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1 Introduction 
 

Discussion of challenges and ways of improving Cyber Situational Awareness dominated 
previous chapters in this book. However, we have not yet touched on how to quantify any 
improvement we might achieve. Indeed, to get an accurate assessment of network security and 
provide sufficient Cyber Situational Awareness (CSA), simple but meaningful metrics – the focus 
of the Metrics of Security chapter – are necessary. The adage, “what can’t be measured can’t be 
effectively managed,” applies here. Without good metrics and the corresponding evaluation 
methods, security analysts and network operators cannot accurately evaluate and measure the 
security status of their networks and the success of their operations. In particular, this chapter 
explores two distinct issues: (i) how to define and use metrics as quantitative characteristics to 
represent the security state of a network, and (ii) how to define and use metrics to measure CSA 
from a defender’s point of view. 

To provide sufficient CSA and ensure mission success in enterprise network environments, 
security analysts need to continuously monitor network operations and user activities, quickly 
identify suspicious behaviors and recognize malicious activities, and mitigate potential cyber 
impacts in a timely manner. However, most existing security analysis tools focus on detecting 
attacks. The massive amounts of security-related data make these approaches not only labor 
intensive, but also too prone to error while providing users a “big picture” of their overall cyber 
situation. Security analysts need more sophisticated and systematic methods to quantitatively 
evaluate network vulnerabilities, predict attack risk and potential impacts, assess proper actions to 
minimize business damage, and ensure mission success in a hostile environment. As a natural 
requirement, security metrics are very important for CSA, coordinated network defense, and 
mission assurance analysis. They can provide a better understanding of the adequacy of security 
controls, and help security analysts effectively identify which critical assets to focus their limited 
resources on in order to ensure mission success. 
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For CSA and mission assurance analysis, security metrics need to be aligned not only with the 
industry standards for computer and network security management, but also with the overall 
organizational and business goals in enterprise environments. This chapter discusses the 
methodology to effectively identify, define, and apply simple but meaningful metrics for 
comprehensive network security and mission assurance analysis. Focusing on enterprise 
networks, we will explore security tools and metrics that have been developed, or need to be 
developed, to provide security and mission analysts the capabilities required to better understand 
the cyber situation and security status of their network. For instance, is there any vulnerability on 
the system? Is there any (ongoing) attack in the network? What (system/application/service) has 
been compromised? How can the (potential) risk be measured? What is the most likely 
consequence of the attack? Can we prevent it? How much (storage/communication/operational) 
capacity will be lost due to the attack? Is the overall (or a major portion of) 
mission/task/operation still accomplished? Good defined metrics can help users answer these 
questions quickly and quantitatively. Users can then focus on the higher-level view of cyber 
situations, make informed decisions to select the best course of action, effectively mitigate the 
potential threats, and ensure mission success even in a hostile environment.  

Researchers have made many attempts during the last few years to measure security in 
cyberspace. NIST provided an overview of existing metrics for network security measurement in 
(Jansen, 2009). Hecker (2008) distinguished the lower level metrics (based on well-ordered low-
level quantitative system parameters) from the higher level metrics (e.g., conformity distance, 
attack graph or attack surface based estimations). Meland and Jensen (2008) presented a Security-
Oriented Software Development Framework (SODA) to adapt security techniques and filter 
information. Heyman et al. (2008)  also presented their work on using security patterns to 
combine security metrics.  

In this chapter we present a new model for security risk analysis. Section 2 present a model for 
Cyber Situational Awareness.  Section 3 discusses Network Vulnerability and section 4 discusses 
Mission Impact Analysis. Section 5 discusses Asset Criticality Analysis.  Section 6 presents some 
ideas for future work and finally section 7 gives a summary for this chapter. 

 

 

2 Security Metrics for Cyber Situational Awareness  

2.1 Security Metrics: the What, Why, and How 

2.1.1 What is a Security Metric? 
As defined by the National Institute of Standards and Technology (NIST), metrics are tools that 
are designed to facilitate decision-making and improve performance and accountability through 
collection, analysis, and reporting of relevant performance-related data. Security metrics can be 
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naturally interpreted as a standard (or system) used for quantitatively measuring an organization’s 
security posture. Security metrics are essential to comprehensive network security and CSA 
management. Without good metrics, analysts cannot answer many security related questions. 
Some examples of such questions include “Is our network more secure today than it was before?” 
or “Have the changes of network configurations improved our security posture?”  

The ultimate aim of security metrics is to ensure business continuity (or mission success) and 
minimize business damage by preventing or minimizing the potential impact of cyber incidents. 
To achieve this goal, organizations need to take into consideration all information security 
dimensions, and provide stakeholders detailed information about their network security 
management and risk treatment processes.  

2.1.2 Why Security Metrics for CSA? 
We cannot effectively manage or improve CSA if we cannot accurately measure it. Traditional 
network security management practices mainly focus on the information level and treat all 
network components equally. Although valuable, these approaches lack meaningful metrics and 
risk assessment capabilities when applied to comprehensive CSA and mission assurance analysis. 
Specifically, they cannot quantitatively evaluate or determine the exact impacts of security 
incidents on the attainment of critical mission objectives. When an attack happens, it is really 
difficult for current solutions to answer mission assurance related security questions like: “Is 
there any impact on mission X if host A was compromised?”, “Can some portion of mission X 
still be accomplished?”, “What is the average completion rate for mission X currently?”, or 
“What can we do to ensure mission X’s success?” 

To answer these questions, security metrics and advanced mission-to-asset mapping, modeling 
and evaluation technologies are required. The literature contains several recently proposed 
metrics for information and network security measurement, such as the number of vulnerabilities 
or detected cyber incidents in a network, the average response time to a security event, etc. 
Although these metrics can evaluate network security from certain aspects, they cannot provide 
sufficient network vulnerability assessment, attack risk analysis and prediction, mission impact 
mitigation, and quantitative situational awareness, in terms of mission assurance. We argue that to 
ensure mission survival in a hostile environment, ideally security metrics should be adjusted and 
tuned to fit a specific organization or situation. In other words, good metrics must be meaningful 
to specific organizational goals and key performance indicators. Security analysts not only review 
metrics currently in place, but also need to ensure they are aligned with the specific 
organizational and business goals. 

2.1.3 How to Measure and Model Network Security? 
To determine the general security level of an analyzed network, a common process needs to be 
realized: First, security experts identify what should be measured. Then they organize the 
involved variables in a manageable and meaningful way. After that, repeatable formulas should 
be built to illustrate the snapshot status of security and how it changes over time. For network 
and/or system security measurement, most existing approaches are based on risk analysis, in 
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which security risk is expressed as a function of threats, vulnerabilities, and potential impacts (or 
expected loss).  

𝑅𝑅𝑅𝑅 = 𝑇ℎ𝑟𝑟𝑟𝑟 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 × 𝐼𝐼𝐼𝐼𝐼𝐼 (1) 

Eq. 1 is an informal way of stating that security risk is a function of threats, vulnerabilities, and 
potential impact. It is often used in the literature for expressing the necessity and purpose of 
network security evaluation. When applied to solving a real problem, it is still hard to quantify 
each variable in Eq. 1 with meaningful values. For example, how should one numerically express 
a threat? What is the cost of a vulnerability? How should one calculate the impact or expected 
loss? In addition, when these three variables are multiplied, how should one denote the risk in a 
meaningful way that can be translated into an action item?  

In order to quantify different portions of Eq. 1, Lindstrom (2005) further introduced a number of 
underlying elements required for general security (risk) analysis. Although they may not 
completely solve all the problems, these underlying elements still provide security analysts a 
better understanding and insight to develop meaningful metrics and practical solutions for general 
network security measurements. Some of the useful elements introduced by (Lindstrom, 2005) 
are listed below:  

• Calculation of Asset Value: Based on the values of different assets (e.g., hardware, 
software and data), enterprises can focus on their real security needs and allocate 
adequate resources. As enterprises routinely place values on their information assets, the 
value of an asset could be defined as the amount of IT spending over a time period (e.g., 
operations and maintenance) plus the depreciation or amortization value of the assets 
(hardware and software). For asset value calculation, quantifiable values need to be 
assigned to each asset for objective evaluation and comparison.  

