT + T/2)− t) = Ak(t− (kT + T/2)) ,

(iv.) 1− δ ≤ [Ak(t))]2 + [Ak+1(t))]2 ≤ 1 + δ ,

(v.) {Âk
◦[n]} ∈ l1 .

Starting with Cap(t), let ∆(T,r) = T+2r
m . By placing equidis-

tant knot points −T/2 − r = x0,−T/2 − r + ∆(T,r) =
x1, . . . , T/2 + r = xm, we can construct Cm−1 polynomial
splines Sm+1 approximating Cap(t) in [(−T/2 − r), (T/2 +
r)] . A theorem of Curry and Schoenberg [15] gives that the
set of B-splines {B(m+1)

−(m+1), . . . , B
(m+1)
k } forms a basis for

Sm+1. Therefore, Cap(t) ≈
∑k

i=−(m+1) aiB
(m+1)
i . Let

δ =
∥∥∥∥ k∑

i=−(m+1)

aiB
(m+1)
i − Cap(t)

∥∥∥∥
∞

.

Then, δ < 1/2, with the largest value for the piecewise linear
spline approximation. Moreover, δ → 0 as m and k increase.
Thus we get computable windowing systems that nearly pre-
serve orthogonality. Each added degree of smoothness in time
adds to the degree of decay in frequency.

III. SIGNAL EXPANSIONS

Given characteristics of the class of input signals, the
choice of basis functions used can be tailored to optimal
representation of the signal or a desired characteristic in the
signal.

Theorem 2 (Projection Formula for ON Windowing):
Let {Wk(t)} be an ON window system, and let
{Ψk,n} = {Wkϕ̃n} be an ON basis that preserves
orthogonality between adjacent windows. Let f ∈ PWΩ

and N = N(T,Ω) be such that 〈f,Ψk,n〉 = 0 for all n > N
and all k. Then, f(t) ≈ fP(t), where

fP(t) =
∑
k∈Z

[ N∑
n=−N

〈f,Ψk,n〉Ψk,n(t)
]

. (8)

This theorem gives a new method for analog to digital
conversion. Unlike the Shannon method which examined the
function at specific points, then used those individual points
to recreate the curve, the projection method breaks the signal
into time blocks and then approximates their respective pe-
riodic expansions with a Fourier series. This process allows
the system to individually evaluate each piece and base its
calculation on the needed bandwidth. The individual Fourier
series are then summed, recreating a close approximation of
the original signal. It is important to note that instead of fixing
T , the method allows us to fix any of the three while allowing
the other two to fluctuate. From the design point of view, the
easiest and most practical parameter to fix is N . For situations
in which the bandwidth does not need flexibility, it is possible
to fix Ω and T by the equation N = dT · Ωe. However, if
greater bandwidth Ω is need, choose shorter time blocks T .
The theory can use any ON basis. The basis can be chosen to
optimize the analysis of a given class of signals, e.g., modified
Gegenbauer (for UWB) or Walsh (for binary).

The analysis of the error generated by the projection method
involves looking at the decay rates of the Fourier coefficients.
If we are working with the standard basis, for f ∈ C(T2Φ),
we can define the modulus of continuity as

µ(δ) = sup
|x−y|≤δ

|f(x)− f(y)| .

This measures the local oscillation of the signal, and we have
that

|f̂ [n]| ≤ 1
2
µ(1/n) .

We say that f satisfies a Hölder condition with exponent α if
there exists a constant K such that

|f(x + δ)− f(x)| ≤ Kδα .
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If f is k-times continuously differentiable and fk satisfies a
Hölder condition with exponent α, then there exists a constant
K such that

|f̂ [n]| ≤ K
1

nk+α
.

The sharp cut-offs χ
[kT,(k+1)T ] have a decay of only

O(1/ω) in frequency. We designed the ON windowing sys-
tems so that the windows have decay O(1/(ω)k+2) in fre-
quency. This makes the error on each block summable.

We assume Wk is Ck. Therefore, Ŵk(ω) = O(1/(ω)k+2).
We will analyze the error EkP on a given block. Let M =
‖(f ·Wk)‖L2(R). Then EkP

= sup
∣∣∣∣(f(t) ·Wk)−

[ N∑
n=−N

〈f,Ψn,k〉Ψn,k(t)
]
Wk(t)

∣∣∣∣
= sup

[ ∑
|n|>N

〈f,Ψn,k〉Ψn,k(t)
]
Wk(t) ≤

∑
|n|>N

M

nk+2
.