• Calculation of Potential Loss: Asset value is linked, but not tied directly to the loss. We 
need to consider the type of compromise when evaluating the potential losses. Generally 
there are five distinct types of compromise: confidentiality breaches, integrity breaches, 
availability breaches, productivity breaches, and liability breaches (Lindstrom, 2005). 
Note that asset value may not be the only thing that can be lost. Other potential losses, 
such as the incident costs should also be carefully considered.   

• Measurement of Security Spending: Although measuring enterprise-wide security 
spending is difficult, it is important for security management. Security spending is often 
divided among various business units and departments, as well as being lumped in with 
network and infrastructure spending. Assessing security spending and separating it from 
other budget items is a daunting task. 

• Attack Risk Analysis: Defining and modeling risk for an enterprise is another difficult 
but important task. Lindstrom (2005) lists three common forms of risks: manifest risk (the 
ratio of malicious events to total events), inherent risk (the likelihood that system 
configurations will contribute to a compromise), and contributory risk (a measure of 
process errors or mistakes made during the operations). 
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None of the above elements is designed to completely answer questions related to security 
metrics and measurements, but the methodologies outlined here give us a foundation for 
gathering useful data and applying it to our specific goals and expectations. Based on this basic 
knowledge, researchers can further define more accurate and complete security metrics, assign 
proper values to their security formulas, and develop practical evaluation models to quantitatively 
analyze and measure the security status of their computer network and systems. 

2.2 Security Measurement for Situational Awareness in Cyberspace 
Generally speaking, security measurement for CSA needs to carefully consider two distinct 
possible issues: (i) How to define and use metrics as quantitative characteristics to represent the 
security state of a computer system or network, and (ii) How to define and use metrics to measure 
CSA from a defender’s point of view. This section will briefly review state-of-the-art security 
metrics and discuss the challenges to define and apply good metrics for comprehensive CSA and 
mission assurance analysis. 

2.2.1 Quantification and Measurement of Traditional Situational Awareness 
A general definition of Situational Awareness (SA) is given by (Endsley, 1988): “SA is the 
perception of the elements of the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in the near future.” Due to its 
multivariate nature, a considerable challenge is posed for SA quantification and measurement. 
Traditional SA measurement techniques can be generally considered either based on “product-
oriented” direct measurement (e.g., objective real-time probes or subjective questionnaires 
assessing perceived SA), or the “process-oriented” inference of operator behavior or performance 
(Fracker, 1991a) (Fracker, 1991b). 

According to (Bolstad C. and Cuevas H., 2010), existing SA measurement approaches can be 
further classified into the following categories: 

• Objective Measures: Comparing an individual’s perceptions of the situation or 
environment to some “ground truth” reality (Jones D. and Endsley M. R., 2000). This 
type of assessment provides a direct measure of SA and does not require operators or 
observers to make judgments about situational knowledge on the basis of incomplete 
information. Generally, objective measures can be gathered in three ways: (i) in real-time 
as the task is completed, (ii) during an interruption in task performance, or (iii) post-test 
following completion of the task (Endsley, 1995). 

• Subjective Measures: Asking individuals to rate their own or the observed SA of 
individuals on an anchored scale (Strater L., et al., 2001). Subjective measures of SA are 
relatively straightforward and easy to administer, but they also suffer from several 
limitations. For example, individuals are often unaware of information they do not know, 
and they cannot fully exploit the multivariate nature of SA to provide detailed diagnostics 
(Taylor, 1989).  
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• Performance Measures: Assuming that better performance usually indicates better SA, 
performance measures infer SA from performance outcomes. Bolstad and Cuevas (2010) 
list a set of commonly used performance metrics, including the quantity of output or 
productivity level, time to perform the task or respond to an event, the accuracy of the 
response, and the number of errors committed. In addition, good SA does not always lead 
to good performance, and poor SA does not always lead to poor performance (Endsley, 
1990). Performance measures should be used in conjunction with others measures for 
more accurate assessment. 

• Behavioral Measures: Based on the assumption that good actions usually follow from 
good SA and vice-versa, behavioral measures infer SA from individuals’ actions. 
Behavioral measures are subjective in nature, as they primarily rely on observer ratings. 
To reduce this limitation, observers need to make judgments based on good SA indicators 
that are more readily observable (Strater L., et al., 2001), (Matthews M., et al., 2000). 

Note that the multivariate nature of SA significantly complicates its quantification and 
measurement. A particular metric may only tap into one aspect of the operator’s SA. Durso et al. 
(1995), Endsley et al. (1998), and Vidulich (2000) also found that different types of SA measures 
do not always correlate strongly with each other. In this case, multi-faceted approaches that 
combine distinct but highly related measures should be used for comprehensive SA measurement, 
as they can take advantage of the strengths of each measure while minimizing their inherent 
limitations (Harwood K., et al., 1988). 

2.2.2 State-of-the-Art Security Measurement Techniques 
Researchers have made many attempts during the last few years to measure SA in cyberspace. 
NIST provided an overview of existing metrics for network security and SA measurement in 
(Jansen, 2009). Hecker (2008) distinguished the lower level metrics (based on well-ordered low-
level quantitative system parameters) from the higher level metrics (e.g., conformity distance, 
attack graph or attack surface based estimations). Meland and Jensen (2008) presented a Security-
Oriented Software Development Framework (SODA) to adapt security techniques and filter 
information. Heyman et al. (2008)  also presented their work on using security patterns to 
combine security metrics. 

To define software security metrics, Wang et al. (2009) proposed a new approach based on 
vulnerabilities in the software systems and their impacts on software quality. They used Common 
Vulnerabilities and Exposures (CVE) (http://cve.mitre.org/cve/) and Common Vulnerability 
Scoring System (CVSS) (http://www.first.org/cvss/) in their metric definition and calculation. An 
attack surface based metric was further proposed by Manadhata and Wing (2011) to measure 
software security. They formalized the notion of a system’s attack surface, and used it as an 
indicator of the system’s security. By measuring and reducing attack surfaces, software 
developers can effectively mitigate their software’s security risks. 

Petri nets (PN) have also been discussed as a useful formalism for network security evaluation in 
literature. The idea of using PN for attack analysis was first introduced by McDermott (2000). 
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Several papers consider the use of Colored PN (CPN) for attack modeling. Zhou et al. (2003) 
discussed the advantages of CPNs and described a process for mapping an attack tree to a CPN. 
Dahl (2005) provided a more detailed discussion of the advantages of CPN when it was applied to 
model concurrency and attack progress. 

For CSA and risk assessment in enterprise networks, an ontology-based Cyber Assets to Missions 
and Users (CAMUS) mechanism was proposed by Goodall (2009). It can automatically discover 
the relationship between cyber assets, missions and users to facilitate cyber incident mission 
impact assessment. The basic idea of CAMUS came from Air Force Situation Awareness Model 
(AFSAM) (Salerno, 2008) (Salerno J., et al., 2005), which described how data is taken to become 
information and consumed by analysts to further improve the situation management. Tadda et al. 
(2006) refined the general AFSAM and applied it directly to the cyber domain, resulting in the 
CSA model. Within the CSA model, the knowledge required for situation management is an 
accurate understanding of how operations are impacted when there are degradations and 
compromises in the cyber infrastructure. Grounded in the CSA model, Holsopple et al. (2008) 
developed a Virtual Terrain that models the network by manually taking mission context into 
account. 

Grimaila et al. (2008) shifted their focus to information asset situation management. They 
proposed a Cyber Damage Assessment Framework that requires the manual definition and 
prioritization of both operational processes and information assets. Gomez et al. (2008) proposed 
an approach for automated assignment of intelligence, surveillance and reconnaissance (ISR) 
assets to specific military missions. Their Missions and Means Framework (MMF) ontology 
includes similar concepts in CAMUS, such as missions, operations, tasks, capabilities and 
systems. Lewis et al. (2008) also proposed a mission reference model to tackle the mapping of 
cyber assets to missions, based on a mathematical constraint satisfaction approach.  

To support enterprise level security risk analysis, Singhal et al. (2010) provided a security 
ontology framework as a portable and easy-to-share knowledge base. Based on this framework, 
analysts will know which threats endanger which assets and what countermeasures can lower the 
probability of the occurrence of an attack. Alberts et al. (2005) proposed a risk-based assessment 
protocol, called Mission Assurance Analysis Protocol (MAAP), to qualitatively evaluate current 
conditions and determine whether a project or process is on track for success. MAAP can produce 
a rich, in-depth view of current conditions and circumstances affecting a project’s potential 
success, but its risk assessment is a complex and time-consuming process. Watters et al. (2009) 
proposed a Risk-to-Mission Assessment Process (RiskMAP) to connect business objectives to 
network nodes. RiskMAP first models key features of a corporation (from business objectives, 
operational tasks, information assets, to network nodes that store, send and make the information 
available), and then uses the same model to map network level risks to the upper level business 
objectives for risk analysis and impact mitigation. 

Musman et al. gave an outline of the technical roadmap for mission impact assessment in a 
MITRE report (2010). They focused on cyber mission impact assessment (CMIA) and tried to 
link network and information technology (IT) capabilities to an organization’s business processes 
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(missions). Grimaila et al. (2009) discussed general design concepts of a system that provides the 
decision makers with notifications on cyber incidents and their potential impacts on missions. 
Several approaches based on attack graphs were also investigated for automated attack detection 
and risk analysis (Noel S., et al., 2004) (Qin X. and Lee W., 2004) (Cheung S., et al., 2003). 

Jakobson (2011) further proposed a logical and computational attack model for cyber impact 
assessment. In his framework, a multi-level information structure, called “cyber-terrain,” was 
introduced to represent cyber assets, services, and their inter-dependencies. The dependencies 
between the cyber terrain and missions are represented by an impact dependency graph. Using 
these graphical models, both direct impacts and the prorogation of cyber impacts on missions 
through the inter-connected assets and services can be calculated. In (Kotenko I., et al., 2006), the 
authors proposed a new approach for network security evaluation, based on comprehensive 
simulation of malefactors’ actions, construction of attack graphs, and computation of different 
security metrics. A software tool was offered for vulnerability analysis and security assessment at 
various stages of a life cycle of computer networks.  

2.2.3 Security Measurement for Enterprise CSA: Challenges & Potential Solutions  
State-of-the-art technologies provide useful descriptive information on security analysis, mission 
modeling, and situation management. While they are quite valuable for security measurement in 
various situations, existing approaches still face several challenges when applied to CSA and 
mission assurance assessment in enterprise network environments, due to the lack of meaningful 
security metrics and efficient evaluation methods.  

Briefly speaking, existing methods have suffered from the following limitations that reduce their 
usefulness and effectiveness for CSA and mission assurance analysis:    

• Lack of real-time CSA 

• Lack of understanding of impacts of cyber events on high level mission operations  

• Lack of quantitative metrics and measures for comprehensive security assessment  

• Lack of incorporating human (analyst) cognition into cyber-physical situational 
awareness 

• Lack of mission assurance policy 

Table 1 compares current technologies and systems developed for mission asset mapping and 
modeling, cyber-attack and intrusion detection, risk analysis and prediction, as well as for damage 
assessment and mission impact mitigation. Each method has its own strength and limitations. 
When applied for enterprise network CSA, mission assurance assessment and coordinated 
network defense, advance technologies, mathematic models and evaluation algorithms are still 
required to answer the following questions: 

• How to identify and represent mission composition and dependency relationships? 

• How to derive the dependency relationships between mission elements and cyber assets? 
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• As a single vulnerability may enable widespread compromises in an enterprise, how to 
quickly identify the start point of an attack and predict its potential attack path?  

• How to assess the direct impact and propagation of cyber incidents on high level mission 
elements and operations? 

• How to systematically represent and model the identified inter- and intra- dependency 
relationships between major elements or components involved in cyber mission 
assurance?  

• How to define and develop quantitative metrics and measures for meaningful cyber 
situational awareness, enterprise security management and mission assurance analysis?  

 

Table 1: Limitations of Existing Approaches for CSA  

Approach Technology Strength Developer Limitations 

CAMUS Ontology fusion based cyber assets to 
missions and users mapping 

Applied 
Visions, Inc. 

Centralized approach  
Lack of cyber impact assessment   
Lack of mission asset prioritization 

MAAP  
Mission assurance and operational risk 
analysis in complex work processes   

Carnegie 
Mellon 
University 

Centralized approach  
Focus on operational risk analysis 
Lack of mission asset dependencies  

RiskMAP Risk-to-mission assessment at network 
and business objectives levels MITRE Centralized approach  

Lack of mission asset dependencies 

Ranked 
Attack 
Graph 

Identifying critical assets based on page 
rank and reachability analysis on attack 
graphs 

Carnegie 
Mellon 
University 

Lack of mission models 
Cannot analyze cyber impacts on high level 
missions 

CMIA  Cyber mission impact assessment based 
on military mission models MITRE 

Centralized approach  
Lack of  cyber impact analysis; 
Lack of mission asset prioritization 

 

To address these challenges, key technologies such as quantitative and meaningful security 
metrics need to be further investigated and developed. In this chapter, we will introduce some 
potential solutions and results of our initial study that leverages and extends recent advances in 
CSA, mission assurance, common vulnerability assessment, and enterprise security management. 
As a starting point, our study focuses on developing an integrated framework for real-time CSA 
and mission assurance analysis in enterprise environments. To achieve this objective, a group of 
simple but meaningful metrics and corresponding evaluation methods were investigated for three 
specific use cases: (i) network vulnerability and attack risk assessment, (ii) cyber impact and 
mission relevance analysis, and (iii) asset criticality analysis and prioritization.  

Table 2 lists a set of security and performance metrics, mainly focusing on network vulnerability 
assessment, attack risk evaluation, and mission impact analysis. Each metric defined in Table 2 
attempts to answer a specific question related to computer/network security, system performance, 
or mission assurance. For instance, the Vulnerable Host Percentage (VHP) metric tries to answer 
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how many hosts could be compromised in the worst case. The Average Length of Attack Paths 
(ALAP) metric attempts to answer the typical effort required for an attacker to violate a security 
policy. Obviously, each metric has shortcomings if only used by itself for network security 
analysis. For example, the Shortest Attack Path (SAP) metric ignores the number of ways an 
attacker may violate a security policy; the ALAP metric fails to adequately account for the 
number of ways an attacker may violate a security policy; while the Number of Attack Paths 
(NAP) metric ignores the effort associated with violating a security policy. Therefore, multiple 
security metrics must be used together to provide users with a comprehensive view and 
understanding of cyber situational awareness and mission assurance. 

 

Table 2: Common Security and Performance Metrics for CSA  

Metric Acronym Description Score/Value 

Asset Capacity AC The (remained) capacity of a cyber asset (after being attacked or 
compromised)   

[0, 1]: 0 means not operational; 
1 means fully operational 

Average Length 
of Attack Paths ALAP The average effort to penetrate a network, or compromise a 

system/service; evaluated by attack graphs 
n: the average length of potential 
attack paths 

Compromised 
Host Percentage CHP The percentage of compromised hosts in a network at time t 

[0, 1]: 0 means no compromise; 
1 means all compromised 

Exploit 
Probability EP How easy (or hard) to exploit a vulnerability? Could be 

measured by CVSS exploitability sub-score 
[0, 1]: 0 means hard to exploit; 
1 means easy to be exploited 

Impact Factor IF The impact level of a vulnerability after being exploited, could 
be measured by CVSS impact sub-score  

[0, 1]: 0 means no impact; 
1 means totally destroyed 

Number of 
Attack Paths NAP The number of potential attack paths in a network, could be 

evaluated based on attack graphs 
n: the number of potential attack 
paths 

Network 
Preparedness NP Is a network ready to carry out a mission? E.g., all required 

services are supported by available cyber assets 
[0, 1]: 0 means not ready; 1 means 
fully ready 

Network 
Resilience NR The percentage of compromised systems/services that can be 

replaced/recovered by backup/alternative systems/services  
[0, 1]: 0 means cannot recover; 1 
means can be fully recovered 

Operational 
Capacity OC The (remained) operational capacity of a system/service (after 

being affected by a direct attack or indirect impact) 
[0, 1]: 0 means not operational; 
1 means fully operational 

Resource 
Redundancy RR Is there any redundant (backup) resources assigned or allocated 

for a critical task/operation? 
0 or 1: 0 means no backup system; 
1 means at least 1 backup system 

Service 
Availability SA The availability of a required service to support a particular 

mission, task, or operation 
0 or 1: 0 means not available; 1 
means service is available 

Shortest Attack 
Path SAP The minimal effort to penetrate a network, or compromise a 

system or service, evaluated by attack graphs 
n: the shortest length of potential 
attack paths 

Severity Score SS The severity/risk of a vulnerability if it was successfully 
exploited, could be measured based on CVSS score 

[0, 1]: 0 means no risk; 1 means 
extremely high risk 

Vulnerable Host 
Percentage VHP The percentage of vulnerable hosts in a network  

[0, 1]: 0 means no vulnerable host; 
1 means all hosts are vulnerable 

 

Note that the security and performance metrics, as well as the corresponding evaluation 
mechanisms introduced in this chapter are not trying to completely solve enterprise CSA 
quantification and measurement problems. The objective here is to help security analysts to have 
a better understanding and insight to further develop their own good and meaningful metrics, as 
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well as practical solutions, for their specific questions related to CSA, mission assurance, or 
enterprise network security defense. 