IV. MODIFIED GEGENBAUER SYSTEMS

The Gegenbauer polynomials are used in an UWB com-
munication system to construct pulses with narrow widths.
The Gegenbauer waveform is used to modulate data, and has
demonstrated superior performance to classic waveforms, e.g.,
Gaussian waveforms and the Hermite systems [10], [13].

Using the spirit of [10], [13] (and references therein),
we define an ON basis for L2[−T/2, T/2] using modified
Gegenbauer functions. Modified Gegenbauer functions are
constructed using Gegenbauer polynomials (see [14, Chapter
18]). The Gegenbauer polynomials are modified so that they
zero-out at the endpoints, and normalized to create an ON
system. This then allows UWB signals to be expanded in the
projection method (8) using the modified Gegenbauer system.

The Gegenbauer polynomials Cν
n : C → C are orthogonal

over (−1, 1) with orthogonality relation given by [14, Table
18.3.1] ∫ 1

−1

Cν
n(x)Cν

m(x)w(x; ν)dx = hν
nδn,m, (9)

for ν ∈ (− 1
2 ,∞) \ {0}, where

w(x; ν) := (1− x2)ν−1/2, (10)

hν
n :=

21−2νπΓ(2ν + n)
(ν + n)Γ2(ν)n!

, (11)

the gamma function Γ : C \ −N0 → C is defined in [14,
Chapter 5], and N0 := {0, 1, 2, . . .}. The Gegenbauer poly-
nomials are defined using the Gauss hypergeometric function
[14, (18.5.9)] as

Cν
n(x) :=

(2ν)n

n! 2F1

(
−n, 2ν + n

ν + 1
2

;
1− x

2

)
,

where the Pochhammer symbol (·)n : C → C for n ∈ N0 is
defined by (a)n := (a)(a + 1) · · · (a + n− 1), and the Gauss

hypergeometric function is defined in [14, Chapter 15]. They
have a Rodrigues-type formula [14, Table 18.5.1]

Cν
n(x) :=

(−1)n(2ν)n

2n(ν + 1
2 )nn!

1
w(x; ν)

dn

dxn
w(x; ν + n),

and can also be computed using three-term recurrence relations
[14, Table 18.9.1], or using trigonometric [11, p. 220] series
expressions. Note that Gegenbauer polynomials can be given
in terms of the more general Jacobi polynomials symmetric in
parameters with [14, (18.7.1)]

Cν
n(x) =

(2ν)n

(ν + 1
2 )n

P (ν−1/2,ν−1/2)
n (x).

Consider the modified Gegenbauer function Cν
n :

[−T/2, T/2]× (0,∞) → R defined by

Cν
n(t;T ) :=

√
2 w

(
2t
T ; ν

)
Thν

n

Cν
n

(
2t

T

)
.

It is easy to see from (9) that these functions form an ON
basis for L2[−T/2, T/2] with ν ∈ ( 1

2 ,∞), namely∫ T/2

−T/2

Cν
n(t;T )Cν

m(t;T )dt = δm,n.

Note that we exclude the parameters ν ∈ (−1/2, 1/2] in order
to keep the endpoints ±L/2 in the domain of integration. By
using (10), (11) one has

Cν
n(t;T ) =

22ν−1/2Γ(ν)
T ν

√
(n + ν)n!

πΓ(2ν + n)

×
((

T
2

)2 − t2
)ν/2−1/4

Cν
n

(
2t

T

)
.

We will compute EkP in terms of the modified Gegenbauer
system. The decay of the system is key to the improved
performance of this system for UWB signals [10], [13].