3 Network Vulnerability and Attack Risk Assessment 
Although the ultimate goal for enterprise network security goal is to identify and remove all 
network and host vulnerabilities, it is infeasible to achieve this goal in practice. For instance, if an 
organization leverages Commercial-Off-the-Shelf (COTS) software to operate its network, it will 
expose itself to the vulnerabilities that the software possesses. Issues such as slow and unstable 
released patches may cause the organization to operate its network with known vulnerabilities. 
Through these vulnerabilities, attackers may successfully compromise a particular system via a 
single attack action, or penetrate a network via a series of attack actions. Therefore, network 
vulnerability and attack risk assessment is the first step for enterprise security management and 
cyber situational awareness. 

3.1 Security Metrics for Vulnerability Assessment 

3.1.1 Common Vulnerability Assessment on Computer System 
In literature, the Common Vulnerability Scoring System (CVSS) (http://www.first.org/cvss/) has 
been widely adopted as the primary method for assessing the severity of computer system 
security vulnerabilities. As an industry standard, CVSS ensures repeatable accurate measurement. 
It also enables users to see the underlying vulnerability characteristics that were used in its 
quantitative models to generate the scores. CVSS attempts to establish a measure of how much 
concern a vulnerability warrants compared to other vulnerabilities. It is composed of three metric 
groups: Base, Temporal, and Environmental. Each group consists of a set of metrics, as shown in 
Fig. 1. 

 

 
Fig. 1: CVSS Metric Groups (http://www.first.org/cvss/cvss-guide) 

 

In particular, base metrics define criticality of the vulnerability, temporal metrics represent 
urgency of the vulnerability that changes over time, and environmental metrics represent the 
characteristics of a vulnerability that are relevant and unique to a particular user’s environment. 
Each group produces a numeric score (ranging from 0 to 10) and a compressed textual 



12 

 

representation that reflects the values used to derive the score. The CVSS complete guide 
(http://www.first.org/cvss/cvss-guide) gives the detailed descriptions of these metric groups: 

• Base: representing “intrinsic and fundamental characteristics of a vulnerability that are 
constant over time and user environments,”  

• Temporal: representing “characteristics of a vulnerability that change over time but not 
among user environments,” and 

• Environmental: representing “characteristics of a vulnerability that are relevant and unique 
to a particular user's environment.”  

Basically, for each metric group, a particular equation is used to weigh the corresponding metrics 
and produce a score (ranged from 0 to 10) based on a series of measurements and assessments of 
security experts, with the score 10 representing the most severe vulnerability. Specifically, when 
the base metrics are assigned values, the base equation calculates a score ranging from 0 to 10, 
and creates a vector. This vector is a text string that contains the values assigned to each metric, 
and facilitates the “open” nature of the framework. Users can understand how the score was 
derived and, if desired, confirm the validity of each metric. More details on base, temporal and 
environmental equations, as well as the calculation methods can be found in the CVSS complete 
guide (http://www.first.org/cvss/cvss-guide).  

3.1.2 General Metrics for Network Vulnerability Assessment 
The National Vulnerability Database (NVD) (http://nvd.nist.gov/) provides CVSS scores for 
almost all known vulnerabilities. Various open source or commercial vulnerability scanners, such 
as Nessus Security Scanner (http://www.tenable.com/products/nessus), Open Vulnerability 
Assessment System (OpenVAS) (http://www.openvas.org/), and Microsoft Baseline Security 
Analyzer (MBSA) (http://www.microsoft.com/en-us/download/details.aspx?id=7558), can be 
used to feasibly identify vulnerabilities in a network. Regularly and periodically performing 
vulnerability scan and assessment is critical for enterprise security management, as it can easily 
locate which systems are vulnerable, identify what services/components are vulnerable, and 
suggest the best method for repairing the vulnerabilities before attackers find and exploit them. 
To evaluate the general security of an enterprise network based on vulnerability assessment, we 
use three security metrics: the vulnerable host percentage (VHP), CVSS severity score, and 
compromised host percentage (CHP). 

1) The Vulnerable Host Percentage (VHP)  

This metric represents the overall security level of a network. The number of vulnerable hosts can 
be obtained by periodically scanning a network via vulnerability scanning tools such as Nessus. 
The equation for this metric is given below, where G represents an intended network, V is the set 
of vulnerable hosts, and H is the set of all hosts in the network.  

𝑉𝑉𝑉(𝐺) = 100 × |{𝑣:𝑣∈𝑉⊆𝐻}|
|{ℎ:ℎ∈𝐻}|   (2) 
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2) Severity Score of a single vulnerability i (SSi)  

After identifying vulnerabilities that exist in a network, we need to know the severity score of 
each identified vulnerability based on CVSS. As shown in Table 3, this metric indicates the 
severity of certain vulnerability, and how to handle it accordingly. 

 

Table 3: Severity Levels of Vulnerabilities  

CVSS Score Severity Level Guidance 

7.0 through 10.0 High Severity Must be corrected with the highest priority 

4.0 through 6.9 Medium Severity Must be corrected with high priority 

0.0 through 3.9 Low Severity Encouraged, but not required, to correct these vulnerabilities 

 

3) Compromised Host Percentage (CHP)  

This metric indicates the percentage of hosts that have been compromised in a network. Here, a 
host compromise is defined as the attacker having obtained the user- or administrator- level 
privilege on the intended host. Higher CHP value means more hosts are compromised. Our 
general goal is to minimize the CHP metric. For instance, an organization should have stricter 
firewall rules and user access policies so that it is hard to exploit the vulnerabilities (from both 
outside and inside). The equation for this metric is given below, where G represents an intended 
network, C is the set of compromised hosts, and H is the set of all hosts in the network. 

𝐶𝐶𝐶(𝐺) = 100 × |{𝑐:𝑐∈𝐶⊆𝐻}|
|{ℎ:ℎ∈𝐻}|   (3) 

3.1.3 Attack Graph based Network Vulnerability Assessment 
In cyberspace, attackers may successfully compromise a particular system via a single attack 
action, or penetrate a network via a series of attack actions. A series of attack actions is usually 
referred to as a multi-step attack or chained exploit. It leverages the interdependencies among 
multiple vulnerabilities to violate a network’s security policy. In the literature, the multi-step 
attack can be feasibly represented and modeled via various attack graph models (Ou X., et al., 
2006) (Sheyner O., et al., 2002) (Ammann P., et al., 2002). Attack graphs is a widely adopted 
technology in analyzing the casual relationships between cyber-attack events, in which each node 
represents a particular state of a cyber asset in a network, and each edge represents a possible 
state transition. In our framework, attack graph based metrics are also defined for network-level 
vulnerability assessment. 

1) The Number of Attack Paths (NAP)  

This metric indicates how many ways an attacker can penetrate the network or compromise a 
critical system. The equation for this metric is given below, where G represents an intended 
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network, AG represents the derived attack graphs, and P is the set of potential attack paths in the 
derived attack graphs.  

𝑁𝑁𝑁(𝐺) = |{𝑝: 𝑝 ∈ 𝑃 ⊆ 𝐴𝐴}|  (4) 

2) The Average Length of Attack Paths (ALAP)  

This metric represents the average amount of effort that an attacker needs to take in order to 
penetrate the network or compromise a critical system. The equation for this metric is given as 
below, where L(p) represents the length of attack path p. 

𝐴𝐴𝐴𝑃(𝐺) = |{𝐿(𝑝):𝑝∈𝑃⊆𝐴𝐴}|
|{𝑝:𝑝∈𝑃⊆𝐴𝐴}|   (5) 

3) The Shortest Attack Path (SAP)  

This metric indicates the least amount of effort that an attacker can take to penetrate the network 
or compromise a critical system. The metric is given as below.  

𝑆𝑆𝑆(𝐺) = min{𝐿(𝑝) |𝑝 ∈ 𝑃 ⊆ 𝐴𝐴}  (6) 

3.2 Modeling and Measurement of Attack Risk 

3.2.1 Attack Risk Prediction 
To quantitatively evaluate cyber impacts on high level missions, mission related elements such as 
cyber assets, hardware devices, and mission tasks should be added to the risk analysis model. 
Leveraging the basic analysis method and evaluation process proposed by Jakobson (2011), we 
extend our attack risk prediction model with cyber assets, hardware device, and mission elements 
in our initial study. We believe this model can be used to quantitatively evaluate the severity of an 
identified vulnerability, and analyze the consequence if a mission critical asset was attacked or 
compromised. Using our initial study as the starting point, more complete and concrete analysis 
models can be further developed.  
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Fig. 2: Attack Risk Prediction Model for Mission Impact Analysis 

 

Our initial study focused on modeling (i) the logical relations that allow us to model the 
propagation of the impacts through the network, and (ii) the computational relations that allow us 
to calculate the level of those impacts. The conceptual structure of the extended attack model is 
illustrated by Fig. 2. It contains eight conceptual nodes: Cyber Attack, Hardware Device, Cyber 
Asset, (Asset) Vulnerability, Operational Task, Asset Capacity, Exploit Probability and Impact 
Factor (of Vulnerability), as well as the corresponding relations among them. 

As pointed by Jakobson (2011), the Exploit Probability (EP) and Impact Factor (IF) of the 
vulnerability, as well as the Asset Capacity (AC) of the asset, are important parameters in attack 
risk analysis. Specifically, EP is a measure defined in an interval [0, 1], which indicates to what 
degree the vulnerability can be exploited to compromise the attacked asset. For instance, EP = 0 
means that this vulnerability is effectively impossible to exploit (hence the attack has no impact 
on the target asset). Conversely, EP = 1 means that the vulnerability is easy to exploit to 
compromise the intended asset. The Impact Factor (IF), on the other hand, indicates how much 
damage can be caused by an attack. It is also a measure defined in an interval [0, 1]. IF = 0 means 
that the attack has no impact on an asset, while IF = 1 means that an asset can be totally destroyed 
(i.e., lose all of its capacity).  

3.2.2 Damage Assessment 
The Asset Capacity (AC) is another important measure to characterize the operational capacity of 
a cyber asset. It indicates how much capacity an asset can still provide to fulfill its function after 
being attacked. In our model, AC can be measured in an interval [0, 1]. Value 0 means the asset is 
not operational at all; while value 1 means that the asset is fully operational. Note that the 
computational relation between EP, IF and AC allows us to calculate and measure how the 
capacity of an asset could be affected by an attack, which further enables the quantitative analysis 
of the mission impacts caused by the attack.  

According to (Jakobson G., 2011), the general calculation of mission impacts should contain the 
following steps: 

1) Attack Start Point Detection: The first step is to identify the start point of an attack. 
Currently, we use leaf nodes in our attack graphs as the start points. 

2) Direct Impact Assessment: The next step is to determine the direct impact of an attack 
on the targeted asset. We follow the extended attack model in Fig. 2 and calculate the 
direct impact based on CVSS.  

3) Propagation of Cyber Impacts through the Network: In this step, we calculate the 
potential impacts on cyber capacities of all mission-related assets along the attack paths 
derived from our attack graphs. 
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4) Mission Impact Assessment: After knowing the current capacities of all assets involved 
in a mission, we can further calculate the potential impacts on the high level missions 
based on mission asset dependency relationships derived by our logical mission models. 

It should be noted that figuring out how to assign the proper value to EP and IF could be a critical 
task that requires analysis of historical attack data as well as consultation with cyber security 
experts. In our initial study, the Exploitability Score (ES) and Impact Score (IS) in CVSS have 
been used as our starting point to calculate EP and IF. As both ES and IS range from 0 to 10 in 
CVSS, we calculate these two parameters by: EP = ES/10, and IF = IS/10. 

4 Cyber Impact and Mission Relevance Analysis 
Impact assessment is important for mission assurance analysis in cyberspace, where critical 
mission elements must rely on the support of the underlying cyber network and compromised 
assets may have significant impacts on a mission’s accomplishment. As described in previous 
sections, for cyber mission assurance assessment, we need practical analysis models to effectively 
represent a complex mission, and the dependency relationship between high level mission 
elements and the underlying cyber assets. We also need to build a mission impact propagation 
model to investigate the direct and indirect consequences caused by malicious cyber incidents on 
high level mission elements and tasks. In addition, quantitative metrics and measures are required 
for meaningful mission assurance and cyber situational awareness analysis. 

4.1 Mission to Asset Mapping and Modeling 
To efficiently represent and model the dependency relationships between high level mission 
elements and the underlying computer network and cyber assets, a Logical Mission Model 
(LMM) is developed in our framework. Essentially, the LMM is a hierarchical graphical model 
for mission planning, decomposition, modeling, and asset mapping, which is further composed of 
a Value-based Goal Model (VGM) and a Logical Role Model (LRM). The VGM captures the 
composition, temporal, and dependency relationships among different tasks/subtasks in a 
complex mission, as well as their relative importance to the overall mission. The LRM, on the 
other hand, is used to capture the physical or cyber functions required to achieve a particular goal 
(or successfully carry out a task). Based on this comprehensive LMM, users can feasibly model a 
complex mission, identify the criticality of each task/subtask, and evaluate the cyber resilience 
during the mission planning phase. 
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Fig. 3: VGM Node Attributes Fig. 4: An Example of VGM 

 

Value-based Goal Model: Each node in VGM represents a task or goal that has to be achieved 
or maintained to ensure that the entire mission is accomplished. A higher level task (or goal) is 
represented as the parent node of multiple lower level subtasks (or sub-goals). Each node has a 
number of attributes to represent its current status as shown in Fig. 3. For example, each task is 
associated with a pre-assigned Target Value that represents its contribution to the overall 
accomplishment of its parent node, and the Priority/Weight attribute indicates the relative 
importance (criticality) of this node to its parent node. In our model, two other important 
attributes are Accomplishment Status and Progress Status. During the mission execution phase, 
these two attributes are periodically measured to evaluate the progress status of a mission task. 

In our initial study, we identified three main entities for our VGM model: goals, events, and 
parameters. Specifically, a goal is an observable desired state of a mission/task, while an event is 
an observable phenomenon that occurs during the execution. Parameters of a goal or event 
provide the detailed information about the goal or the specific event. In our VGM, a complex 
mission is first decomposed into a set of simplified explicit tasks and the corresponding sub-tasks, 
and then represented by a hierarchical goal tree.  

As illustrated in Fig. 4, upper level goals (parent nodes) can be decomposed into (also need to be 
supported by) a number of lower level sub-goals (child nodes). Each node (i.e., goal) has a pre-
assigned value to represent its contribution to the overall mission. In addition, each parent goal’s 
accomplishment relies on the accomplishment of its child nodes’ goals, following the rules 
specified by mission commanders or Subject Matter Experts (SMEs). In our initial study, the 
achievement conditions for a parent node include conjunctive, disjunctive, and composition 
conditions. As shown in Fig. 4, the achievement condition and the value of a goal are represented 
via «and», «or», «composition», and «value» decorations of a node respectively. 