V. BIORTHOGONAL AND FRAME CONSTRUCTIONS

The collection {Ψk,j} = {Wkϕ̃j(t)} forms an ON basis
for L2(R). In this section, we develop the biorthogonal basis
to {Ψk,j}. We can write down the folding operation used to
create the ON windows as an operator [9]. Recall that an
operator U is unitary if its transpose is its inverse, i.e., U∗ =
U−1. Folding is a unitary operator. Fix a point α in R, and
define the reflection, or mirror in α as Mαf(t) = f(2α− t).
Let χl

α = χ
(−∞,α] and χr

α = χ
(α,∞) be the left and right

cutoff functions, and let ρu
α and ρd

α be the up and down ramp
functions. In terms of these operators, M0WI(t) = WI(t)
and M0ρ

u(t) = ρd(t).
Definition 3 (Folding Operation): The folding operation

about a point α is given by

Fα = χl
α(1 +Mα)ρu

α + χr
α(1−Mα)ρd

α . (12)

Lemma 1: The folding operator is unitary if and only if the
sin-cos condition holds, i.e.,

(ρu
α)2 + (ρd

α)2 = 1 . (13)
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The collection {Ψk,j} = {Wkϕ̃j(t)} forms an ON basis for
L2(R). Therefore, it has a biorthogonal Riesz basis {Ψ∗

k,j}.
The basis is uniquely determined by the biorthogonality rela-
tionship

〈{Ψm,n}, {Ψ∗
k,j}〉 = δm,k · δn,j .

Theorem 3 (Biorthogonal Basis): The basis {Ψk,j} =
{Wkϕ̃j(t)} has a unique biorthogonal basis {Ψ∗

k,j},
with uniqueness given by the biorthogonality relationship
〈{Ψm,n}, {Ψ∗

k,j}〉 = δm,k · δn,j . The basis {Ψ∗
k,j} is given

by {Ψk,j} = {W̃kϕ̃j(t)} , where W̃k is the translation of the
window

W̃I =


0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,

ρu
0 (t)

ρu
0

2+ρd
0
2 −T/2− r < t < −T/2 + r ,

ρd
0(t)

ρu
0

2+ρd
0
2 T/2− r < t < T/2 + r .

(14)

The windowing systems above allow us to develop Signal
Adaptive Frame Theory. The idea is as follows. If we work
with an ON windowing system {Wk(t)}, let {Ψk,j} be an ON
basis that preserves orthogonality between adjacent windows.
Let f ∈ PWΩ and N = N(T,Ω) be such that 〈f ·Wk,Ψk,n〉 =
0 for all n > N and all k. Then

f(t) =
∑
k∈Z

[ ∑
n∈Z

〈f ·Wk,Ψk,n〉Ψk,n(t)
]

. (15)

This also gives

‖f‖2 =
∑
k∈Z

[ ∑
n∈Z

|〈f ·Wk,Ψk,n〉|2
]

. (16)

Given that {Ψk,j} = {Wkϕ̃j(t)} is an ON basis for L2(R),
we have a representation of a given function f in L2. The
set {Ψk,j} = {Wkϕ̃j(t)} is an exact normalized tight frame
for L2. The restriction that these basis elements present is
computability. They become increasingly difficult to compute
as the smoothness in time/decay in frequency increases.

A way around this is to use B-spline theory and frame
theory. The ideas behind this connection go back to the
curvelet work of Candès and Donoho. The paper of Borup
and Neilsen [2] gives a nice overview of this connection, and
we will refer to that paper for the background from which we
develop our approach. The set {Bk(t)} form an admissible
cover, in that they form a partition of unity and have overlap
with only their immediate neighbors.

For each window Bk(t), let φn,k(t) be the shifted
exp[πitT/n] centered in the window. Then define Φk,n =
Bk(t)φk,n(t) . Given f ∈ L2, we can write

f(t) ≈
∑
k∈Z

[ ∑
n∈Z

〈f · Bk,Φk,n〉Φk,n(t)
]

. (17)

For this system we can compute

A‖f‖ ≤
∑
k∈Z

[ ∑
n∈Z

|〈f · Bk,Φk,n〉|2
]
≤ B‖f‖ .

The signal will be underrepresented on some blocks, over-
represented on others. This is a function of how much of
the signal is concentrated in the overlap regions. The frame
bounds will be tightened for the almost orthogonal windowing
systems. The fact that the almost ON windows {Ak(t)}
approximate the ON windowing system will result in approxi-
mating the expansion of the signal contained in the overlapping
region in an ON basis. The closer the approximation, the better
the frame bounds. Developing these signal adaptive frames,
their bounds and the associated frame operators will be a major
point of emphasis in future work. We conjecture the following:

A1−δ‖f‖2 ≤
∑
k∈Z

[ ∑
n∈Z

|〈f · Ak,Ψk,n〉|2
]
≤ A1+δ‖f‖2 ,

and that this goes to normalized tight frame as δ → 0.
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