As a starting point, we initially focused on modeling three temporal relationships between goals 
in the VGM, including precedes, triggers, and subgoal relationship. According to the ORD-Horn 
subclass defined in (Nebel B., et al., 1995), the formal definitions and appropriate timing 
constraints of these three temporal relationships are listed in Table 4.  
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Table 4: Temporal Relationships between Goals 

Condition Informal Constraint Formal Constraint in ORD-Horn 

(𝒂,𝒃)
∈ 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 

a must be achieved before b 
can begin 

(𝑎+ ≤ 𝑏−)  ∧  (𝑎+ ≠ 𝑏−) 

(𝒂,𝒃)
∈ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

a must start before b; b must 
begin before a ends 

(𝑎− ≤ 𝑏−)  ∧  (𝑎− ≠ 𝑏−)  ∧  (𝑏− ≤ 𝑎+) ∧  (𝑏− ≠ 𝑎+) 

(𝒂,𝒃) ∈ 𝒔𝒔𝒔𝒔𝒔𝒔𝒔 
b cannot start before a starts or 
end before a ends 

(𝑎− ≤ 𝑏−)  ∧  (𝑏+ ≤ 𝑎+) 

 

Table 5 lists the various types and relationships between different goals and how to calculate their 
values in our VGM. Specifically, each node in VGM is a value goal. The root goal, g0, represents 
the overall value of a mission. The root value goal can be further decomposed into a set of 
Composition, Conjunctive, Disjunctive goals (as shown in Table 5), or Leaf goals. Each goal (i.e., 
node) has a pre-assigned “maxValue” to represent the expected value it can achieve if the 
corresponding task can be accomplished successfully. In our model, leaf goals have no subgoals. 
They directly contribute to the overall goal based on their parent’s type. Additionally, in VGM, 
only leaf goals are actively maintained by the system and need to be supported by the underlying 
cyber assets. As the leaf goal maintains (or fails), the overall value of a mission is aggregated 
based on the parent goals’ type, until the final goal is achieved (or aborted). 

Logical Role Model: The LRM is designed to effectively capture corresponding cyber 
capabilities or functionalities required to achieve (or maintain) a particular task or goal. Working 
as an intermediate layer, our LRM maps the higher level logical mission elements onto the 
underlying network and cyber assets. By combining LRM with VGM, analysts will have a 
complete overview of the goals being pursued, the logical roles being performed to achieve those 
goals, and the corresponding network resources being used to carry out those roles. In our model, 
the logical dependency relationships are maintained at both mission planning and execution 
phases; not only for mission impact analysis, but also to improve the system’s resilience (e.g., 
alternative goals or redundant resources could be suggested or pre-assigned for critical tasks or 
mission elements, so that mission success can still be achieved even in the worst cases). 

When modeling roles, the objective is to identify all the roles in the system as well as their 
interactions with each other. Given a valid VGM, we follow the following major steps to generate 
the corresponding LRM:  

1) Create a role for each leaf-level goal in the goal model 

2) If there are multiple ways to achieve a single goal, create a separate role for each 
approach and quantify the “goodness” of each approach (ranging from 0 to 1). 

3) Identify information flows between the various roles 
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4) If two roles are tightly coupled, consider to combine them into a single role 

5) Define the capabilities required to carry out each role 

6) Determine the appropriate timing values associated with each role 

Generally, to create a valid LRM, the first step is to create a single role for each leaf goal in the 
VGM. However, if we provide multiple ways to achieve a goal, the overall system resilience will 
increase. Documentation of the alternative approaches for each critical goal hence becomes very 
beneficial to mission assurance.  

Once the roles have been identified, cyber capabilities required to carry out those roles can be 
further specified. In our model, cyber capabilities can be defined in terms of processing power, 
communication bandwidth, software and/or hardware specifications or requirements. The 
information flows between different roles can be used to implicitly define the communication 
capabilities for the logical roles. For example, if role A has to communicate with role B, the asset 
assigned for role A must be able to send/receive information to/from the asset assigned to role B. 
After assigning proper assets, specific communication and routing equipment can be further 
identified for the logical roles to provide the required communication capabilities. 

 

Table 5: Goals Defined in VGM 

Node Type Definition Value Calculation 

Value 
Goal 

Each node in VGM is a 
value goal, and assigned 
with an associated value 

Target 
Value 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔) =  � 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔′)
(𝑔,𝑔′) ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

Current 
Value 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔) =  � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔′)
(𝑔,𝑔′) ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

Composition 
Goal 

Each subgoal 
contributes a percentage 
to its overall value, the 
total contributions must 
equal to 1 

Target 
Value 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔)⇒� � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔′)
(𝑔,𝑔′)∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠

�

= 1 

Current 
Value 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔)
∗ � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐′(𝑔′)

(𝑔,𝑔′)∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
∧𝑔′∈ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

 

Conjunctive 
Goal 

All subgoals have to be 
maintained; failure of 
any subgoal will reduce 
the parent’s value to 
zero 

Target 
Value 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔)∧(𝑔,𝑔′) ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠⇒ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔′)
= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔) 

Current 
Value 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔)  

×  �
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔′)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔)

(𝑔,𝑔′)∈𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

Disjunctive 
Goal 

Value maintained if any 
subgoal is maintained, 

Target 
Value 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑔)∧(𝑔,𝑔′) ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠⇒ 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔′) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑔) ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔′) 
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each subgoal has an 
associated contribution 
value 

Current 
Value 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑔)⇒ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔)
= max ({𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑔′)|(𝑔,𝑔′) ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠}) 

 

Note that to maintain and update information about currently available capabilities for supporting 
logical roles, real-time network monitoring and asset criticality analysis are required. In our 
framework, a cyber capability model (CCM) is designed to maintain the available capabilities of 
each cyber asset in a network, such as the current status (e.g., available, occupied, reserved), asset 
value, and dependency relationships. Other important information that should be maintained in 
the CCM includes host dependency, service map, and network topology. This knowledge can be 
directly derived by parsing the outputs of network monitoring and protocol analysis tools, such as 
Nmap (http://nmap.org/) and Wireshark (http://www.wireshark.org/), or leveraging state-of-the-
art automated service discovery mechanisms developed by Tu et al. (2009) and Natarajan et al. 
(2012) into our framework. 

4.2 Cyber Impact Analysis on Mission 
After deriving the complete mission-to-asset dependency relationships via our logical mission 
models, the next step is to evaluate the potential impact of the lower level cyber incidents on the 
higher level mission elements. Following the same analysis method proposed by Jakobson 
(2011), the mission impact assessment process includes three major steps: (i) direct impact 
analysis of cyber incidents, (ii) cyber impact propagation analysis, and (iii) impact assessment on 
high level mission elements. 

4.2.1 Direct Impact of Cyber Incidents 
The direct impact can be defined as the loss of the Asset Capacity (AC) of an asset that is a direct 
target of an attack. As an internal feature of an asset, AC stays unchanged for the asset until its 
value is further reduced by another direct attack, or adjusted by external (human) operations (e.g., 
network operators may reset AC to 1 by recovering the damaged system). In our basic model, 
only software assets can be targets of direct attacks, and the initial value of AC is 1 (i.e., we 
assume that each asset is fully operational before it was attacked). 

Particularly, if asset 𝐴 does not depend on any other assets, then after it was directly attacked by 
attack 𝑋, its asset capacity can be expressed as follows: 

𝐴𝐴𝐴(𝑡∗) = 𝑀𝑀𝑀[ 𝐴𝐴𝐴(𝑡) − 𝐸𝐸𝐴(𝑡∗) × 𝐼𝐼𝑋(𝑡∗), 0]   (7) 

In Eq. 7, 𝐴𝐴𝐴(𝑡) is the capacity of asset 𝐴 at time t, 𝐸𝐸𝐴(𝑡∗) is the exploit probability of the 
corresponding vulnerability on asset 𝐴 at time 𝑡∗, 𝐼𝐼𝑋(𝑡∗) is the impact factor of attack 𝑋 at time 
𝑡∗, and 𝐴𝐴𝐴(𝑡∗) is the remained capacity of asset 𝐴 at time 𝑡∗, given 𝑡∗ > 𝑡. 

Note that in a network environment, an asset could also be affected by the other assets it depends 
on. In this case, its AC will be determined by the combined effect of the other assets and the 
direct attack on it. For instance, if asset 𝐴 depends on asset 𝐵 and was a direct target of attack 𝑋, 
after being attacked its asset capacity should be: 
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𝐴𝐴𝐴(𝑡∗) = 𝑀𝑀𝑀[𝑀𝑀𝑀[ 𝐴𝐴𝐴(𝑡) − 𝐸𝐸𝐴(𝑡∗) × 𝐼𝐼𝑋(𝑡∗), 0], 𝐴𝐴𝐵(𝑡∗)] (8) 

In Eq. 8, 𝐴𝐴𝐴(𝑡) is the capacity of asset 𝐴 at time t, 𝐸𝐸𝐴(𝑡∗) is the exploit probability of the 
corresponding vulnerability on asset 𝐴 at time 𝑡∗, 𝐼𝐼𝑋(𝑡∗) is the impact factor of attack 𝑋 at time 
𝑡∗, 𝐴𝐴𝐵(𝑡∗) is the capacity of asset 𝐵 at time 𝑡∗, and 𝐴𝐴𝐴(𝑡∗) is the remained capacity of asset 𝐴 
at time 𝑡∗, given 𝑡∗ > 𝑡. 

4.2.2 Propagation of Cyber Impact 
In order to calculate the propagation of a direct impact through a network via the derived 
dependency relationships, we follow the same analysis method proposed by Jakobson (2011) and 
consider each asset as a generic node in a dependency graph, along with two kinds of specific 
“AND” and “OR” nodes to represent the logical dependency relationships between different 
elements. In this propagation model, the “AND” node defines that a parent node needs to depend 
on all of its children nodes, while the “OR” node defines that a parent node depends on the 
presence of at least one child node. Note that the “OR” dependency in our model is introduced to 
achieve better resilience, by providing redundant system, alternative functionality or performance 
to support a critical mission, task or operation. During the propagation of an attack, the capacities 
of all generic nodes in the attack path could be affected, either by a direct attack on it, or from a 
compromised child node it depends on. 

To characterize the operational quality of each component or element at different levels in a 
mission-to-asset dependency graph, we further introduce the Operational Capacity (OC) as a 
universal measure in our model. The Asset Capacity (AC) presented previously is a specific form 
of the operational capacity provided by cyber assets. Similar to AC, OC is also measured in an 
interval [0, 1]. It indicates how much operational capacity that a cyber asset, service, task, or 
mission element can still provide after it was compromised or affected by an attack (directly or 
indirectly). Value 0 means that a component was totally destroyed (e.g., not operational), while 
value 1 means that it is still fully operational. 

In our basic propagation model, the operational capacities of the “AND” and “OR” nodes are 
calculated as follows: 

𝑂𝑂𝑂𝑂(𝑡) = 𝜔𝑖 ∗ 𝑂𝑂𝑖(𝑡) | 𝜔1 ∗ 𝑂𝑂1(𝑡), 𝜔2 ∗ 𝑂𝑂2(𝑡), … ,𝜔𝑛 ∗ 𝑂𝑂𝑛(𝑡), (1 ≤ 𝑖 ≤ 𝑛) (9) 

𝑂𝑂𝐴𝐴𝐴(𝑡) = 𝑀𝑀𝑀�𝜔1 ∗ 𝑂𝑂1(𝑡), 𝜔2 ∗ 𝑂𝑂2(𝑡), … ,𝜔𝑛 ∗ 𝑂𝑂𝑛(𝑡)�, (1 ≤ 𝑖 ≤ 𝑛)  (10) 

In Eq. 9 and Eq. 10, 𝑂𝑂𝑂𝑂(𝑡) is the operational capacity for an “OR” node at time t, 𝑂𝑂𝐴𝐴𝐴(𝑡) is 
the operational capacity for an “AND” node at time t. 𝑂𝑂1(𝑡), 𝑂𝑂2(𝑡), …, 𝑂𝑂𝑛(𝑡) are operational 
capacities of the child nodes for the intended “OR” or “AND” nodes. 𝜔𝑖 is the pre-defined weight 
for each child node, based on its criticality to the parent node. Recursively applying Eq. 9 and Eq. 
10 for all the nodes involved in the attack path, analysts can identify not only which asset could 
be affected, but also how much capacity will be lost due to the attack.     
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4.2.3 Impact Assessment on High Level Mission Elements 
According to Jakobson (2011), during the mission execution stage, the real-time mission impact 
assessment depends on two major factors: (i) the impact that can be caused by the attacks, and (ii) 
in which state (e.g., planned, ongoing, or completed) of a mission or task. 

For example, suppose that an attack X happened at time t* (as shown in Fig. 5), and it could 
impact assets and services that support Tasks A through E. If those tasks have already been 
completed at time t*, then those impacts should be irrelevant to the intended mission. If Task F is 
currently being executed, it can be affected if it relies on assets or services that can be impacted 
by attack X. Obviously, any other planned tasks that have not started yet but will depend on assets 
and services that could be impacted by attack X will probably be affected if no further 
countermeasures were taken. 

Note that the planned tasks, such as Task G in Fig. 5, need to be analyzed carefully. As they have 
not yet been undertaken, their OC will not be accounted in the calculation of the overall OC of 
the intended mission. However, based on the (planned) mission asset mapping during the mission 
planning stage, we can calculate the potential impacts on those mission tasks, which could happen 
if we stick to the original asset mapping and network/system configurations. One advantage of 
our approach is that based on this real-time mission impact analysis, we can either reconfigure the 
corresponding network and systems, or replace a planned task with an alternative task to prevent 
or avoid the coming impacts and ensure a mission’s success. 

 

 
Fig. 5: Temporal Relations between Mission Tasks 

 

In this mission impact analysis model, the execution of a mission is a process that unfolds step-
by-step as time progresses. The initial operational capacity value of a mission or task is set as 
OC=1. This value could be steadily decreasing depending on the operational capacities of its 
executed stages and whether the corresponding assets and services were impacted by cyber 
attacks.  
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The calculation of the overall operational capacity of a mission will be calculated using Eqs. 7 - 
10 accordingly for each potential attack path in our mission asset map, considering both 
dependency and temporal relationships. To achieve mission resilience, in the mission planning 
stage, we need to evaluate and compare different mission asset mapping and network 
configurations. For each mission asset mapping and network configuration, we calculate the 
operational capacity for both overall mission and the critical tasks. In this manner, we can find the 
best mapping and configuration to achieve the optimum value. In addition, to achieve better 
mission resilience, we can intentionally allocate/reserve redundant resources for critical leaf tasks 
and make critical task nodes as “OR” nodes (by adding alternative or backup tasks). 

5 Asset Criticality Analysis and Prioritization 
To identify the most critical cyber assets in supporting a critical task or operation, an effective 
measurement method is required for asset criticality ranking and prioritization. In our initial 
study, we prioritize asset criticality based on the cyber impact, mission relevance, and asset value 
analysis. In particular, the cyber impact and mission relevance can be evaluated by our attack risk 
prediction and impact propagation models described in Section 3 and Section 4. The asset value, 
in general, can be estimated by experienced network administrators, based on the amount of IT 
spending and the depreciation or amortization value of the assets (hardware and software).  

Various decision making methods can be applied in our framework for mission asset criticality 
analysis and prioritization. As a starting point, we selected the standard Analytic Hierarchy 
Process (AHP) (Navneet B., et al., 2004) and Decision Matrix Analysis (DMA) (Shafter, 1976) 
methods in our initial study. Both of them can effectively prevent subjective judgment errors to 
increase the reliability and consistence of our analysis results. 

5.1 AHP based Criticality Analysis 
We first used AHP and pair-wise comparison matrix to calculate the relative value and 
importance of each mission related cyber asset. The general procedure for asset criticality 
analysis includes the following steps: 

1) Modeling the problem as a hierarchy containing the decision goal, the alternatives for 
reaching it, and the criteria for evaluating the alternatives. 

2) Establishing priorities among the elements of the hierarchy by making a series of 
judgments based on pair-wise comparisons of the elements. For example, when 
comparing asset value, network administrators might prefer database server over web 
server, and web server over desktop. 

3) Synthesizing these judgments to yield a set of overall priorities for the hierarchy. This 
would combine network administrators’ judgments about different factors (such as asset 
value, potential loss, attack risk, and vulnerability severity) for different alternatives (e.g., 
Desktop A, Router H, Database P, etc.) into overall priorities for each asset. 
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4) Checking the consistency of the judgments. 

5) Coming to a final decision based on the results of this process. 

Fig. 6 shows a simple example of this process, in which three assets (i.e., desktop A, Router H 
and Database P) need to be prioritized based on three factors: mission relevance, cyber impact 
and asset value. In this example, we assume that cyber impact and mission relevance are both two 
times as important as asset value, and use a pair-wise comparison matrix to decide the proper 
weights for each factor. 

 

 
Fig. 6: Prioritization of cyber assets with AHP 

 

As illustrated in Fig. 6, the weights of cyber impact and mission relevance are both 0.4, and the 
weight of asset value is 0.2. Additionally, each asset has a value vector to specify its relative 
value corresponding to the three factors, which will be used to calculate the asset’s criticality 
(priority) based on the three weighted factors. Fig. 6 shows the prioritizing result of the three 
assets, in which Database P was the preferred entity, with a priority of 0.715. It was ten times as 
strong as Desktop A, whose priority was 0.07. Router H fell somewhere in between. Therefore, 
Database P is the most critical asset in this example, and it has to be well-protected from potential 
cyber attacks to assure mission success. 

5.2 Grid Analysis based Prioritization 
Grid analysis, also known as Decision Matrix Analysis, is another useful technique for making a 
decision among several options while taking many different factors into account. As the simplest 
form of Multiple Criteria Decision Analysis (MCDA) (http://en.wikipedia.org/wiki/Multi-
criteria_decision_analysis), grid analysis is particularly powerful where users have a number of 
good alternatives to choose from and many different factors to take into account. To use grid 
analysis technique for decision making, first we need to list all the available options (alternatives) 
as rows on a table, and the factors (criteria) need to be considered as columns in the table. Then, 
we score each option/factor combination, weight the score, and add these scores up to give an 
overall score for each option in the table. 

The step-by-step process of grid analysis technique can be illustrated as follows: 
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1) List all of the available options (alternatives) as the row labels on a table, and list the 
factors (criteria) as the column headings in the table. 

2) Specify the relative importance of each factor, ranging from 0 (absolutely unimportant) to 
5 (extremely important).  

3) For each column, score each option/factor combination from 0 (poor) to 5 (very good), 
based on how well it possesses the corresponding factor. 

4) Then, multiply each score from step 3) by the relative importance derived from step 2). 
This will give users weighted scores for each option/factor combination. 

5) Finally, add up the corresponding weighted scores for each option. Options with higher 
scores are more important than the options with lower scores. 

In our study, we initially considered the following factors to help security analysts decide which 
cyber asset or network service is more important than others: 

• Asset Value: How important are the files and data stored in a host or server? 
• Cyber Severity: What is the severity of a vulnerable service? This value can be derived 

from the CVSS score. 
• Mission/Task Dependency: How important is the cyber asset or network service 

regarding to a critical mission and/or task? 
• Vulnerable Descendants: How many descendants of this host could be potentially 

affected in the near future? 

Additionally, the weight of each factor and the score of each option/factor combination are 
specified by the following rules: 

• Based on its relative importance, each option service for each factor is scored from 0 to 5. 
• The weight of each factor is normalized from 0 (not important) to 5 (extremely 

important). 

Table 6 shows a simple example of grid analysis, in which a number of cyber assets and network 
services are listed. Specific weights have been assigned for four factors (Asset Value, Cyber 
Severity, Mission/Task Dependency, and Vulnerable Descendants). Each option/factor 
combination is assigned a particular value based on its relative importance decided by security 
analysts or domain experts. 

Table 6: Grid Analysis for Mission Asset Prioritization 

Factor IP 
Address User Vulnerable 

Services 
Asset 
Value 

Cyber 
Severity 

Mission 
Dependency 

Vulnerable 
Descendants 

Total 
Score Host 

Weight    3 1 5 5  
Desktop_B 128.105.120.8 Jack LICQ 1 2 5 3 45 
AppServer_1 128.105.120.4 Mike WebSphere 3 2 2 4 41 
DBServer_1 128.105.120.5 John Oracle DBMS 4 2 0 5 39 
Desktop_C 128.105.120.14 Bob Sysmgr GUI 2 0 1 2 21 
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Desktop_F 128.105.120.17 Mark DCOM 2 0 2 1 21 
Desktop_O 128.105.120.18 Bill MySQL 5.1.x 2 0 0 0 6 

 

The total score for each option is calculated and listed in the last column of Table 6. The 
“Desktop_B” (which is currently running “LICQ” service) has the highest score, which means it 
is the most important asset in supporting an intended mission. To protect “Desktop_B” from 
potential attacks, sufficient security resources or countermeasures should be applied. For instance, 
network administrators may shut down the vulnerable “LICQ” service to prevent the potential 
attacks. Note that we can virtually “shut down” a vulnerable service to demonstrate the 
corresponding consequences on the high level mission elements based on our logical mission 
models. If there is no big impact on the intended mission, or we can mitigate impact by 
reallocating alternative resource or goals, cyber resilience can be achieved to ensure mission 
assurance.   

6 Future Work 
Further investigation and research are still required, especially in the flowing fields: 

• Efficient analytical models for mission-to-asset mapping (e.g., how to decompose a 
complex mission into a set of explicit tasks, identify mission-to-asset dependency, and 
allocate reliable cyber assets for critical tasks or mission elements.) 

• Accurate network vulnerability and attack risk analysis models (e.g., how to 
configure/reconfigure a network to reduce aggregated network vulnerabilities; how to 
quickly detect and/or predict attack and attack path.)    

• Practical mission impact assessment models (e.g., how to accurately model the direct 
impact of a cyber incident on a mission element; how to calculate the effect of a 
compromised cyber asset or failed mission element on the accomplishment of other 
mission elements.) 

• Multi-layer graphical models (or a common operational picture) to effectively represent 
and display various inter- and intra- dependency relationships between different elements 
and components involved in CSA assessment 

• Simple but meaningful metrics and corresponding evaluation algorithms or mechanisms 
for specific or general network security analysis 

Note that the achievement of CSA rests in the ability to judiciously balance the above capabilities 
to handle the complexities of defensive operations. An integrated framework or software tool that 
leverages well-defined and developed technologies can significantly improve CSA and network 
security modeling, analysis, measurement, and visualization capabilities for security and mission 
analysts in enterprise network environments. 
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7 Summary 
Meaningful security metrics are necessary to quantitatively evaluate and measure the operational 
effectiveness and system performance of a network. This chapter discussed how to effectively 
identify good metrics and evaluation methods for enterprise network situational awareness (SA) 
quantification and measurement. Metrics are tools that are designed to facilitate decision-making 
and improve performance and accountability through collection, analysis, and reporting of 
relevant performance-related data. Security measurement for CSA needs to carefully consider two 
distinct possible relationships: (i) How to define and use metrics as quantitative characteristics to 
represent the security state of a computer system or network, and (ii) How to define and use 
metrics to measure CSA from a defender’s point of view. The multivariate nature of SA 
significantly complicates its quantification and measurement. State-of-the-art technologies 
provide useful descriptive information on security analysis, mission modeling, and situation 
management. The Common Vulnerability Scoring System has been widely adopted as the 
primary method for assessing the severity of computer system security vulnerabilities. The 
National Vulnerability Database provides CVSS scores for almost all known vulnerabilities. To 
evaluate the general security of an enterprise network based on vulnerability assessment, three 
security metrics are proposed: the vulnerable host percentage (VHP), CVSS severity score, and 
compromised host percentage (CHP). Attack graph based metrics can also be defined for 
network-level vulnerability assessment, such as the Number of Attack Paths, the Average Length 
of Attack Paths, and the Shortest Attack Path. Useful metrics can also be based on modeling (i) 
the logical relations that allow us to model the propagation of the impacts through the network, 
and (ii) the computational relations that allow us to calculate the level of those impacts. Analysts 
can feasibly model a complex mission, identify the criticality of each task/subtask, and evaluate 
the cyber resilience during the mission planning phase. After deriving the complete mission-to-
asset dependency relationships via the logical mission models discussed in this chapter, the next 
step is to evaluate the potential impact of the lower level cyber incidents on the higher level 
mission elements. Using the real-time mission impact analysis, network operators can either 
reconfigure the corresponding network and systems, or replace a planned task with an alternative 
task to prevent or avoid the coming impacts and ensure a mission’s success. AHP and pair-wise 
comparison matrix can help calculate the relative value and importance of each mission related 
cyber asset. Effectively identifying the right metrics to measure security preparedness and 
awareness within an organization is a hard and complicated problem. To be valuable, security 
metrics must be meaningful to organizational goals or key performance indicators. Security 
analysts should review their specific metrics currently in place and ensure that they are aligned 
with the overall industry standards and their particular organizational and business goals. 

 

Disclaimer 

This paper is not subject to copyright in the United States. Commercial products are identified in 
order to adequately specify certain procedures. In no case does such identification imply 
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recommendation or endorsement by the National Institute of Standards and Technology, nor does 
it imply that the identified products are necessarily the best available for the purpose. 
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